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Outline
a picture of strong interactions

γp and γA interactions

structure functions at low-x and high-Q2

 total inclusive F2

longitudinal FL

diffractive xPF2D(3)

outlook
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Q/A from DIS
how does QCD behave at high energies?

what are the fundamental degrees of 
freedom?

what is the hadronic wave function at small 
momentum fractions?

how fast can cross sections grow?

what are the initial conditions in heavy-ion 
collisions?
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at low scales

Bjorken scaling

higher Q2

QCD scaling violations

gluon dominated low-x

Experimental status

H1PDF 2009 vs. H1PDF 2000

Low x uncertainties reduced

Uncertainties at high x larger and more realistic:

New parameterisation using xuv instead of xU = xŪ + xuv

New uncertainty for parameterisation choice
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Figure 9: HERA combined NC e+p reduced cross section and fixed-target data as a function of

Q2. The HERAPDF1.0 fit is superimposed. The bands represent the total uncertainty of the fit.

Dashed lines are shown for Q2 values not included in the QCD analysis.
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Signals of saturation?
geometric scaling in γp 
collisions

λ ~ 0.25-0.3

similar scaling in γA!

breakdown of DGLAP 
equations at low Q2?

no definite answers

yet!

RHIC forward rapidity 
suppression, charm etc...

τ =
Q2

Q2
s(x) Q2

s(x) =
(x0

x

)λ

Stasto, Golec-Biernat, Kwiecinski PRL 86 (2001) 596
Freund, Rummukainen, Weigert, Schafer PRL 90 (2003) 
Marquet, Schoeffel PLB 639 (2006) 471
Armesto, Salgado, Wiedemann PRL 94 (2005)
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the integration sg!p becomes a function of only one di-
mensionless variable t ! Q2R2

0!x",
sg!p!x, Q2" ! sg!p!t" . (6)

The nonzero light quark mass does not lead to a significant
breaking of the scaling (6). Following the discussion in [3]
it is easy to show that we smoothly change the behavior
of (6),

sg!p # s0 ! sg!p # s0$t (7)

(modulo logarithmic modifications in t), when t changes
from small to large values, respectively. The aim of this
paper is to demonstrate that the DIS data do indeed ap-
proximately exhibit the geometric scaling (6) with the
property (7).

In Ref. [3] the saturation radius form was postulated
in the form R0!x" ! 1$Q0 !x$x0"l$2, where Q0 ! 1 GeV,
and the parameters x0, l, and s0 were determined from
a fit to DIS data at small x. For a recent related analyses
see [21] and also [22]. R0!x" can also be determined in a
less model-dependent way. Let us observe that after suit-
able extension of the saturation model to the low Q2 region
including the photoproduction limit Q2 ! 0, the x depen-
dence of the saturation radius R0!x" can be correlated with
the energy dependence of the total photoproduction cross
section sgp . To do this we replace, following Ref. [3], the
argument in R0!x" by

x̄ ! x
µ

1 1
4m2

f

Q2

∂

!
Q2 1 4m2

f

W2 (8)

and keep mf fi 0. W is the total energy of the g!p system.
We note that the saturation model based on Eqs. (1)–(4)
can now be extended down to the region Q2 ! 0. The pho-
toproduction cross section is given by Eqs. (1) and (3) with
Q2 ! 0, Q̄2

f ! m2
f and with x replaced by x̄ ! 4m2

f$W2.
The dominant contribution to the photoproduction cross
section comes from the integration region 1$m2

f ¿ r2 ¿
R2

0!x" in the corresponding integral on the right-hand side
in Eq. (1). In this region we can set m2

fK2
1 !mfr" % 1$r2

and ŝ!x, r" % s0. This gives the following relation be-
tween photoproduction cross section and the saturation
radius:

sgp!W " ! s̄0 ln
µ

1
m2

fR2
0!x̄"

∂

. (9)

The parameter s̄0 is related to the overall normalization of
the dipole cross section s0 by s̄0 ! !2aem$3p"s0. From
Eq. (9) we finally obtain the following prescription for the
saturation radius:

R2
0!x̄" !

1
m2

f
exp

µ

2
sgp

s̄0

∂

. (10)

For sgp we take the Donnachie-Landshoff parametriza-
tion [23]

sgp ! ax̄20.08, (11)

where we set mf ! 140 MeV (following [3]) in Eqs. (8)
and (10). Using results of the fit presented in [23] we find

a ! 68 mb!4m2
f$1 GeV2"0.08. For s̄0 we set 23 mb to

obtain a good description of data.
Let us now confront the implications of geometric scal-

ing (6) with experimental data on deep inelastic scatter-
ing at low x. In Fig. 1 we show experimental data [1] on
the total cross section sg!p plotted versus scaling variable
t ! Q2R2

0!x", with R0!x" obtained from Eq. (10). We in-
clude all available data for x , 0.01 in the range of Q2

values between 0.045 and 450 GeV2. We see that the data
exhibit geometric scaling over a very broad region of Q2.
We can also clearly see the change of shape of the depen-
dence of sg!p on t from the approximate 1$t dependence
at large t to the less steep dependence at small t. The
asymptotic 1$t dependence reflects the fact that the cross
section sg!p scales as 1$Q2 (modulo logarithmic correc-
tions) and its energy dependence is governed by 1$R2

0!x".
Less steep dependence corresponds to the fact that at small
values of t the total cross section grows weaker with en-
ergy than 1$R2

