Exclusive J/Ψ production Two theoretical descriptions

M. Diehl

Deutsches Elektronen-Synchroton DESY

30 July 2009

First description: generalized parton distributions

▶ generalized gluon distributions $H^g(x, \xi, t; \mu)$ and $E^g(x, \xi, t; \mu)$

► collinear factorization formalism GPDs follow DGLAP type evolution equation in µ

►
$$\xi = (m_{J/\Psi}^2 + Q^2)/(2W^2 - m_{J/\Psi}^2 + Q^2)$$

x integrated over; for Im \mathcal{A} have $x = \xi$

▶ simplest calc'n for static J/Ψ wave function $(k_c = k_{\bar{c}} = \frac{1}{2}k_{J/\Psi})$ debate in literature about size of corrections also from $m_c \neq \frac{1}{2}m_{J/\Psi}$ see M.D., hep-ph/0307382, sects 7.4.1 and 8.4.2 First description: generalized parton distributions

▶ full NLO calc'n for $Q^2 = 0$ D.Yu. Ivanov et al, hep-ph/0401131

- found very large corr's $\sim \alpha_s \log 1/x$
- BFKL type resummation work in progress
- ► $H^g(x = \xi, \xi, t = 0) = xg(x)$ only in leading $\log 1/x$ approx. S.J. Brodsky et al, hep-ph/9402283

• previous claim:
$$H^g(x,\xi,t=0) \leftrightarrow xg(x)$$

A. Shuvaev et al, hep-ph/9902410

not from first principles, but assumption

K. Kumerički, D. Müller, arXiv:0907.1207

- interest in $H^g(x,\xi,t)$: transverse imaging of gluons, correlation between t and x,ξ
- from A_{UT} could get information on $E^g(x,\xi,t)$

Second description: color dipole formulation

- \blacktriangleright input: wave fcts. of photon (QED) and J/Ψ amplitude N(r,b,x) for scatt. of $q\bar{q}$ dipole on target
- theoretical derivation at level of leading $\log 1/x$ in phenomenology parameterize N(r, b, x) rather than solve evolution equation in x (BFKL, BK)
- ► J/Ψ w.f. suppresses large dipole size r disfavors region of parton saturation (at least in proton)
- ▶ for small r relation between N(r, b, x) and gluon distribution at leading $\log 1/x$ cannot distinguish $H^g(x, x, 0)$ from xg(x)
- physics interest: again transverse gluon imaging