How to measure $G\left(x, Q^{2}\right)$ in diffractive events using exclusive vector meson production

An attempt to create a recipe that us experimentalists can understand

Thomas Ullrich (BNL)
May 2009

Motivation

- One of the key measurements at eRHIC is $G\left(x, Q^{2}\right)$
- Exclusive diffractive vector meson production is considered the most promising method
- $\sigma \sim G\left(x, Q^{2}\right)^{2}$
- To date it is not clear to me (or others?) how the measurement is actually conducted
- w/o this understanding we cannot realistically establish errors and quality of measurements (as a fct. of luminosity, energy, detector acceptance etc)
- We have to get away from seeing a $G\left(x, Q^{2}\right)$ measurement as a measurement of the ratio $R=G_{e A} / G_{e p}$
- The assumption that things cancel out in ratios is not obvious (and as it will turn out is not justified)

> This is a first attempt to learn about how $G\left(x, Q^{2}\right)$ could be obtained with what is measured in an eRHIC experiment

Theory(I)

[1] S. Brodsky et al., Phys.Rev.D50:3134,1994, e-Print: hep-ph/9402283
[2] L. Frankfurt et al., Phys. Rev. D 54, 3194-3215 (1996) (corrects above)

$$
\left.\frac{d \sigma_{L}^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\alpha_{s}^{2}(Q)\left|\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}
$$

Note: this is cross-section for a longitudinally polarized photon to produce a longitudinally polarized vector meson, i.e., it is not spin averaged over initial photon states.

Warnings (Vadim): this is a simplified version of the corresponding expression in the dipole formalism: it uses only the perturbative part of the dipole cross section and ignores complications of the final meson wave function.

TU: What's with the transversely polarized photons? Many papers say there are problems (infrared singularities).

Theory (II): Understanding the formula

$$
\left.\frac{d \sigma_{L}^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\alpha_{s}^{2}(Q)\left|\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}
$$

$\Gamma \mathrm{v}$: is the decay with of the vector meson into an e+e-pair

Theory (III): Understanding the formula

$$
\left.\frac{d \sigma_{L}^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\alpha_{s}^{2}(Q)\left|\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}
$$

ηv : effective inverse momentum of the vector meson distribution amplitude that controls the leading twist contribution to the leptoproduction amplitude.

$$
\eta_{V} \equiv \frac{1}{2} \frac{\int d z d^{2} k_{T}[z(1-z)]^{-1} \Phi_{V}\left(z, k_{T}\right)}{\int d z d^{2} k_{T} \Phi_{V}\left(z, k_{T}\right)}
$$

$\Phi v(\mathrm{z})$: wave function of longitudinal polarized vector meson Roughly: Describes the distribution amplitudes of the longitudinal momentum fraction z of the quark in the meson.
Light mesons $(\rho, \varphi): \Phi_{V}(z) \sim 6 z(1-z)$
Heavy mesons ($\mathrm{J} / \psi, \Upsilon): \Phi_{V}(\mathrm{z}) \sim \delta(z-1 / 2)$ (non-rel. picture)
Typical values used: $\quad \eta_{\rho} \approx 2-5 \quad \eta_{J / \psi} \approx 2$ (model dep.)

Theory (IV): Understanding the formula

$\left.\frac{d \sigma_{L}^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\alpha_{s}^{2}(Q)\left|\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}$
$T\left(Q^{2}\right)$: Introduced in [2].
Accounts for "preasymptotic" effects
$T\left(Q^{2} \rightarrow \infty\right)=1$
Formula (w/o T) is only valid when transverse momenta in $\mathrm{q} \overline{\mathrm{q}}$ dipole (Fermi-motion) are neglected, i.e., at sufficiently large Q^{2}. Otherwise corrections are needed.

Theory (V): Understanding the formula

Light quark vector mesons
$T\left(Q^{2}\right)$

$$
=\left(\frac{\int_{0}^{1} d z \int_{0}^{Q^{2}} d^{2} k_{t} \psi_{V}\left(z, k_{t}\right)\left(-\frac{1}{4} \Delta_{t}\right)\left[\frac{Q^{4}}{Q^{2}+\frac{k_{t}^{2}+m^{2}}{z(1-z)}}\right]}{\int_{0}^{1} \frac{d z}{z(1-z)} \int_{0}^{Q^{2}} d^{2} k_{t} \psi_{V}\left(z, k_{t}\right)}\right)^{2} .
$$

Heavy quark vector mesons
$T_{V}\left(Q^{2}\right)$

$$
=\left(\frac{\int d^{3} k \psi_{V}(k)\left(-\frac{1}{16} \Delta_{t}\right)\left[\frac{\left(Q^{2}+4 m_{c}^{2}\right)^{2}}{Q^{2}+\frac{k_{t}^{2}+m_{c}^{2}}{z(1-z)}}\right]}{\int d^{3} k \psi_{V}(k) \frac{k^{2}+m_{c}^{2}}{k_{t}^{2}+m_{c}^{2}}}\right)^{2}
$$