0!x" due to saturation of the dipole cross
section; see Eq. (4). We also found a symmetry between
the regions of large and small t for the function

p
t sg!p ,

which is illustrated in Fig. 2. For the asymptotic values of
t this is a manifestation of the relations (7). It is remark-
able that Fig. 2 seems to indicate the presence of symmetry
of

p
t sg!p with respect to the transformation t $ 1$t in

the whole region of t.
We have also tried the power law parametrization for

the radius, R2
0!x" # xl, where 0.3 , l , 0.4, in particu-

lar the original form proposed in [3], and found that the
data also exhibit the geometric scaling with this choice of
parametrization. The approximate 1$t dependence at large
t corresponds to the x2l behavior of the proton structure
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FIG. 1. Experimental data on sg!p from the region x , 0.01
plotted versus the scaling variable t ! Q2R2

0 !x".
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In Ref. [3] the saturation radius form was postulated
in the form R0!x" ! 1$Q0 !x$x0"l$2, where Q0 ! 1 GeV,
and the parameters x0, l, and s0 were determined from
a fit to DIS data at small x. For a recent related analyses
see [21] and also [22]. R0!x" can also be determined in a
less model-dependent way. Let us observe that after suit-
able extension of the saturation model to the low Q2 region
including the photoproduction limit Q2 ! 0, the x depen-
dence of the saturation radius R0!x" can be correlated with
the energy dependence of the total photoproduction cross
section sgp . To do this we replace, following Ref. [3], the
argument in R0!x" by

x̄ ! x
µ

1 1
4m2

f

Q2

∂

!
Q2 1 4m2

f

W2 (8)

and keep mf fi 0. W is the total energy of the g!p system.
We note that the saturation model based on Eqs. (1)–(4)
can now be extended down to the region Q2 ! 0. The pho-
toproduction cross section is given by Eqs. (1) and (3) with
Q2 ! 0, Q̄2

f ! m2
f and with x replaced by x̄ ! 4m2

f$W2.
The dominant contribution to the photoproduction cross
section comes from the integration region 1$m2

f ¿ r2 ¿
R2

0!x" in the corresponding integral on the right-hand side
in Eq. (1). In this region we can set m2

fK2
1 !mfr" % 1$r2
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FIG. 1. Experimental data on sg!p from the region x , 0.01
plotted versus the scaling variable t ! Q2R2
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QCD “phase” diagram
evolution equations govern the 
change along two directions

DGLAP in ln(Q2)
BFKL in ln(1/x)

at some density
linear terms ~ non-linear 
terms
recombination of gluons
saturation of parton density

introduction of a new scale!
typical configurations of the 
probe still remain perturbative

1. Introduction (I):

From eA to AA at RHIC and the LHC. 3

Our aims: 
understanding

!The implications of 
unitarity in a QFT.

!The behavior of QCD 
at large energies.

! The hadron wave 
function at small x.

!The initial conditions 
for the creation of a 
dense medium in heavy-
ion collisions.

Origin in the early 80’s: GLR, Mueller et 
al, McLerran-Venugopalan.

xGA(x,Q2
s)

πR2
AQ2

s

∼ 1 =⇒ Q2
s ∝ A1/3x∼−0.3

Gribov, Levin, Ryskin PR 100 (1983) 1
Mueller, Qiu NPB 291 (1986) 427

6
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Saturation physics
semiclassical treatment of 
hadronic wave function

CGC
initial condition: MV, ...

JIMWLK equation 
dilute-dense solution → 
extension?

equivalent to BK equation
neglecting higher-order 
correlators (1-2% effect) 

numerical treatment 
feasible
scaling solution

running coupling effects of 
higher order, but prove to 
be numerically important!

slowing down of evolution
impact parameter 
dependence
stronger effect in nuclear 
collisions, density ~ A1/3

McLerran,  Venugopalan, Jalilian-Marian, Iancu, Weigert, Leonidov, Kovner, Lublinsky,
Wiedemann, Balitsky, Kovchegov, Mueller, Albacete, Armesto, Salgado, Ferreiro...

7

violation of Froissart 
bound not equal to 
violation of unitarity...

since the theory is 
massless it violates the 
Froissart!!!
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The color dipole model

valid for high energies = small-x

flexible framework

QCD properties

Bjorken scaling & violations!

color transparency (σγp~r2)

σ(tot)(s, Q2) =
∑

T,L

∫ r0

0
dr

∫ 1

0
dz

∣∣ψT,L(r, z)
∣∣2 σS(r, s,Q2)

∣∣ψT (r, z)
∣∣2 =

6αe.m.

4π2

∑

q

e2
q

[
z2 + (1− z)2ε2K2

1 (εr) + m2
qK

2
0 (εr)

]

∣∣ψL(r, z)
∣∣2 =

6αe.m.

4π2

∑

q

e2
q

[
4Q2z2 + (1− z)2K2

0 (εr)
]

|

|

]

Mueller; Nikolaev, Zakharov...
8
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Dipole-target cross section
simplest model: two-gluon exchange

gluon mass gives a cut-off in r

damping dependent on x

GBW model

improvement I: QCD scaling included

improvement II: b-dependence
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Kowalski, Teaney PRD 68 (2003) 114005

Nikolaev, Zakharov ZPC 49 (1991) 607

σS = σ0

(
1− exp

[
−r2Q2

s(x)
/
4
])

Kowalski, Motyka, Watt PRD 74 (2006) 074016
9

there is no cut-off on the 
size of dipoles in GBW..
the dipoles can be huge...
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|ψ|2 σ 〈σ〉

