
xdvmpGenerator
An Monte Carlo Generator
for Exclusive Diffractive
Vector Meson Production
Status of the implementation of the b-Sat/b-
CGC Model for ep and eA

Thomas Ullrich
January 21, 2010

2

Motivation
Exclusive diffractive vector meson production is one of
the most promising ways to study saturation in ep/eA
• Naive: σ ~ G(x,Q2)2

Issues:
• Experimentally difficult

‣ rapidity gap, breakup, ∫Ldt needed ?
‣ reconstruction of t
‣ detector requirements (resolution, acceptance)
‣ sensitivity to physics (saturation)?
‣ need to study in ep and eA

What’s on the market?
RAPGAP
• only ep
• buggy (t = (p-p’)2 ≠ (pγ*-pV)2, pz’ > E’, etc.)
• cannot run J/ψ ⇒ need to add extra program
• hard to manipulate (see the code)
• in FORTRAN (cumbersome integration with ROOT and

other tools)

Other ?
• None with the features we want

3

Requirements for a new generator
• Simple, i.e. easy to use, manipulate and modify

‣ single purpose: e p → e’ p’ V
‣ write only the necessary core
‣ reuse what is available (and accessible)

• Based on a model that is known to describe data well
‣ Dipole model (works well at Hera)

• Extendable to eA
‣ Dipole model does that

• Modern
‣ C++, integrates with ROOT and other tools

• Output should follow standards as much as possible
• Useful for detector/acceptance studies as well as physics

studies (e.g., sensitivity to G(x,Q2) etc.)

4

Dipole Model (I)

Many dipole models on the market:
• Use : H. Kowalski, L. Motyka, G. Watt,

Phys. Rev. D74, 074016

• Describes Hera data well
• has b-dependence
• Michael & TU have experience with it
• Henri is around to ask
• can be “easily” modified to do eA (via

b-dependence)

5

γ∗

p p

z

1 − z

"r

"b
x x

γ∗ γ∗ V = J/ψ,φ, ρ

p p′

z

1 − z

"r

"b

(1 − z)"r

x x′

Figure 2: The elastic scattering amplitude for inclusive DIS (left) and vector meson production
(right). For DVCS, the outgoing vector meson in the right-hand diagram is replaced by a real

photon.

where (Ψ∗
EΨ)T,L denotes the overlap of the photon and exclusive final state wave functions. For

DVCS, the amplitude involves a sum over quark flavours. This expression, used in the analysis

of exclusive J/ψ photoproduction by Kowalski and Teaney [1], is derived under the assumption
that the size of the quark–antiquark pair is much smaller than the size of the proton. The
explicit perturbative QCD calculation of Bartels, Golec-Biernat and Peters [40] shows that

the non-forward wave functions can be written as the usual forward wave functions multiplied
by exponential factors exp[±i(1 − z)r · ∆/2]. Effectively, the momentum transfer ∆ should

conjugate to b + (1 − z)r, the transverse distance from the centre of the proton to one of the
two quarks of the dipole, rather than to b, the transverse distance from the centre of the proton

to the centre-of-mass of the quark dipole; see the right-hand diagram of Fig. 2.

Assuming that the S-matrix element is predominantly real we may substitute 2[1−S(x, r, b)]

in (10) with dσqq̄/d2b.

These two changes lead to

Aγ∗p→Ep
T,L (x, Q, ∆) = i

∫

d2r

∫ 1

0

dz

4π

∫

d2b (Ψ∗
EΨ)T,L e−i[b−(1−z)r]·∆ dσqq̄

d2b
. (11)

The elastic diffractive cross section is then given by

dσγ∗p→Ep
T,L

dt
=

1

16π

∣

∣

∣
Aγ∗p→Ep

T,L

∣

∣

∣

2
=

1

16π

∣

∣

∣

∣

∫

d2r

∫ 1

0

dz

4π

∫

d2b (Ψ∗
EΨ)T,L e−i[b−(1−z)r]·∆ dσqq̄

d2b

∣

∣

∣

∣

2

. (12)

This is the basic equation for the simultaneous analysis of different exclusive processes per-

formed in this paper.

