DVCS predictions + fits based on H1/ZEUS + EIC mock data

Salvatore Fazio BNL

Kresimir Kumerički University Zagreb

Dieter Müller

BNL/Ruhr-University Bochum

KMP-K, 0807.0159 [hep-ph]; KM 0904.0458 [hep-ph]

flexible GPD model for small *x* and fits of H1/ZEUS data two codes in Phyton (+ Minuit + GeParD) & Mathematica + GeParD

S. Fazio in 1108.1713 [hep-ph]

EIC mock data 20 x 250 from a modified NLO Freund/McDermott code, exponential t-dependence statistical errors, smeared kinematical variables + 5% systematic error added by hand

Model based on SL(2,R) and SO(3) PWE

• SL(2,R) GPD moments: $F_j(\eta, t) = \sum_{J=J^{\min}} f_j^J(t) \eta^{j+1-J} \hat{d}_J(\eta)$

partial wave amplitudes reduced Wigner depending on j and J rotation matrices

 taking 2 better 3 SO(3) PWs: (two parameters s₂ and s₄)

$$f_j^{j-1}(t) = s_2 f_j^{j+1}(t),$$

$$f_j^{j-3}(t) = s_4 f_j^{j+1}(t),$$

• resulting CFF easy to handle:

 $\mathcal{F} = \frac{1}{2i} \sum_{k=0}^{4} \int_{c-i\infty}^{c+i\infty} dj \,\xi^{-j-1} \frac{2^{j+1+k}\Gamma(5/2+j+k)}{\Gamma(3/2)\Gamma(3+j+k)} \left(i - \frac{\cos(\pi j) \mp 1}{\sin(\pi j)}\right) \times s_k E_{j+k}(\mathcal{Q}^2) f_j^{j+1}(t) \hat{d}_j(\xi), \quad s_0 = 1$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$ • zero-skewness GPD: $h_j^{j+1} = q_j \frac{j+1-\alpha(0)}{j+1-\alpha(0)-\alpha't} \left(1 - \frac{t}{M_j^2}\right)^{-p}$

good DVCS fits at LO, NLO, and NNLO with flexible GPD ansatz

H1/ZEUS data

~ 180 data points H1/ZEUS, not statistically independent

four parameter H1/ZEUS fit $(s_2^{Q}, M_2^{Q}, s_2^{G}, M_2^{G})$ provides small error bands

Note: PDF is considered as known (another uncertainty) $(n^{sea}, \alpha^{sea}, \alpha^{sea})$, are fixed and $n^{sea}+n^{val}+n^{G}=1$)

art of error propagation

increasing amount of (compatible) data will reduce error bands increasing parameter set might result in bigger error bands taking strongly correlated parameters s²,s⁴ might induce very big error bands **error bands depend on model assumptions and hypotheses**

4 parameter fit with fixed PDFs

~ 30-50 H1/ZEUS points might be considered as independent b=5/GeV² is a bit incompatible with H1/ZEUS data new mock data from Salvatore with b ~ 5.6/GeV² are better (not entirely consistent with HERA data, statistically inconsistent)

Observables for e $p \rightarrow e^{-}p\gamma$ at small x_{B}

DVCS cross section (dominated by *H* and slightly dependent on *E*)

$$\frac{d\sigma^{\rm DVCS}}{dt}(W,t,\mathcal{Q}^2) \approx \frac{\pi\alpha^2}{\mathcal{Q}^4} \frac{W^2 x_{\rm Bj}^2}{W^2 + \mathcal{Q}^2} \left[|\mathcal{H}|^2 - \frac{t}{4M_p^2} |\mathcal{E}|^2 \right] \left(x_{\rm Bj}, t, \mathcal{Q}^2 \right) \Big|_{x_{\rm Bj} \approx \frac{\mathcal{Q}^2}{W^2 + \mathcal{Q}^2}}$$

(electron) beam spin asymmetry (dominated by *H* and slightly dependent on *E*) $A_{BS}^{(1)} \propto y \left[F_1(t)H(\xi,\xi,t,Q^2) - \frac{t}{4M^2}F_2(t)E(\xi,\xi,t,Q^2) + \cdots \right]$ $sin(\psi)$ transverse target spin asymmetry (governed by *E* and *H*)

$$A_{\rm TS}^{\uparrow(1)} \propto \frac{t}{4M^2} \left[F_2(t) H(\xi, \xi, t, Q^2) - F_1(t) E(\xi, \xi, t, Q^2) + \cdots \right]$$

 $cos(\psi)$ transverse and longitudinal target spin asymmetries are sensitive to parity odd GPDs – expected to be suppressed at small x_B

$$A_{\mathrm{TS}}^{\Downarrow(1)} \propto \frac{t}{4M^2} \left[F_2(t)\widetilde{H}(\xi,\xi,t,\mathcal{Q}^2) - F_1(t)\xi\widetilde{E}(\xi,\xi,t,\mathcal{Q}^2) + \cdots \right]$$
$$A_{\mathrm{TS}}^{\Rightarrow(1)} \propto \left[F_1(t)\widetilde{H}(\xi,\xi,t,\mathcal{Q}^2) - \frac{t}{4M^2}F_2(t)\xi\widetilde{E}(\xi,\xi,t,\mathcal{Q}^2) + \cdots \right]$$

effective model parameterization (small x)

PDF: $q^{\text{sea}}(\xi, Q_0) = n\xi^{-\alpha}, \quad \alpha \gtrsim 1, \quad F_1^{\text{sea}}(0) = 1$ GPD H: $H^{\text{sea}}(\xi, \xi, t, Q_0) = r(\eta/x = 1|s_2, s_4)F_1^{\text{sea}}(t)\xi^{\alpha'(t)}q^{\text{sea}}(\xi)$