σh

T

hard 1 1/Q2 1/Q2

soft m2/Q2 1/Q2

Bjorken, Kogut PRD 8 (1973) 1341
Nikolaev, Zakharov ZPC 49 (1991) 607

σtot

10
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|ψ|2 σ 〈σ〉

σh

T

hard 1 1/Q2 1/Q2

soft m2/Q2 1/Q2

|ψ|2 σ 〈σ〉

σh

L

hard 1 1/Q2 1/Q2

soft m4/Q4 1/Q4

Bjorken, Kogut PRD 8 (1973) 1341
Nikolaev, Zakharov ZPC 49 (1991) 607

σtot
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|ψ|2 σ 〈σ〉

σh

T

hard 1 1/Q2 1/Q2

soft m2/Q2 1/Q2

|ψ|2 σ 〈σ〉

σh

L

hard 1 1/Q2 1/Q2

soft m4/Q4 1/Q4

Bjorken, Kogut PRD 8 (1973) 1341
Nikolaev, Zakharov ZPC 49 (1991) 607

σtot

|ψ|2 σ2 〈σ2〉

σ2
h

T

hard 1 1/Q4 1/Q4

soft m2/Q2 1/Q2

|ψ|2 σ2 〈σ2〉

σ2
h

L

hard 1 1/Q4 1/Q4

soft m4/Q4 1/Q4

σD

10
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Motivation

saturation relevant @ HERA & RHIC...
essential for extrapolation to LHC, EIC

CGC/saturation provides 1st principle 
theoretical framework, but

several observables are hard to calculate
diffraction...
non-perturbative effects (b-dependence)

11

diffraction involves non-
forward BK equation...
non-forward amplitudes 
are much harder to 
compute..
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Motivation
factorization framework..?

comparison between eRHIC & RHIC
universal treatment of observables

 DIS: inclusive, longitudinal, diffractive (coherent 
& incoherent), inclusive spectra
HI: initial condition, parton densities, UPC

saturation ⇔ multiple scattering

simpler treatment extensively tested
prescription: AGK cutting rules

12
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Figure 10. Comparison of the average valence and sea quark, and gluon modifications at Q2 =
1.69 GeV2 and Q2 = 100 GeV2 for Pb nucleus from the NLO global DGLAP analyses HKN07 [5],
nDS [6] and this work, EPS09NLO.
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Figure 11. As figure 9 but also the prediction from HKN07 (NLO) is shown. The difference
between EPS09 and HKN07 here demonstrates the constraining power of these data in pinning
down the nuclear gluon PDFs in the mid-x and large-x regions.

3.4 Leading-order analysis

Although the NLO analysis is the main objective in the present paper, we have also per-

formed a new LO analysis to provide the tools for computing uncertainty estimates also in

this widely-used framework. The LO framework is basically the same as in NLO, but the

partonic cross-sections and DGLAP splitting functions are one power lower in αs, and we

kinematical reach.

– 18 –

Motivation

Reggeon calculus and 
Glauber-Gribov theory a 
controllable framework!

connection between 
Gribov ideas (‘60) and 
pQCD

simple to calculate

b-dependence

give good estimates
Eskola, Paukkunen, Salgado JHEP 0904:065 (2009)
de Florian, Sassot, Hirai, Kumano, Nagai....

NLO analysis for hA

13

also tested in MC codes!
 - QGSM
 - DPM
 - DPMJET
 - etc..
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Model for γp interactions

Multi-reggeon interactions → unitarity

two-components: large (non-perturbative) & small (dipole) 

describes simultaneously inclusive and diffractive DIS

saturation linked to diffraction through unitarity

valid for x < 0.01 and 0 < Q2 < 10 GeV2

Capella, Ferreiro, Kaidalov, Salgado NPB 593 (2001) 336, PRD 63 (2001) 054010

14

Armesto, Kaidalov, Salgado, Tywoniuk (in preparation...)

size of diffraction gives 
amount of rescattering/
saturation

3P couple to L and S 
component

14Thursday, November 19, 2009



Multi-reggeon exchanges

exchanged objects are
reggeon
pomeron

fixed parameters taken 
from hadronic analysis
pQCD effect taken into 
account in S residue
model valid for 
photoproduction Q2=0
cut-off on large dipoles 
is 0.2-0.25 fm

χP
i0(b, ξ) =

CP
i f(r)

λi
0P (ξ)

exp
(

∆P ξ − b2

4λi
0P (ξ)

)

)
f(r) =

{
1 i=L
r2 i=S

ξ = ln
[

s + Q2

s0 + Q2

]

15
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Agreement with data < 4 GeV2 
good!

16

in the left plot, the 
dotted curve is the 
original CFSK model for 
high-Q2 bins!!!!
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Partonic decomposition of CFSK
identify different reggeon exchanges as contribution to 
initial valence and sea quark PDFs

need also extension to high-x

xuV (x, Q2
0) = 2F low−x

2 R (x, Q2
0) (1− x)n(Q2

0)

xdV (x, Q2
0) = F low−x

2 R (x, Q2
0) (1− x)n(Q2

0)+1

xS(x, Q2
0) ∝ F low−x

2 tot

∣∣
R=0

(1− x)n(Q2
0)+4

the relevant two-gluon form factor of the proton  
related to the inclusive gluon distribution @ LLA

σS(r, s,Q2) = r2 π2

3
αS(Q2) xg(x, Q2)

Ryskin ZPC 57 (1993) 89; Frankfurt, Miller, Strikman PLB 304 (1993) 1
17

Capella, Kaidalov, Merino, Tran...

17Thursday, November 19, 2009



-5

10
-4

10
-3

10
-2

10

0.2

0.4

)
2

 (
x
,Q

2
F

2=0.11 GeV2Q

CFSK'

-5

10
-4

10
-3

10
-2

10

0.5

1

2=1.5 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.5

1

1.5

2=5 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.5

1

1.5

2

2=20 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.5

1

1.5

2

2=80 GeV2Q

x
-5

10 -410
-3

10 -210

0.5

1

1.5

2

2=250 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.2

0.4

2=0.5 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.5

1

2=2.5 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.5

1

1.5

2=10 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.5

1

1.5

2

2=50 GeV2Q

-5

10
-4

10
-3

10
-2

10

0.5

1

1.5

2

2=120 GeV2Q

x
-5

10 -410
-3

10 -210

0.5

1

1.5

2

2=450 GeV2Q

CFSK'e LO (VFNS)

CFSKe F2 results
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LO DGLAP evolution
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good agreement

what about unitarity?