2.1 Forward photon wave functions

The forward photon wave functions were perturbatively calculated in QCD by many authors;
see, for example, Refs. [5,41]. The normalised photon wave function for the longitudinal photon

polarisation (λ = 0) is given by [9]

Ψhh̄,λ=0(r, z, Q) = efe
√

Nc δh,−h̄ 2Qz(1 − z)
K0(εr)

2π
, (13)

5

γ∗

p p

z

1 − z

"r

"b
x x

γ∗ γ∗ V = J/ψ,φ, ρ

p p′

z

1 − z

"r

"b

(1 − z)"r

x x′

Figure 2: The elastic scattering amplitude for inclusive DIS (left) and vector meson production
(right). For DVCS, the outgoing vector meson in the right-hand diagram is replaced by a real

photon.

where (Ψ∗
EΨ)T,L denotes the overlap of the photon and exclusive final state wave functions. For

DVCS, the amplitude involves a sum over quark flavours. This expression, used in the analysis

of exclusive J/ψ photoproduction by Kowalski and Teaney [1], is derived under the assumption
that the size of the quark–antiquark pair is much smaller than the size of the proton. The
explicit perturbative QCD calculation of Bartels, Golec-Biernat and Peters [40] shows that

the non-forward wave functions can be written as the usual forward wave functions multiplied
by exponential factors exp[±i(1 − z)r · ∆/2]. Effectively, the momentum transfer ∆ should

conjugate to b + (1 − z)r, the transverse distance from the centre of the proton to one of the
two quarks of the dipole, rather than to b, the transverse distance from the centre of the proton

to the centre-of-mass of the quark dipole; see the right-hand diagram of Fig. 2.

Assuming that the S-matrix element is predominantly real we may substitute 2[1−S(x, r, b)]

in (10) with dσqq̄/d2b.

These two changes lead to

Aγ∗p→Ep
T,L (x, Q, ∆) = i

∫

d2r

∫ 1

0

dz

4π

∫

d2b (Ψ∗
EΨ)T,L e−i[b−(1−z)r]·∆ dσqq̄

d2b
. (11)

The elastic diffractive cross section is then given by

dσγ∗p→Ep
T,L

dt
=

1

16π

∣

∣

∣
Aγ∗p→Ep

T,L

∣

∣

∣

2
=

1

16π

∣

∣

∣

∣

∫

d2r

∫ 1

0

dz

4π

∫

d2b (Ψ∗
EΨ)T,L e−i[b−(1−z)r]·∆ dσqq̄

d2b

∣

∣

∣

∣

2

. (12)

This is the basic equation for the simultaneous analysis of different exclusive processes per-

formed in this paper.

2.1 Forward photon wave functions

The forward photon wave functions were perturbatively calculated in QCD by many authors;
see, for example, Refs. [5,41]. The normalised photon wave function for the longitudinal photon

polarisation (λ = 0) is given by [9]

Ψhh̄,λ=0(r, z, Q) = efe
√

Nc δh,−h̄ 2Qz(1 − z)
K0(εr)

2π
, (13)

5

Cross-section for production of final state VM:

Amplitude Overlap between
photon and VM
wave function

Dipole
Cross-Section

Using it implies the generator has to be amplitude based
(which is a bit problematic)

http://arxiv.org/find/hep-ph/1/au:+Kowalski_H/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Kowalski_H/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Motyka_L/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Motyka_L/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Watt_G/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Watt_G/0/1/0/all/0/1
http://dx.doi.org/10.1103/PhysRevD%2E74%2E074016
http://dx.doi.org/10.1103/PhysRevD%2E74%2E074016

Dipole Model (II)

6

γ∗

p p

z

1 − z

"r

"b
x x

γ∗ γ∗ V = J/ψ,φ, ρ

p p′

z

1 − z

"r

"b

(1 − z)"r

x x′

Figure 2: The elastic scattering amplitude for inclusive DIS (left) and vector meson production
(right). For DVCS, the outgoing vector meson in the right-hand diagram is replaced by a real

photon.

where (Ψ∗
EΨ)T,L denotes the overlap of the photon and exclusive final state wave functions. For

