RHIC present status and plans

Wolfram Fischer Brookhaven National Laboratory

> In Run-11 the peak performance in 250 GeV polarized proton operation has significantly increased for both luminosity and polarization, although at a reduced time in store. The RHIC Run-11 is summarized and the main polarized proton upgrades for the next years are presented. d-Au and p-Au operation, a possible energy upgrade, and ³He operation are discussed.

Future operation of A_nDY

• Can reduce β^* at IP2

have run with β^* = 2.0 m previously for BRAHMS β^* = 1.5 m probably ok, needs to be tested

• Longer stores

10h instead of 8h in Run-11 (depends on luminosity lifetime and store-to-store time)

- Collide earlier in store when conditions are met
 needs coordination with polarization measurement, PHENIX and STAR
- Electron lenses (see later) if A_nDY runs beyond Run-13 increases max beam-beam tune spread, currently ΔQ_{max,bb} ≈ 0.015 can be used for to increase ξ~N_b/ε and/or number of collisions

Run-11 luminosity at A_nDY: max ~0.3 pb⁻¹/store

With improvements: ~3x increase, ~10 pb⁻¹/week

[all preliminary]

Asymmetric collisions (p-Au)

- p-Au was considered in RHIC design (D. Trbojevic), no operation yet 100.8 GeV p on 100.0 GeV/nucleon Au ($\gamma_p = \gamma_{Au} = 107.4$)
- Need to translate DX magnets horizontally by 4.33 cm p are bent stronger than Au⁷⁹⁺
- For energy scan need to match Lorentz factor γ of both beams

Parameter	unit	p-Au		p-Au	
No of bunches		111	111	111	111
Ions/bunch, initial	109	100	1.0	200	1.2
Average beam current/ring	mA	139	110	278	132
Stored energy per beam	MJ			0.36	0.42
β*	m	0.85		0.60	
Hour glass factor		1.00		0.91	
Beam-beam parameter ξ/IP	10-3	4.3	1.7	5.2	3.5
Peak luminosity	10 ²⁸ cm ⁻² s ⁻¹	30		95	
Average / peak luminosity	%	60		60	
Average store luminosity	10 ²⁸ cm ⁻² s ⁻¹	18		57	
Time in store	%	55		55	
Maximum luminosity/week	nb ⁻¹			189	
Minimum luminosity/week	nb ⁻¹	60			

Energy upgrade – W. MacKay, C-A/AP/422

Conclusion:

- 10% increase to 275 GeV (+45% in σ_W) feasible with current magnets about 20 DX, 10 other training quenches, more cooling at some current leads
- Requires some hardware upgrades (dump kicker, power supplies)
- Effect on polarization still needs study
- Energies >275 GeV require too many training quenches hundreds of arc dipole training quenches alone for 325 GeV

Polarized ³He

[Summary W. MacKay, CAD MAC-05, 09/15/2010]

3 Deuterons not good in RHIC — perhaps in a figure-8 ring.

- Source: ³He⁺² OPPIS source proposal: Milner/Zelenski See Anatoli Zelenski's presentation.
- $|G\gamma|_{\text{max}}$ is higher for He³:
 - More and Stronger resonances in all rings.
- $\circ~^3\mathrm{He}$ polarimeters need to be developed.
- AGS cold snake may be sufficient at lower field. AGS warm snake (fixed field) might be too strong ($\sim 14\%$).
- AGS injection and extraction spin-matching: not too bad.
 - Booster to AGS may need matching (depends on AGS snakes).
- RHIC snakes and rotators will work with lower fields.
- Lower injection rigidity for RHIC should be OK.
 - Injection orbit excursions reduced.

Machine Advisory Committee Review Waldo MacKay 15 September, 2010

Summary – RHIC performance

• Run-11 p^p results:

P > 46%, $L_{peak} = 150 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$, $L_{avg} = 85 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$ (all new records for peak performance, and all within Run-11 projections) Integrated luminosity below expectation due to down time A_n DY tested, ran with relatively small impact on STAR/PHENIX

- Main hardware upgrades for p[^]p[^] (commissioning planned for Run-13) Polarized source: P +5%, intensity +order of magnitude Electron lenses : up to 2x more luminosity with source upgrade
- Asymmetric collisions (d-Au and p-Au) Expect up 2x more luminosity for future d-Au operation rel. to Run-8 p-Au possible with change of DX location (γ_p = γ_{Au} = 107.4)
- Limited energy upgrade possible, 10% to 275 GeV protons Effect on polarization still needs study, requires hardware upgrades
- Polarized ³He (p-³He, ³He-³He)

Polarized ³He source R&D has started (with MIT, using EBIS) Acceleration and storage in RHIC should be possible ³He polarimetry at high (esp. absolute) needs R&D