Theory (VI): more questions

$$
\left.\frac{d \sigma_{L}^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\alpha_{s}^{2}(Q)\left|\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}
$$

- In eA: which $\alpha_{s}\left(Q^{2}\right)$ to use when $Q<Q_{s}\left(\alpha_{s}\left(Q_{s}{ }^{2}\right)\right.$?)
- What's with the term $[1+i \pi / 2 d / d l n x]$?
\rightarrow In [1] the alternative form is offered:

$$
\left.\frac{d \sigma_{L}^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\alpha_{s}^{2}(Q)\left|x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}
$$

Claim is to use the former at small x and large Q^{2}.
What's large/small in the context of eRHIC?
Cyrille: "10\% uncertainty in omitting the real part"
(confused TU: why is the the term containing the ithe real part? P.S.: I know about the optical theorem ©)

Theory (VII): even more questions

$$
\left.\frac{d \sigma_{L}^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\alpha_{s}^{2}(Q)\left|\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}
$$

- Diffractive slope b?
- What's about the transversely polarized part?
- Balance between σ_{L} and σ_{T} ?
- Separately study σ_{L} and σ_{T} ?
- Cannot study d $\sigma_{L} / d t$ and dot/dt in e+A
- What's with the hard scale $\overline{\mathrm{Q}}^{2}$ at which the gluon density is probed? (see I.Ivanov APP B Vol. 39, 2373 (2008))
- Confusing statements in literature
- heavy quarkonia: $\overline{\mathrm{Q}}^{2} \approx\left(\mathrm{Q}^{2}+\mathrm{m} v^{2}\right) / 4$
- light quarks: $\overline{\mathrm{Q}}^{2} \approx 0.1\left(\mathrm{Q}^{2}+m v^{2}\right)$
- $\overline{\mathrm{Q}}^{\mathrm{L}}$ and $\overline{\mathrm{Q}}^{\top}$ are expected to be different

Theory (VIII): transversely polarized case

[3] L. Frankfurt et al., Phys.Rev.D57:512,1998, hep-ph/9702216
$\left.\frac{d \sigma^{\gamma^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V}^{3}}{\alpha_{e m}} \cdot \frac{\alpha_{s}^{2}(Q)\left|\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{\left(Q^{2}+4 m^{2}\right)^{4}} \cdot\left(1+\epsilon \frac{Q^{2}}{m_{V}^{2}}\right) \mathcal{C}\left(Q^{2}\right)$
where

$$
\mathcal{C}\left(Q^{2}\right)=\left(\frac{\eta_{V}}{3}\right)^{2}\left(\frac{Q^{2}+4 m^{2}}{Q^{2}+4 m_{r u n}^{2}}\right)^{4} T\left(Q^{2}\right) \frac{R\left(Q^{2}\right)+\epsilon\left(Q^{2} / m_{V}^{2}\right)}{1+\epsilon\left(Q^{2} / m_{V}^{2}\right)}
$$

$\varepsilon=0$ purely transverse polarized (real photons $Q^{2}=0$)
$\varepsilon=1$ equal mix
This is getting a bit out of hand now
How do I measure all this at eRHIC
Let's see what the experimentalists say...
This will also clarify the meaning of ε and R

Experimental Side (I)

[4] ZEUS, Eur.Phys.J.C6:603,1999, hep-ex/9808020
[5] ZEUS, Nucl.Phys.B695:3,2004, hep-ex/0404008
[6] H1 Eur.Phys.J.C13:371,2000, hep-ex/9902019
Experiments measure ep (eA) cross-section not virtual photoproduction cross-sections

In Born approximation:
theory

Measured

Flux of transverse virtual photons
transverse and longitudinal virtual photoproduction
cross-section

$$
\text { Recall: } Q^{2}=s x y
$$

Experimental Side (II)

$$
\frac{d^{2} \sigma^{e p}}{d y d Q^{2}}=\Gamma_{T}\left(y, Q^{2}\right)\left(\sigma_{T}^{\gamma * p}+\epsilon \sigma_{L}^{\gamma * p}\right)
$$

ε is the ratio of long. and transv. virtual photon flux

$$
\epsilon=\frac{2(1-y)}{1+(1-y)^{2}}
$$

and the transverse photon flux is:

$$
\Gamma_{T}=\frac{\alpha_{e m}}{2 \pi} \frac{1+(1-y)^{2}}{y Q^{2}}
$$

together:

$$
\frac{d^{2} \sigma^{e p}}{d y d Q^{2}}=\frac{\alpha_{e m}}{\pi Q^{2} y}\left[\left(1-y+\frac{y^{2}}{2}\right) \sigma_{T}^{\gamma * p}+(1-y) \sigma_{L}^{\gamma * p}\right]
$$