DVCS, the amplitude involves a sum over quark flavours. This expression, used in the analysis

of exclusive J/ψ photoproduction by Kowalski and Teaney [1], is derived under the assumption
that the size of the quark–antiquark pair is much smaller than the size of the proton. The
explicit perturbative QCD calculation of Bartels, Golec-Biernat and Peters [40] shows that

the non-forward wave functions can be written as the usual forward wave functions multiplied
by exponential factors exp[±i(1 − z)r · ∆/2]. Effectively, the momentum transfer ∆ should

conjugate to b + (1 − z)r, the transverse distance from the centre of the proton to one of the
two quarks of the dipole, rather than to b, the transverse distance from the centre of the proton

to the centre-of-mass of the quark dipole; see the right-hand diagram of Fig. 2.

Assuming that the S-matrix element is predominantly real we may substitute 2[1−S(x, r, b)]

in (10) with dσqq̄/d2b.

These two changes lead to

Aγ∗p→Ep
T,L (x, Q, ∆) = i

∫

d2r

∫ 1

0

dz

4π

∫

d2b (Ψ∗
EΨ)T,L e−i[b−(1−z)r]·∆ dσqq̄

d2b
. (11)

The elastic diffractive cross section is then given by

dσγ∗p→Ep
T,L

dt
=

1

16π

∣

∣

∣
Aγ∗p→Ep

T,L

∣

∣

∣

2
=

1

16π

∣

∣

∣

∣

∫

d2r

∫ 1

0

dz

4π

∫

d2b (Ψ∗
EΨ)T,L e−i[b−(1−z)r]·∆ dσqq̄

d2b

∣

∣

∣

∣

2

. (12)

This is the basic equation for the simultaneous analysis of different exclusive processes per-

formed in this paper.

2.1 Forward photon wave functions

The forward photon wave functions were perturbatively calculated in QCD by many authors;
see, for example, Refs. [5,41]. The normalised photon wave function for the longitudinal photon

polarisation (λ = 0) is given by [9]

Ψhh̄,λ=0(r, z, Q) = efe
√

Nc δh,−h̄ 2Qz(1 − z)
K0(εr)

2π
, (13)

5

Cross-section for production of final state VM:

Overlap between
photon and VM
wave function

Dipole
Cross-Section

Wave function:
• Boosted Gaussian

- Forshaw, Sandapen, Shaw

• GausLC
- Dosch, Gousset, Kulzinger,

Pirner, Teaney, Kowalski

• Parameters tuned for HERA
are available

• any improved wave function
can be easily plugged in

Dipole Cross-Section:
• b-Sat
‣ uses DGLAP evolution from

initial G(x,Q)
‣ can be adapted for A (b-

dependence)

• b-CGC
• Parameters tuned for HERA are

available

Q2
min =

m2
ey

2

1− y

Photon Flux
Dipole models provide σL,T (γ* p → p’ V)
For generator we need to consider σ (e p → e’ p’ V)
Need Photon Flux ΓT , ΓL
σe p → e’ p’ V = ΓL σLγ* p → p’ V + ΓT σTγ* p → p’ V

The full formula is rather complex
What is used is a simplification (not always justified):
For Q2/(4E2) = 0 and Q2/ν2 = 0, me = 0
Pick 2 independent variables best for MC: x, Q2

7

d2σ

dxdQ2
=

α

2π

1
xQ2

��
1 + (1− y)2 − 2(1− y)

Q2
min

Q2

�
σT + 2(1− y)σL

�

where Jacobian!

Full Shebang ...

Dipole model calculations + flux give:

8

d6σ

dx dQ2 dt db dz dr

‣ 6-dim Probability Distribution Function (PDF)
‣ all variables independent

‣ Given (input): beam energies pe, pp

Basic scheme behind xdvmpGenerator

9

Dipole Model

Beam 4-momenta

Dipole Model
Parameter

User

PDF

Kinematic
Limits

Random
Generator

x,Q,t,z,b,r
Final State
Generator

Final State
Particle

Random Generator
Big Problem: generate random numbers according to
a given distribution (here 6D PDF)
Techniques (good overview in Pythia6 manual chapter 4):
• Inverse transform method (invert cumulative PDF)

‣ must integrate pdf and invert (note we have a DGLAP
evolution in the PDF)