- PDF is assumed to be known (from some fit with to "stone age" HERA data)
- *t*-dependence of residue is taken to be exponential with slope *B*
- free parameters: two sets { α' , B, s_2 , s_4 } for sea quarks and gluons
- momentum sum rule is implemented

GPD E:

$$E^{\text{sea}}(\xi, \mathcal{Q}_0) = n\xi^{-\alpha}, \quad \alpha \gtrsim 1, \quad F_2^{\text{sea}}(0) = \kappa^{\text{sea}}$$
$$E^{\text{sea}}(\xi, \xi, t, \mathcal{Q}_0) = r(\eta/x = 1|s_2, s_4)F_2^{\text{sea}}(t)\xi^{\alpha'(t)}E^{\text{sea}}(\xi, \eta = 0)$$

- PDF analog is unknown
- *t*-dependence of residue is taken to be exponential with slope *B*
- free parameters: κ^{sea} + two sets { $\alpha, \alpha', B, s_2, s_4$ } for sea quarks and gluons
- κ^G is constrained by Ji`s sum rule

real part of Compton form factors is determined by their imaginary parts

Impact of EIC data to extract GPD H

two simulations from Salvatore for DVCS cross section ~ 650 data points - $t < -0.8 \text{ GeV}^2$ for ~ 10/pb 1 GeV² < $-t < 2 \text{ GeV}^2$ for ~ 100/pb (cut: $-t < 1.5 \text{ GeV}^2$, 4 GeV² < Q2 to ensure $-t < Q^2$)

mock data are re-generated with GeParD statistical errors rescaled

5% systematical errors added in quadrature

Imaging (probabilistic interpretation) $q(x, \vec{b}, \mu^2) = \frac{1}{\pi} \int_0^\infty d|t| J_0(|\vec{b}|\sqrt{|t|}) H(x, \eta = 0, t, \mu^2)$

? $E^{\text{sea}}(\xi, \xi, t, \mathcal{Q}), \quad E^{\text{G}}(\xi, \xi, t, \mathcal{Q})$

exist a helicity flip "pomeron"-proton coupling

- not seen in Regge phenomenology
- might be sizeable in instanton models
- reggeized spectator quark models
- pQCD suggests `pomeron' intercept
- large N_c states $E \sim H$ (isosinglet)

qualitative understanding of *E* is needed (not only forJi's spin sum rule)

$$B = \int_0^1 dx \, x E(x, \eta, t, \mathcal{Q})$$
$$\sum_q B^q + B^G = 0$$
$$\lim_{\mathcal{Q} \to \infty} \sum_q B^q(\mathcal{Q}) = \lim_{\mathcal{Q} \to \infty} B^G(\mathcal{Q}) = 0$$
transverse target spin asymmetry is is sensitive to *E* and accessible at Elements

Salvatore: statistical errors with 11/pb for 738 data points [72 bins in (x_B, t, Q^2)] 1.5 10⁻⁴ < x_B < 10⁻², $-t \in \{0.08, 0.28, 0.65\}$ GeV², $Q^2 \in \{4.4, 7.8, 13.9\}$ GeV²

5% systematical error added to cross section \rightarrow asymmetry error 0.035 5% polarization error added

so far fit to transverse TSA done with fixed GPD *H* and fully flexible GPD *E* sum rule $B^Q + B^G = 0$ implemented

normalization (and *t*-depency) of E^{sea} is reasonable constraint E^{G} is essentially unconstraint

Imaging (probabilistic interpretation)

density for a transverse polarized proton in impact spce

$$q^{\uparrow}(x,\vec{b},\mu^{2}) = q(x,\vec{b},\mu^{2}) - \frac{1}{2M} \frac{\partial}{\partial b_{y}} E(x,\vec{b},\mu^{2})$$

$$= \frac{1}{\pi} \int_{0}^{\infty} d|t| \left[J_{0}(|\vec{b}|\sqrt{|t|})H + \frac{b_{y}\sqrt{|t|}}{|\vec{b}|2M} J_{1}(|\vec{b}|\sqrt{|t|})E \right] (x,\eta = 0, t, \mu^{2})$$
already assumed that E is constrained for $-t < 1.5$ GeV²
extrapolation errors into $-t > 1.5$ GeV² are taken
NOTE:
normalization and t-dependency of E are now extracted while normalization of H is fixed by unpolarized PDF
$$u^{(1)} = \frac{1}{2M} \frac{\partial}{\partial b_{y}} E(x,\vec{b},\mu^{2})$$

(optional) upgrades (perhaps for a paper)

simulation

? more *t*-bins for asymmetries (20 x 250) including 5 x100 data generating mock data for BSA

fits and observables

cross check with MINUIT simultaneous fit to X, transverse TSA, and perhaps BSA discussing longitudinal TSA dipole ansatz versus exponential *t*-dependency

errors /presentation

separating statistical and systematical errors separating errors related to *t*-dependency and normalization (skewness)

y-Transverse target spin asymmetry TSA

20x250 bins three models E = 0, E = -H, E = +H, sensitive to Im E

Longitudinal and x-transverse TSA

20x250 bins three models $\hat{H} = 0$, $\hat{H} = -H/2$, $\hat{H} = +H/2$, (in principle) sensitive to Im \hat{H} non-zero values expected for larger x

Beam spin asymmetry BSA

20x250 bins three models E = 0, E = -H, E = +HBSA requires large y values, not sensitive to E, however, to Im H

The first DVCS+DVMP fit to H1/ZEUS data

a global GPD fit to LO works surprisingly well $\chi^2/d.o.f. \sim 2$

