STAR and meRHIC

James Dunlop

STAR: A Correlation Machine

Asymmetric Coverage

- STAR asymmetric: forward detectors face the Blue Beam
 - $-\eta < -1$ (facing the Yellow Beam): Empty of detectors
 - Services for the HFT (2014) with lots of material OR
 - New instrumentation with a major rework of the HFT (or no HFT)
 - TOF+BEMC+TPC: -1 < η < 1</p>
 - Excellent PID, electron id, proven jet finding to 50 GeV
 - EEMC + FGT: $1 < \eta < 2$ (facing the Blue Beam)
 - Proven EM Calorimetry, new tracking (FGT) optimized for high-E electrons
 - Capabilities for electrons of ~few GeV and hadronic portion of jets need investigation and likely upgrades
 - FMS: $2.5 < \eta < 4$ (facing the Blue Beam)
 - Proven EM calorimetry
 - No tracking at all. Upgrade needed, may need new magnet
 - Upstream (symmetric) Roman pots: upgrade ready by ~mid-decade
 - ZDC's existing and proven on both sides

Kinematics at 4+100

4+100 open kinematics: scatters the electron and jet to mid-rapidity Forward region (FMS): Electron either Q² < 1 GeV, or very high x and Q² Jet either very soft or very hard

Note: current thinking has hadron in the blue beam: optimized for high x and Q²

meRHIC and saturation

Only can begin saturation search in Endcap, if hadrons in the yellow beam

Energy loss in Cold Nuclear Matter

- Reasonable reach in jet energy (20-50 GeV), especially in the choice where the hadron is in the blue beam
- Cross-section $\sim 1/(x Q^4)$; rate should be Ok

10+100, Saturation reach

 At higher EIC energies, electron should go towards the forward detector to enable reach into saturation region: FMS region

Speculative: 30+130

Forward region very important for higher energy options

Spin: History and (some) Open Questions

1989 - European Muon Collaboration measured $g_1(x, Q^2)$ down to $x \sim 10^{-2}$, and concluded:

"Quark spins contribute only about 20-30% of the proton spin, and strange quarks are negatively polarized,"

The former relies on extrapolation to $x \sim 0$, - How?

The latter has not been confirmed in semi-inclusive DIS (with Kaons), - Why?

What is the role of gluon spins? - RHIC has started to answer this, *for* $\sim 0.03 < x < \sim 0.3$, thus leaving *huge* voids to be addressed in second-generation observations (including those at RHIC),

What is the role of Orbital Momenta? - Lattice calculations *suggest* that quark orbital momenta largely cancel; gluon Sivers function measurements at RHIC *might* tell us about gluon orbital momenta,

Future measurements should answer these - What could stage-I of a polarized EIC dg?

MeRHIC and STAR

Note:-

TPC+BEMC is used simply to indicate an existing acceptance region; actual instrumentation may of course change,

No full simulations have been performed at this time,

Nevertheless,

- + TPC+BEMC acceptance is actually ~reasonable to measure the scattered electron,
- Scattered electron resolution will become limiting at intermediate to large-x and low Q^2 ,
- TPC+BEMC(+ToF) PID will restrict the small-*x* reach of semi-inclusive measurements, roughly to $\sim 0.003 < x < \sim 0.03$,
- 1-jet physics, as we currently know it, covers mostly large-x and high Q^2

Tagging of spectator proton(s) with Roman Pots seems feasible (lots to be done, but no show-stoppers found);

nice for ³He; makes on dream of spectator-tagged measurements with polarized D,

essential for any Deeply-Virtual-Compton-Scattering measurements.

MeRHIC and STAR - Baseline Asymmetries

 A_1 should be within reach at smallest Bjorken-x,

Running with Q^2 likely observable for $x > \sim 10^{-2}$.

FIG. 3. Results for g_1^n versus x for the low x region from SLAC experiment E154 compared to the CERN SMC experiment. The data is evolved to $Q^2 = 5$ (GeV²/c²). Fits that impact the low x extrapolation (discussed in the text) are presented. E154 Collaboration (K. Abe

E154 Collaboration (K. Abe et al.). Phys.Rev.Lett.79:26

Today's knowledge is better, but remains inconclusive.

E154 used a polarized ³He (neutron) target,

SMC and COMPASS are subtractions of measurements on targets with polarized D and H,

COMPASS aims for an additional H run.

FIG. 3. Results for g_1^n versus x for the low x region from SLAC experiment E154 compared to the CERN SMC experiment. The data is evolved to $Q^2 = 5 \text{ (GeV}^2/\text{c}^2)$. Fits that impact the low x extrapolation (discussed in the text) are presented.

E154 Collaboration (<u>K. Abe et al.</u>). Phys.Rev.Lett.79:26_F30,1997 *Neutron is most striking*,

Coarse estimate of uncertainty,
4 + 100 GeV beams at STAR,
1 fb⁻¹, 70% polarizations,
idealized efficiency,
no radiative dilution or corrections,
statistical uncertainty only,

Expect significant impact.

FIG. 3. Results for g_1^n versus x for the low x region from SLAC experiment E154 compared to the CERN SMC experiment. The data is evolved to $Q^2 = 5 \text{ (GeV}^2/\text{c}^2)$. Fits that impact the low x extrapolation (discussed in the text) are presented.

E154 Collaboration (K. Abe et al.). Phys.Rev.Lett.79:26₁40,1997 *Neutron is most striking,*

MeRHIC and STAR - Spin Physics

Expect meaningful extensions of inclusive measurements of $g_1(x,Q^2)$, $g_2(x,Q^2)$ to smaller-*x*; *limited mostly by electron energy*,

Expect better precision and reach in Q² for semi-inclusive measurements; main limitation will likely be forward particle identification (and measurement),

Questions for C-AD

- What are constraints on direction of electron?
 - Electron in Blue Beam
 - Better matched to existing asymmetric detector, no conflict with HFT
 - HOWEVER
 - Existing Endcaps not well matched to energy of electron
 - High energy jets for energy loss study go to the other side
 - Electron in Yellow Beam
 - Would need to shift the FMS and associated upgrades to the other side
 - Allows for different Endcaps better matched to energy of the electron
 - Serious conflict with the HFT services: loss of charm sector?
- What are constraints on additional forward magnets?
 - May be necessary to take advantage of the FMS region
- Are polarized deuterons possible?