• Acceptance-rejection method (Von Neumann)
‣ good if pdf is too complex
‣ rather easy in 1-D, nightmare in N-D

• and many more
• General recommendation in all text books for N-dim: factorize

‣ Problem is we cannot do that since the 6 parameters are
heavily intertwined

• Largest fraction of code in most simulators is spent on this topic

10
UNURAN to the rescue (http://statmath.wu.ac.at/unuran/)

http://statmath.wu.ac.at/unuran/
http://statmath.wu.ac.at/unuran/

UNU.RAN Package
Universal Non-Uniform RANdom number generators
(Math Department University Vienna)

• provides tools to generate pretty much everything
• xdvmpGenerator:

‣ Markov chain samplers for continuous multivariate distributions
‣ HITRO: Hit-and-Run Sampler

• Bare minimum is implemented in Root/MathCore
Issues:

11

Requires uniform limits (domains)

Kinematically allowed

Kinematically not allowed but generated
Need to discard after generation (tries > events)

Requires to pass mode
of pdf to UNURAN

• pdf is max at |t| = |t|min,
x=xmin, Q=Qmin

• less obvious for b, z, r

Use MINUIT (TMinuit2)

Final State Particles
Given: pe, pp, s, t, x, Q2, y
Need: pe’, pp’, pγ*, pVM

Hannes Jung (DESY) gave me analytic solutions for all. After
many checks: pe’, pγ* formulas are correct!
pp’ is not correct (possible source of problems in RAPGAP?)

New Ansatz:
• t = (p-p’)2, mVM2 = (pγ* + pp - pp’)2, |pp’| = mp

• allows to derive pp numerically (root finder)
• use Hanne’s analytic formula as first guess

‣ fails at times since first guess is off by several GeV
• pVM trough pe + pp = pe’+ pp’+ pVM

• solution obtained this way is fully consistent
‣ pe’, pp’, pγ*, pVM ⇒ s, t, x, Q2, y 12

0 < x < 1
0 < y < 1

m2
ey

2

1− y
< Q2 < s−m2

e −m2
p

t < −
x2

IP m2
p

1− xIP

xIP =
m2

V + Q2

ys

Kinematic Boundaries
Tricky since some formulas neglect masses others not
(something to still work on)

13

s =
Q2

xy
+ m2

p + m2
e not just Q2 = s x y

Currently implemented (but not sufficient):

Implementation
Follow Pythia8 philosophy
• main program to be provided by user
• xdvmpGenerator is class with simple methods

‣ init(), generateEvent(), printEventRecord(), ...
‣ event record in plain structure (xdvmpEvent)
‣ setup through runcard (txt file) or programmatically

• xdvmpGenerator uses many other classes and functions
‣ class xdvmpDipoleModel (dipole model implementation)

๏ alphaStrong.cpp (fcts to calculate αs - adapted from MRST,
rewritten in C++)

๏ laguerre.c, dglap.c (for DGLAP from F. Gelis)
‣ class xdvmpFinalStateGenerator (generate final state

particles from x, Q2, s, t)
‣ class xdvmpSettings (handle parameter & runcard parsing)

• Total ~ 4200 lines of code only (requires only GSL, ROOT libs)
14

Example Main Program
#include "xdvmpGenerator.h"

int main(int argc, char *argv[])
{
 xdvmpGenerator generator;
 bool ok = generator.init(“xdvmpRuncard.txt”);
 xdvmpSettings settings = generator.runSettings(); // for convinience
 TFile *hfile = new TFile(settings.rootfile().c_str(),"RECREATE");
 TH1D *histo_r = new TH1D("histo_r", "r distribution", 200, 0., 2.);

 int nPrint = settings.numberOfEvents()/settings.timesToShow();
 unsigned long maxEvents = settings.numberOfEvents();

 generator.printEventHeader(cout);

 for (unsigned long iEvent = 0; iEvent < maxEvents; iEvent++) {
 xdvmpEvent event = generator.generateEvent();
 if (iEvent%nPrint == 0) {
 cout << "processed " << iEvent << " events" << endl;
 }
 histo_r->Fill(event.r);
 generator.printEventRecord(cout);
 }
 hfile->Write();
 generator.printStatistics();
 return 0;
} 15

