New measurement of charge asymmetry xF₃ from HERA

Laurent Schoeffel CEA Saclay

March 25-27, 2009 Thomas Jefferson National Accelerator Facility Newport News, VA

Headlines

- ** Very short introduction to HERA
- ** Definition of xF3
- ****** Measurements and prospects
- ** Other cross section differences in beam charges

 -- at the Electro-Weak scale
 -- at lower scale

** Outlook and future

Colliders @ EW scale

3

HERA @ EW scale

Inclusive ep cross sections

HERA

A bit more on kinematic variables

x is the (longitudinal) momentum fraction of the incident Proton carried by the struck quark

Inclusive ep cross sections

Expressions in fonction of y and $Y_{\pm}=1 \pm (1-y)^2$

With axial and vector couplings and Pe (lepton polarisation):

$$\begin{split} \tilde{F}_{2}^{\pm} &= F_{2}^{\gamma} - (v_{e} \pm P_{e}a_{e})\chi_{Z}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} \pm P_{e}2v_{e}a_{e})\chi_{z}^{2}F_{2}^{Z} \\ x\tilde{F}_{3}^{\pm} &= -(a_{e} \pm P_{e}v_{e})\chi_{Z}xF_{3}^{\gamma Z} + (2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))\chi_{z}^{2}xF_{3}^{Z} \\ & \uparrow \qquad \qquad \uparrow \qquad \qquad \chi_{Z} \sim Z^{0} \text{ propagator} \\ pure \text{ photon} \quad photon/Z^{0} \qquad \qquad pure Z^{0} \end{split}$$

xF3 at work

xF3 comes from the γ Z interference

UNPOLARISED CASE

$$\begin{split} \tilde{\sigma}_{NC}^{\pm} &\approx \tilde{F}_{2} \mp \frac{Y_{-}}{Y_{+}} x \tilde{F}_{3} & \text{neglecting F}_{L} \\ x \tilde{F}_{3} &= \frac{Y_{+}}{2Y_{-}} (\tilde{\sigma}_{NC}^{-} - \tilde{\sigma}_{NC}^{+}) &\approx a_{e} \chi_{Z} x F_{3}^{\gamma Z} \end{split}$$

xF3 measurements (1)

xF3 measurements (2)

COMBINATION H1+ZEUS

** not published yet and only a part of the HERAII stat in this plot

 ** fluctuations?!
 Some effects have still to be understood in combining experiments

** purpose:

Clarify the trend at low x (large Q^2)... if possible.

F2 and xF3 in quarks

$$\tilde{F}_2 \propto \sum (xq_i + x\overline{q_i})$$
$$x\tilde{F}_3 \propto \sum (xq_i - x\overline{q_i})$$

For the record

q

$$F_{2} = F_{2}^{\gamma} - v_{e}P_{Z}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2})P_{Z}^{2}F_{2}^{Z}$$

$$= \sum_{q} \left[e_{q}^{2} - 2e_{q}v_{e}v_{q}P_{Z} + (v_{e}^{2} + a_{e}^{2})(v_{q}^{2} + a_{q}^{2}) \right] x(q + \bar{q})$$

$$xF_{3} = -a_{e}P_{Z}xF_{3}^{\gamma Z} + 2a_{e}v_{e}P_{Z}^{2}xF_{3}^{Z}$$

$$= \sum_{q} \left[-2a_{e}e_{q}a_{q}P_{Z} + 4a_{e}v_{e}a_{q}v_{q}P_{Z}^{2} \right] x(q - \bar{q})$$

11

The case of Charged-Current (CC)

CC cross sections H1/ZEUS

HERA Charged Current

Low scale beam charge asymmetry

 $\Rightarrow \rho = \text{Re/Im} = 0.20 + - 0.05 + - 0.08$

Summary and outlook

- ** Prel measurement of xF3 still limited by statistics... Measurement only possible @ the EW scale
- ** Combination H1+ZEUS can help
 Complte analysis of HERAII data
 => on going work
- ** essential measurement to give some real data for 2uv+dv
 @ large Q²!
- ** CC cross sections give also interesting different results
 @ EW scale (for e+/e- beam)
- ** At lower scale: other interesting beam charge differences
 <= DVCS/BH interference Paper underreview in H1 collab