IC with no extra parameters
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now we have the PDFs, 
e.g. the gluon!

18Thursday, November 19, 2009



]2 [GeV2Q
10

210

)
2

/3
5
9
4
4
,Q

2
(x

=
Q

L
F

0

0.2

0.4

x-3
10 -210

  ZEUS data
  CFSKe LO
  CFSK

]2 [GeV2Q
10 20 30 40 50 60 70 80 90

)
2

(x
,Q

L
F

0

0.5

1

x
 =

 0
.0

0
0

2
8

x
 =

 0
.0

0
0

3
7

x
 =

 0
.0

0
0

4
9

x
 =

 0
.0

0
0

6
2

x
 =

 0
.0

0
0

9
3

x
 =

 0
.0

0
1

4

x
 =

 0
.0

0
2

2

x
 =

 0
.0

0
3

6

    H1 data
    CFSKe
    CFSK

Results on FL

σS(r, x,Q2) = 4
∫

d2b
1

2C



1− exp
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−C
π2αS(Q2)

6
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{
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/
4λS

0P (ξ)
}
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xg(x, Q2) r2










Dipole model calculation + matching with non-pert model....
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At low-Q2 CFSK model 
probes transition to 
Regge-regime.

 interesting check!
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Comparison to RC BK

significant difference at low-x 
and high-Q2

partly because of heavy 
quarks?

break-down of DGLAP 
evolution?

large differences, especially at 
low-Q2

break-down of perturbative 
QCD

differentiate between real 
QCD and models

Albacete, Armesto, Milhano, Salgado PRD 80 (2009) 034031

21

differences may be in 
regions beyond eRHIC/
LHeC kinematics...

a lot of models can 
reproduce F2 - F2&FL 
together is crucial!
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Diffraction in CFSK

diffraction probes larger 
partonic configurations

works to higher Q2

high-mass diffraction through 
3P-contribution

β-behavior is taken from 
non-perturbative models and 
pQCD

proton-vertex factorization

fit the gluon dPDF

Diffraction
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t = (p− p′)2 momentum transfer
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momentum fraction of the Pomeron with respect to the hadron

momentum fraction of the struck parton with respect to the Pomeron

Bjorken x

Rapidity gap

gap

∆η = ln 1/xIP

Proton stays intact and 
separated by a rapidity gap
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H1 data CFSK’e + MyFITCFSK’
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CFSK diffractive results

model proves to 
work well

χ2 analysis shows 
slight  
improvement

systematics 
between ZEUS and 
H1 data

multi-reggeon 
features partly lost

drop factorization?
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γA coherence effects
σγ∗A = Aσγ∗p + σ(2)

γ∗A + ...

σγ∗A = 2
∫

d2b
(
1− exp

[
−σtot

γ∗pTA(b)
/
2
])

σ(2)
γ∗A = −1

2

∫
d2b

(
TA(b)σtot

γ∗p

)2

The driving term in the multiple scattering series:

Glauber 1959→ elastic shadowing!

Eikonalization:

projectile remains intact during scattering
usually limited to the lowest Fock state
many models of shadowing use only this..?

24

x < 1
/
mNRA ∼ 0.1A−1/3
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γA coherence effects
⇒

σ(2)
γ∗A = −4π

∫
d2bT 2

A(b)
∫

dM2 dσDγ∗p

dM2dt

∣∣∣∣∣
t=0

F 2
A(tmin)

 + high-mass diffraction ➙ inelastic shadowing!

AGK: 
 diffractive cut = 0 in incoherent regime
 diffractive cut ≠0 in coherent
 new type of diagrams emerge → non-planar!

Gribov 1969-1970, Abramovsky, Kancheli

gives the realistic rescattering cross section...
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Shadowing from fan summations
528 K.G. Boreskov et al.: The partonic interpretation of reggeon theory models

Fig. 6. Diagrammatic form of (17), where here ϕ denotes
ϕtot/2. For clarity the diagram has not shown the truncation
of particle 2

triple-pomeron coupling r is also small. In the case of the
interaction with a nucleus we may also neglect the depen-
dence on the impact parameter, b, at energies when the
interaction radius is much smaller than the nuclear size.
Here we adopt this situation as a toy model9, so that the
amplitudes depend only on the rapidity Y .

4.1 Total cross section in the Schwimmer model

Following the Schwimmer model, we choose the n-
pomeron–particle 2 amplitude to have an eikonal form,
with Gn = g n

2 . Rather than using the amplitude of (5), it
is convenient to work in terms of the “truncated” am-
plitude ϕtot(Y ) = σtot(Y )/(g1g2) = 2Imf(Y )/(g1g2),
and to introduce a new pomeron “propagator” P (Y ) =
χP /(2g1g2) = exp(∆Y ). By construction, the function
ϕtot(Y ) satisfies the following non-linear integral equa-
tion10

ϕtot(Y )/2 = e∆ Y (17)

− rg2

∫ Y

0
dy1e∆ (Y −y1) (ϕtot(y1)/2)2;

see Fig. 6. The differential form of the equation is

dϕtot(Y )
dY

= ∆ϕtot −
rg2

2
ϕ2

tot. (18)

To solve the equation it is convenient to make the substi-
tution

ϕtot(Y ) = 2τ utot(τ), τ = e∆ Y , (19)

so that (18) becomes

dutot(τ)
dτ

= − ε u2
tot, utot(1) = 1, with ε =

rg2

∆
.(20)

The solution

utot =
1

1 + ε (τ − 1)
(21)

gives the well-known expression for ϕtot(Y )

ϕtot(Y ) =
2P (Y )

1 + ε [P (Y ) − P (0)]
. (22)

9 The introduction of the b dependence is straightforward,
but in this case there is no analytic solution.
10 Note that (17) is written for ϕtot(Y )/2, since the amplitude
f(Y ) = ig1g2ϕ(Y )tot/2.