Example Runcard
#===
Comments start with a
Name and value are separated by a "=": name = value
#
The following settings are currently implemented:
eBeamEnergy: electron beam energy (GeV) (default = 10)
pBeamEnergy: proton beam energy in (GeV) (default = 250)
numberOfEvents: number of events to generate (default = 10000)
vectorMeson: rho | phi | jpsi (default = rho)
waveFunction: GausLC | BoostedGaussian (default = BoostedGaussian)
dipoleModel: bSat | bCGC (default = bCGC)
timesToShow: # of print-outs to tell how far we are (default=0)
rootfile: name of root file for histos etc. (default ="")
xmin: min x value (default = 1e-3)
Q2min: min Q2 value (GeV^2) (default = 1.)
#===
eBeamEnergy = 10
pBeamEnergy = 250
vectorMeson = rho
dipoleModel = bSat
waveFunction = BoostedGaussian
numberOfEvents = 10000
timesToShow = 10;
rootfile = bla.root
Q2min = 1;
xmin = 1e-3;

16

Example Output (1)
#==

#
xdvmGenerator

#

An event generator for exclusive diffractive vector meson
production using the dipole model.

#
Code compiled on Jan 20 2010 16:50:46

#==

Run started at Wed Jan 20 23:22:34 2010
Runcard is 'xdvmpRuncard.txt'

mXmin = 0.001
Electron beam is: 0 0 -10 10 (0.000510999)

Proton beam is: 0 0 249.998 250 (0.93827)

sqrt(s) = 100.004
Initializing the xdvmp dipole model:

Vector meson to generate: rho
Dipole model used: bCGC

Wave function used: BoostedGaussian

17

Example Output (2)
Range of kinematic variables (domain) used in generator:

t = [-4, 0]
Q = [1, 100.004]

x = [0.001, 0.99]

b = [0, 2]
z = [1e-12, 1]

r = [0.001, 2]
Finding mode of pdf:

mode = (t=0, Q=1, x=0.001, b=0.453883, z=0.5, r=0.526119; value of
pdf = 107769)

Initializing the random generator:
Dimensions used: 6

pdf in log: no
Number of events to process: 10000

xdvmpGenerator is initialized.

18

For bCGC this takes < 1 s
For bSat ~ 1-2 min (due to DGLAP setup)

Example Event Record
xdvmpGen event file

==

iEvent, t, Q2, x, y, b, z, r, s

==

i, id, px, py, px, E, m, vx, vy, vz

==

processed 0 events

1 -0.171395 2.03611 0.00254752 0.0799258 0.525637 0.380722 0.344587 10000.8

==

1 11 0 0 -10 10 0.000510999 0 0 0

2 2212 0 0 249.998 250 0.93827 0 0 0

3 11 -0.00222092 1.36871 -9.14977 9.25157 0.000510999 0 0 0

4 2212 0.214882 0.352692 248.818 248.82 0.93827 0 0 0

5 113 -0.212661 -1.7214 0.33036 1.92867 0.776 0 0 0

============= End Event Record =============

2 -0.171395 2.03611 0.00254752 0.0799258 0.525637 0.380722 0.554715 10000.8

==

1 11 0 0 -10 10 0.000510999 0 0 0

2 2212 0 0 249.998 250 0.93827 0 0 0

3 11 1.34006 -0.278549 -9.14977 9.25157 0.000510999 0 0 0

4 2212 0.390437 -0.134496 248.769 248.771 0.93827 0 0 0

5 113 -1.7305 0.413045 0.379414 1.97772 0.776 0 0 0

============= End Event Record =============

19

• Note the VM does not decay (Geant can do this if needed)
• VM have zero width (should probably change that)
• The event record can be directly written into a ROOT Tree or any other

format, the print-out shown here is optional
• Time to generate 1M events ~ 4 min on my 3y old MacBook Pro

To-Do List
• Improve kinematic limit checks

‣ See still NaN in event record
• Calculate total cross-section within given limits

‣ needed to normalize output and get “barns”
‣ comes at a high price (6D integration takes time)

• Print-out format to follow that of other generators
• Test, test, test
• Add eA

‣ how do kinematic limits change here

Could need volunteers that help to check, test, and
improve ... anyone?

20