Experimental Side (III)

The virtual photon cross-section

$$
\sigma^{\gamma^{*} p} \equiv \sigma_{T}^{\gamma^{*} p}+\epsilon \sigma_{L}^{\gamma^{*} p}
$$

can be used to evaluate the total exclusive cross-section

$$
\sigma_{t o t}^{\gamma^{*} p} \equiv \sigma_{T}^{\gamma^{*} p}+\sigma_{L}^{\gamma^{*} p}
$$

through:

$$
\sigma_{t o t}^{\gamma^{*} p}=\frac{1+R}{1+\epsilon R} \sigma^{\gamma^{*} p}
$$

where

$$
R=\frac{\sigma_{L}^{\gamma^{*} p}}{\sigma_{T}^{\gamma^{*} p}}
$$

Experimental Side (IV)

In our case:

$$
\sigma^{\gamma^{*} p \rightarrow p J / \psi} \equiv \sigma_{T}^{\gamma^{*} p}+\epsilon \sigma_{L}^{\gamma^{*} p}
$$

can be used to obtain:

$$
\begin{aligned}
\sigma_{t o t}^{\gamma^{*} p \rightarrow p J / \psi} & \equiv \sigma_{T}^{\gamma^{*} p \rightarrow p J / \psi}+\sigma_{L}^{\gamma^{*} p \rightarrow p J / \psi} \\
& =\frac{1+R}{1+\epsilon R} \sigma^{\gamma^{*} p \rightarrow p J / \psi}
\end{aligned}
$$

What is the value for R and on what does it depend?

Experimental Side (V)

- Model predictions: e.g. $\mathrm{R}=0.5 \cdot\left(\mathrm{Q}^{2} / \mathrm{M}_{\mathrm{J} / \psi}\right)$
- Helicity structure of VM production can be used to get R

R from polar angle distributions:
$R=0.52 \pm 0.16\left(Q^{2} / M_{J / \psi}\right)$

No W, t dependence?!

Experimental Side (VI)

Much bigger (and more uncertain) for ρ

Model prediction deviate big time

Comparing Theory with Experiment

In order to compare results with calculations and thus relate measured value with $\mathrm{G}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ we need:

$$
\left.\frac{d \sigma_{L}^{\gamma^{*} p}}{d|t|}\right|_{t=0}=\frac{R}{1+R} \cdot \frac{b}{1-e^{-b|t|_{\max }}} \cdot \sigma_{\text {tot }}^{\gamma^{*} p}
$$

since $\frac{d \sigma}{d|t|} \propto e^{-b|t|}$
In e+A at eRHIC we are not going to measure any
t-dependence
So what is b ? What is $\mathrm{t}_{\text {max }}$?
Guess $t_{\text {max }}$ will be related to the point where incoherent sets in?
We can get an estimate from $\mathrm{e}+\mathrm{p}-$ is that good enough?

More on b

J / ψ : no significant Q dependence $\quad \mathrm{b}=4.5 \pm 0.2 \mathrm{GeV}^{-2}$

ρ : carful about what is said here:
while for the J / ψ photo and electroproduction give the same b this is not true for the ρ
At times authors are not careful in their statements

Even more on b for the ρ

from [6] elastic ρ production

diffractive component with proton dissociation and the non-resonant two-pion background. The elastic component is fitted with a free slope parameter b, whereas the contribution of diffractive ρ events with proton dissociation, which amounts to $11 \pm 5 \%$ of the elastic signal, has a fixed slope parameter $b_{p d}=2.5 \pm 1.0 \mathrm{GeV}^{-2}$ (see section 3.2.2). ${ }^{11}$ The non-resonant background,

$$
\begin{aligned}
& \text { Questions instead of Conclusion } \\
& \left.\frac{d \sigma_{L}^{\tau^{*} N \rightarrow V N}}{d t}\right|_{t=0}=\frac{12 \pi^{3} \Gamma_{V} m_{V} \eta_{V}^{2} T\left(Q^{2}\right)}{\alpha_{e m} N_{c}^{2}} \cdot \frac{\left.\alpha_{s}^{2}(Q)\left[1+i \frac{\pi}{2} \frac{d}{d \ln x}\right] x G\left(x, Q^{2}\right)\right|^{2}}{Q^{6}}
\end{aligned}
$$

- Is this a reasonable calculation to work with ?
- Vadim expressed doubts
- Is there anything better ?
- Is the long. + trans. calculation OK,
- or is it better to deal with long. calculation only and fix it experimentally (appears not to be equivalent)
- What do we do with b in e+A?