Note that the integration in (17) goes from y = 0 to Y . If,
however, the integration starts from ymin, then for the cor-
responding solution ϕtot(Y ; ymin) we should replace P (0)
in (22) by P (ymin). From (22), we see that the cross sec-
tion g1g2ϕtot(Y ) at first increases as exp(∆Y ), and then
tends to the finite limit 2g1∆/r for very large Y .

4.2 Inelastic and diffractive cross sections

To obtain the inelastic and diffractive amplitudes we use
the AGK cutting rules just as we did in Sect. 3. We sub-
stitute for the cut amplitude the corresponding cross sec-
tion σinel or σD, and for the uncut amplitude the factor
( − σtot). This results in integral equations similar to (17),
but with a non-diagonal structure for the inelastic cross
section:

ϕinel(Y )  
σinel

g1g2

= 2e∆ Y − 2r g2

∫ Y

0
dy1e∆ (Y −y1)ϕinel(y1)ϕtot(y1)

+ r g2

∫ Y

0
dy1 e∆ (Y −y1)ϕ2

inel(y1)

+ 2r g2

∫ Y

0
dy1 e∆ (Y −y1)ϕinel(y1)ϕD(y1), (23)

while for the diffractive cross section, corresponding to the
production of a state accompanied by a rapidity gap,

ϕD(Y )  
σD

g1g2

=
r g2

2

∫ Y

0
dy1 e∆ (Y −y1)ϕ2

tot(y1)

− 2r g2

∫ Y

0
dy1e∆ (Y −y1)ϕD(y1)ϕtot(y1)

+ r g2

∫ Y

0
dy1 e∆ (Y −y1)ϕ2

D(y1). (24)

Note that coefficients in (24), which result from the differ-
ent cuttings, are in the same ratios, (1 : − 4 : 2), as in (7).
Similar equations have been obtained in [20] in the frame-
work of the Balitsky–Kovchegov equation.

Taking into account that ϕinel + ϕD = ϕtot, we obtain
from (23) the differential equation for the inelastic cross
section,

duinel(τ)
dτ

= − 2ε u2
inel, uinel(1) = 1, (25)

where, similar to (19), we use the substitutions

ϕinel(Y ) = 2τ uinel(τ), ϕD(Y ) = 2τ uD(τ).

It is remarkable that the equation for uinel, i.e. for σinel, is
diagonal. It is a generalization of the similar result for the
non-enhanced diagrams (see the footnote in Sect. 3.2).

σtot
γ∗A(Y, b) =

ATA(b)σtot
γ∗p

κA(Y, Y, b) + 1

κA(Y, yM , b) =
4πATA(b)
σtot

γ∗p(Y )

∫ M2

M2
min

dM ′2 dσDγ∗p

dM ′2 dt

∣∣∣∣∣
t=0

F 2
A(tmin)

Matinian, Kancheli SJNP 11 (1970) 726
Schwimmer NPB 94 (1975) 445
Boreskov, Kaidalov, Khoze, Martin, Ryskin EPJC 44 (2005) 523
Bondarenko, Gotsman, Levin, Maor NPA 683 (2001) 649 

⇒
effective re-scattering 
cross section κA

valid for small 
projectile on extended 
target

similar to BK equation

valid for x < 0.01
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Diffraction off nuclei

Incoherent diffraction

σ(γ∗A→ Xh + YA) =
∑

n

∫
d2b|anγ∗ |2σn(γ∗p→ h)TA(b)e−σabs

n TA(b)

large momentum transfer: t ~ RN2

survival probability S
nuclear transparency

Coherent diffraction
σ(γ∗A→ Xh + A) =

∑
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∫
d2b|anγ∗ |24π
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dt
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t=0

T 2
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small momentum transfer: t ~ RA2
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/
s! 1

/
mpRA
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Fig. 7. Diagrammatic form of (29), where ϕ denotes ϕtot. For
clarity the diagram does not show the truncation of particle
2. Recall that the extra factor of 1/2 in (29) in the ratios
(1 : −4 : 2) is because the amplitude f(Y ) ∝ ϕ/2

Thus, in analogy to (22), we obtain the solutions

uinel(τ) =
1

1 + 2ε (τ − 1)
, (26)

uD(τ)  utot(τ) − uinel(τ)

=
1

1 + ε (τ − 1)
−

1
1 + 2ε (τ − 1)

. (27)

Note that in the limit ετ  1, these solutions reproduce
the first reggeon graphs, and that in the saturation regime
(where ετ  1) we have ϕinel = ϕD = ϕtot/2 = 1/ε.

Next, we obtain the dependence of diffractive produc-
tion on the rapidity gap y, or on the mass of the produced
system, where ln(M2/M2

0 ) = Y − y. We introduce a func-
tion ϕgap(Y ; ymin) corresponding to the cross section for
the production of the final state with a rapidity gap larger
than ymin:

ϕgap(Y ; ymin) =
1

g1g2

∫ Y

ymin

dy1
dσD

dy1
,

ϕgap(Y ; 0) = ϕD.

