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Asymmetric Coverage

STAR asymmetric: forward detectors face the Blue Beam

— n < -1 (facing the Yellow Beam): Empty of detectors

« Services for the HFT (2014) with lots of material
OR

« New instrumentation with a major rework of the HFT (or no HFT)
— TOF+BEMC+TPC: -1 <n<1
« Excellent PID, electron id, proven jet finding to 50 GeV
— EEMC + FGT: 1 < n < 2 (facing the Blue Beam)
« Proven EM Calorimetry, new tracking (FGT) optimized for high-E electrons

« Capabilities for electrons of ~few GeV and hadronic portion of jets need
investigation and likely upgrades

— FMS: 2.5 < n < 4 (facing the Blue Beam)

* Proven EM calorimetry

* No tracking at all. Upgrade needed, may need new magnet
— Upstream (symmetric) Roman pots: upgrade ready by ~mid-decade
— ZDC’s existing and proven on both sides




Kinematics at 4+100

Scattered electron Scattered jet
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4+100 open kinematics: scatters the electron and jet to mid-rapidity
Forward region (FMS): Electron either Q% < 1 GeV, or very high x and Q2
Jet either very soft or very hard
Note: current thinking has hadron in the blue beam: optimized for high x and Q2



meRHIC and saturation

Only can begin saturation search in Endcap, if hadrons in the yellow beam
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Energy loss in Cold Nuclear Matter
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« Reasonable reach in jet energy (20-50 GeV), especially in
the choice where the hadron is in the blue beam

« Cross-section ~1/(x Q%); rate should be Ok 6



10+100, Saturation reach
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« At higher EIC energies, electron should go towards the forward

detector to enable reach into saturation region: FMS region
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Speculative: 30+130
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« Forward region very important for higher energy options



Spin: History and (some) Open Questions

1989 - European Muon Collaboration measured g+(x,Q?) down to x ~ 102, and concluded:

“Quark spins contribute only about 20-30% of the proton spin, and
strange quarks are negatively polarized,”

The former relies on extrapolation to x~ 0, - How?
The latter has not been confirmed in semi-inclusive DIS (with Kaons), - Why?
What is the role of gluon spins? - RHIC has started to answer this, for ~0.03 < x < ~0.3,

thus leaving huge voids to be addressed in second-generation observations (including those
at RHIC),

What is the role of Orbital Momenta? - Lattice calculations suggest that quark orbital
momenta largely cancel; gluon Sivers function measurements at RHIC might tell us about
gluon orbital momenta,

Future measurements should answer these - What could stage-I of a polarized EIC d@?



MeRHIC and STAR

Note:

TPC+BEMC is used simply to indicate an existing acceptance region;
actual instrumentation may of course change,

No full simulations have been performed at this time,

Nevertheless,
+ TPC+BEMC acceptance is actually ~reasonable to measure the scattered electron,
- Scattered electron resolution will become limiting at intermediate to large-x and low ¥,

- TPC+BEMC(+ToF) PID will restrict the small-x reach of semi-inclusive measurements,
roughly to ~0.003 < x < ~0.03,

- 1-jet physics, as we currently know it, covers mostly large-x and high Q?

Tagging of spectator proton(s) with Roman Pots seems feasible (lots to be done, but no show-stoppers
found);

nice for 3He; makes on dream of spectator-tagged measurements with polarized D,

essential for any Deeply-Virtual-Compton-Scattering measurements.
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MeRHIC and STAR - Baseline Asymmetries
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A7 should be within reach at smallest Bjorken-x,

Running with Q? likely observable for x > ~ 102, .



Small(er)-x
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FIG. 3. Results for g7 ver:us z for the low z region from
SLAC experiment E154 compared to the CERN SMC exper-
iment. The data is evolved to Q* = 5 (GeV?/c?). Fits that
impact the low z extrapolation (discussed in the text) are

presented. E154 Collaboration (

). Phys.Rev.Lett.79:26t30,1997



Small(er)-x
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FIG. 3. Results for g7 ver:us x for the low z region from
SLAC experiment E154 compared to the CERN SMC exper-
iment. The data is evolved to Q* = 5 (GeV?/c?). Fits that
impact the low z extrapolation (discussed in the text) are
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Small(er)-x
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MeRHIC and STAR - Spin Physics

Expect meaningful extensions of inclusive measurements of gi(x,Q%), gz(x,Q¥) to smaller-x;
limited mostly by electron energy,

Expect better precision and reach in Q? for semi-inclusive measurements;
main limitation will likely be forward particle identification (and measurement),

Electroweak (interference) measurements are Struck quark angle
likely beyond the reach of a MeRHIC;
limited by electron energy and acceptance,
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Roman Pots are clearly essential for exclusive <
measurements, DVCS. Their impact remains %
to be estimated/quantified. 101

TPC+BEMC

Collisions with polarized deuterons in combination
with tagged spectators would allow simultaneous
proton and neutron measurements; conceptually
quite attractive, and technically hard (infeasible?).
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Questions for C-AD

« \What are constraints on direction of electron?

— Electron in Blue Beam

« Better matched to existing asymmetric detector, no conflict with HFT

« HOWEVER
— Existing Endcaps not well matched to energy of electron
— High energy jets for energy loss study go to the other side

— Electron in Yellow Beam
« Would need to shift the FMS and associated upgrades to the other side
 Allows for different Endcaps better matched to energy of the electron
« Serious conflict with the HFT services: loss of charm sector?

« What are constraints on additional forward magnets?
— May be necessary to take advantage of the FMS region

* Are polarized deuterons possible?
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