(28)

This cross section satisfies the same integral equations as
the diffractive dissociation cross section ϕD, except that
the integration over rapidity starts from ymin instead of 0.
That is,

ϕgap(Y ; ymin) =
rg2

2

∫ Y

ymin

e∆ (Y −y1)ϕ2
tot(y1)

− 2rg2

∫ Y

ymin

dy1e∆ (Y −y1)ϕgap(y1; ymin)ϕtot(y1)

+rg2

∫ Y

ymin

dy1 e∆ (Y −y1)ϕ2
gap(y1; ymin); (29)

see Fig. 7.
As before, we may write this in the differential form

dugap(τ ; τmin)
dτ

= 2ε

(
1
2
u2

tot − 2u g a putot + u2
gap

)
,

ugap(τmin; τmin) = 0, (30)

where utot is the solution of (20), and

ϕgap(Y ; ymin) = 2τ ugap(τ ; τmin), τmin = e∆ ymin . (31)

In analogy to (27), the solution is

ugap(τ ; τmin) =
1

1 + ε(τ − 1)
−

1
1 + ε (2τ − τmin − 1)

,

(32)

or,

ϕgap(Y ; ymin)

=
2e∆ Y

1 + ε (e∆ Y − 1)
−

2e∆ Y

1 + ε (2e∆ Y − e∆ ymin − 1)
. (33)

Thus, we can calculate the cross section for a fixed gap
y, that is for the diffractive production of a state of given
mass M (with the value of yM = Y − y fixed). It is deter-
mined by the derivative of the second term of (33):

dσD

dyM
 M2 dσD

dM2 = − g1g2
dϕgap(Y ; y)

dy

=
2g1g2∆ε e∆ (2Y −yM )

[1 + ε (2e∆ Y − e∆ (Y −yM ) − 1)]2
(34)

≈
g1∆2

r

2 exp(∆yM )
[2 exp(∆yM ) − 1]2

(for ε exp(∆ymin)  1). (35)

This cross section in the Schwimmer model was first ob-
tained in [21].

We see that the cross section (35) decreases with M2,
which provides convergence of the integral over the mass of
the diffractively produced system. Indeed, in the region of
large M2, that is, in the saturation domain with yM  1,
we have

M2 dσD

dM2  (M2)− ∆ (36)

Thus the M2 distribution gives information on the inter-
cept of the bare pomeron, αP (0)  1 + ∆. Although (36)
was derived in the Schwimmer model, we shall see that
the same behavior is valid for its eikonal generalization.

Another way to get information on the bare intercept
is to study the inclusive spectrum. Using the AGK cutting
rules, we find that the particle rapidity distribution is

dσ a

dy
= λa g1g2 e∆ y ϕtot(y2), with y2 = Y − y. (37)

In a frame where hadron 1 is moving fast, (37) can be
interpreted as a Regge-like increase of partons. However,
the partonic interpretation of this result is different in a
frame where particle 2 is fast; see Sect. 4.4.

4.3 The eikonalized Schwimmer model

Suppose, now, that there are several partons in the ini-
tial state at y = 0 which split in the course of the evo-
lution. In the absence of splitting this would correspond
to the usual eikonal model (see Sect. 3). However as a re-
sult of splitting, the evolution of each initial parton cor-
responds to the Schwimmer amplitude – and the whole
amplitude is described by Fig. 8. The AGK rules for this
set of diagrams are similar to the ones for the eikonal
graphs of Fig. 1 except that each Schwimmer type am-
plitude contains, not only the inelastic discontinuity ϕinel

γA diffraction from fans

1 10 100 1000
0

0.002

0.004

0.006

0.008

0.01

RHIC, Q2 = 5 GeV2, calc(y=y*0.00705663), calc(y=y/2)

RHIC, Q2 = 60 GeV2, calc(y=y*0.00705663), calc(y=y/2)

LHC, Q2 = 5 GeV2, calc(y=y*0.00705663), calc(y=y/2)

LHC, Q2 = 60 GeV2, calc(y=y*0.00705663), calc(y=y/2)

M
2

 [GeV
2

]

R
D

 (
P

b
)

Regge-factorization explicitly 
broken!

one-channel model

realistically should include 
at least two...
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dσDγ∗A
dM2

= 4πA2 dσDγ∗p
dM2 dt

∣∣∣∣∣
t=0

∫
d2b

T 2
A(b)e−σtot

γ∗pTA(b)

[2κA(Y, Y, b)− κA(Y, yM , b) + 1]2

pp
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Fig. 7. Diagrammatic form of (29), where ϕ denotes ϕtot. For
clarity the diagram does not show the truncation of particle
2. Recall that the extra factor of 1/2 in (29) in the ratios
(1 : −4 : 2) is because the amplitude f(Y ) ∝ ϕ/2

Thus, in analogy to (22), we obtain the solutions

uinel(τ) =
1

1 + 2ε (τ − 1)
, (26)

uD(τ)  utot(τ) − uinel(τ)

=
1

1 + ε (τ − 1)
−

1
1 + 2ε (τ − 1)

. (27)

Note that in the limit ετ  1, these solutions reproduce
the first reggeon graphs, and that in the saturation regime
(where ετ  1) we have ϕinel = ϕD = ϕtot/2 = 1/ε.

Next, we obtain the dependence of diffractive produc-
tion on the rapidity gap y, or on the mass of the produced
system, where ln(M2/M2

0 ) = Y − y. We introduce a func-
tion ϕgap(Y ; ymin) corresponding to the cross section for
the production of the final state with a rapidity gap larger
than ymin:

ϕgap(Y ; ymin) =
1

g1g2

∫ Y

ymin

dy1
dσD

dy1
,

ϕgap(Y ; 0) = ϕD.

(28)

This cross section satisfies the same integral equations as
the diffractive dissociation cross section ϕD, except that
the integration over rapidity starts from ymin instead of 0.
That is,

ϕgap(Y ; ymin) =
rg2

2

∫ Y

ymin

e∆ (Y −y1)ϕ2
tot(y1)

− 2rg2

∫ Y

ymin

dy1e∆ (Y −y1)ϕgap(y1; ymin)ϕtot(y1)

+rg2

∫ Y

ymin

dy1 e∆ (Y −y1)ϕ2
gap(y1; ymin); (29)

see Fig. 7.
As before, we may write this in the differential form

dugap(τ ; τmin)
dτ

= 2ε

(
1
2
u2

tot − 2u g a putot + u2
gap

)
,

ugap(τmin; τmin) = 0, (30)

where utot is the solution of (20), and

ϕgap(Y ; ymin) = 2τ ugap(τ ; τmin), τmin = e∆ ymin . (31)

In analogy to (27), the solution is

ugap(τ ; τmin) =
1

1 + ε(τ − 1)
−

1
1 + ε (2τ − τmin − 1)

,

(32)

or,

ϕgap(Y ; ymin)

=
2e∆ Y

1 + ε (e∆ Y − 1)
−

2e∆ Y

1 + ε (2e∆ Y − e∆ ymin − 1)
. (33)

Thus, we can calculate the cross section for a fixed gap
y, that is for the diffractive production of a state of given
mass M (with the value of yM = Y − y fixed). It is deter-
mined by the derivative of the second term of (33):

dσD

dyM
 M2 dσD

dM2 = − g1g2
dϕgap(Y ; y)

dy

=
2g1g2∆ε e∆ (2Y −yM )

[1 + ε (2e∆ Y − e∆ (Y −yM ) − 1)]2
(34)

≈
g1∆2

r

2 exp(∆yM )
[2 exp(∆yM ) − 1]2

(for ε exp(∆ymin)  1). (35)

This cross section in the Schwimmer model was first ob-
tained in [21].

We see that the cross section (35) decreases with M2,
which provides convergence of the integral over the mass of
the diffractively produced system. Indeed, in the region of
large M2, that is, in the saturation domain with yM  1,
we have

M2 dσD

dM2  (M2)− ∆ (36)

Thus the M2 distribution gives information on the inter-
cept of the bare pomeron, αP (0)  1 + ∆. Although (36)
was derived in the Schwimmer model, we shall see that
the same behavior is valid for its eikonal generalization.

Another way to get information on the bare intercept
is to study the inclusive spectrum. Using the AGK cutting
rules, we find that the particle rapidity distribution is

dσ a

dy
= λa g1g2 e∆ y ϕtot(y2), with y2 = Y − y. (37)

In a frame where hadron 1 is moving fast, (37) can be
interpreted as a Regge-like increase of partons. However,
the partonic interpretation of this result is different in a
frame where particle 2 is fast; see Sect. 4.4.

4.3 The eikonalized Schwimmer model

Suppose, now, that there are several partons in the ini-
tial state at y = 0 which split in the course of the evo-
lution. In the absence of splitting this would correspond
to the usual eikonal model (see Sect. 3). However as a re-
sult of splitting, the evolution of each initial parton cor-
responds to the Schwimmer amplitude – and the whole
amplitude is described by Fig. 8. The AGK rules for this
set of diagrams are similar to the ones for the eikonal
graphs of Fig. 1 except that each Schwimmer type am-
plitude contains, not only the inelastic discontinuity ϕinel

γA diffraction from fans
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Fig. 7. Diagrammatic form of (29), where ϕ denotes ϕtot. For
clarity the diagram does not show the truncation of particle
2. Recall that the extra factor of 1/2 in (29) in the ratios
(1 : −4 : 2) is because the amplitude f(Y ) ∝ ϕ/2

Thus, in analogy to (22), we obtain the solutions

uinel(τ) =
1

1 + 2ε (τ − 1)
, (26)

uD(τ)  utot(τ) − uinel(τ)

=
1

1 + ε (τ − 1)
−

1
1 + 2ε (τ − 1)

. (27)

Note that in the limit ετ  1, these solutions reproduce
the first reggeon graphs, and that in the saturation regime
(where ετ  1) we have ϕinel = ϕD = ϕtot/2 = 1/ε.

Next, we obtain the dependence of diffractive produc-
tion on the rapidity gap y, or on the mass of the produced
system, where ln(M2/M2

0 ) = Y − y. We introduce a func-
tion ϕgap(Y ; ymin) corresponding to the cross section for
the production of the final state with a rapidity gap larger
than ymin:

ϕgap(Y ; ymin) =
1

g1g2

∫ Y

ymin

dy1
dσD

dy1
,

ϕgap(Y ; 0) = ϕD.

(28)

This cross section satisfies the same integral equations as
the diffractive dissociation cross section ϕD, except that
the integration over rapidity starts from ymin instead of 0.
That is,

ϕgap(Y ; ymin) =
rg2

2

∫ Y

ymin

e∆ (Y −y1)ϕ2
tot(y1)

− 2rg2

∫ Y

ymin

dy1e∆ (Y −y1)ϕgap(y1; ymin)ϕtot(y1)

+rg2

∫ Y

ymin

dy1 e∆ (Y −y1)ϕ2
gap(y1; ymin); (29)

see Fig. 7.
As before, we may write this in the differential form

dugap(τ ; τmin)
dτ

= 2ε

(
1
2
u2

tot − 2u g a putot + u2
gap

)
,

ugap(τmin; τmin) = 0, (30)

where utot is the solution of (20), and

ϕgap(Y ; ymin) = 2τ ugap(τ ; τmin), τmin = e∆ ymin . (31)

In analogy to (27), the solution is

ugap(τ ; τmin) =
1

1 + ε(τ − 1)
−

1
1 + ε (2τ − τmin − 1)

,

(32)

or,

ϕgap(Y ; ymin)

=
2e∆ Y

1 + ε (e∆ Y − 1)
−

2e∆ Y

1 + ε (2e∆ Y − e∆ ymin − 1)
. (33)

Thus, we can calculate the cross section for a fixed gap
y, that is for the diffractive production of a state of given
mass M (with the value of yM = Y − y fixed). It is deter-
mined by the derivative of the second term of (33):

dσD

dyM
 M2 dσD

dM2 = − g1g2
dϕgap(Y ; y)

dy

=
2g1g2∆ε e∆ (2Y −yM )

[1 + ε (2e∆ Y − e∆ (Y −yM ) − 1)]2
(34)

≈
g1∆2

r

2 exp(∆yM )
[2 exp(∆yM ) − 1]2

(for ε exp(∆ymin)  1). (35)

This cross section in the Schwimmer model was first ob-
tained in [21].

We see that the cross section (35) decreases with M2,
which provides convergence of the integral over the mass of
the diffractively produced system. Indeed, in the region of
large M2, that is, in the saturation domain with yM  1,
we have

M2 dσD

dM2  (M2)− ∆ (36)

Thus the M2 distribution gives information on the inter-
cept of the bare pomeron, αP (0)  1 + ∆. Although (36)
was derived in the Schwimmer model, we shall see that
the same behavior is valid for its eikonal generalization.

Another way to get information on the bare intercept
is to study the inclusive spectrum. Using the AGK cutting
rules, we find that the particle rapidity distribution is

dσ a

dy
= λa g1g2 e∆ y ϕtot(y2), with y2 = Y − y. (37)

In a frame where hadron 1 is moving fast, (37) can be
interpreted as a Regge-like increase of partons. However,
the partonic interpretation of this result is different in a
frame where particle 2 is fast; see Sect. 4.4.

4.3 The eikonalized Schwimmer model

Suppose, now, that there are several partons in the ini-
tial state at y = 0 which split in the course of the evo-
lution. In the absence of splitting this would correspond
to the usual eikonal model (see Sect. 3). However as a re-
sult of splitting, the evolution of each initial parton cor-
responds to the Schwimmer amplitude – and the whole
amplitude is described by Fig. 8. The AGK rules for this
set of diagrams are similar to the ones for the eikonal
graphs of Fig. 1 except that each Schwimmer type am-
plitude contains, not only the inelastic discontinuity ϕinel

γA diffraction from fans
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]

R
D

 (
P

b
)

Regge-factorization explicitly 
broken!

one-channel model

realistically should include 
at least two...

can also calculate pA

σtot(x,Q2) → σtot(s) 

preliminary...

dσDγ∗A
dM2

= 4πA2 dσDγ∗p
dM2 dt

∣∣∣∣∣
t=0

∫
d2b

T 2
A(b)e−σtot

γ∗pTA(b)

[2κA(Y, Y, b)− κA(Y, yM , b) + 1]2

pp

RD(s, M2, Q2) =
dσDγ∗A

dM2

/
A2 dσDγ∗p

dM2

γp
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Diffractive over total cross section

work in progress...
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a measure of
multi-reggeon interaction
saturation

∝second rescattering
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dipole–nucleus cross section is suggested by high-density
QCD [10,12,17]:

σdA(x, r) =
∫

d2b

[
1 − exp

(
−Q2

sA(b)r2

4

)]
. (9)

We have tried several relations between Q2
sA (the satura-

tion scale in nuclei) and that in the proton, Q2
s. On the one

hand, we have used a relation coming from the running of
the coupling, of the type

Q2
sA ln

(
Q2

sA
Λ2

QCD

)
∝

(
TA(b)
TA(0)

)
A1/3Q2

s ln

(
Q2

s

Λ2
QCD

)
. (10)

On the other hand, we have imposed the first scattering
approximation (valid for r → 0) in (8),

Q2
sA =

1
2
ATA(b)σ0Q

2
s (11)

(in this expression the value of the running coupling eval-
uated at the appropriate scale is hidden in σ0, see e.g.
[17])4. But so far we have not succeeded in getting a satis-
factory description of the experimental data, not even on
a qualitative level: either too strong a shadowing is ob-
served or too fast an evolution in x (and too slow in Q2)
is obtained. Indeed (8) and (9) contain different physical
assumptions on the nature of the scattering centers: while
(8) considers multiple scattering on single nucleons (de-
scribed by the saturating form (5)), (9) implies scattering
on a black area filled with partons coming from many nu-
cleons. Our lack of success in reproducing the experimen-
tal data with (9) suggests that higher order rescatterings
are actually needed in the exponent of (5) for the pro-
ton, and that the asymptotic region where (9) should be
valid to describe data on F2A integrated over the impact
parameter, is not reached yet (i.e. the grey region is still
dominating the scattering); a very important test for the
form (9) would be its ability to describe the experimental
data on diffraction (which is indeed fulfilled by (5) [35]).
In the next section we will address the behaviour of the
saturation scale in our model.

4 Unintegrated gluon distribution
and saturation scale

As stated in the Introduction, in the kT-factorization
scheme [27] a key ingredient is the unintegrated gluon dis-
tribution of the hadron, ϕA(x, k, b) (sometimes it appears

4 The fact that Q2
sA and Q2

s may have roughly the same x-
dependence can be justified by the following qualitative ar-
gument: Q2

sA is related with pT-broadening in the nucleus,
Q2

sA = nA(b)Q2
s, with nA(b) the number of scatterings at im-

pact parameter b. As nA(b) ∝ ATA(b)xGαs(Q2
sA)/Q2

sA (for a
perturbative QCD cross section evaluated at scale Q2

sA and xG
the gluon distribution in a nucleon) and Q2

s ∝ xG, Q2
sA and

Q2
s show the same x-behaviour (modulo the logarithm coming

from the running coupling). Special thanks are given to D.E.
Kharzeev for discussions and suggestions on all these points

Fig. 6. Results of the model for the ratio σL/σT in C and Pb
over σL/σT in proton versus x. In the plots, lines going from
the bottom to the top correspond to Q2 = 0.1, 0.5, 1, 2.25, 5,
10 and 100 GeV2

in the literature as f = k2ϕ [28,31]), with k the transverse
momentum. This ϕA(x, k, b) at fixed impact parameter b
is related, at lowest order in kT-factorization [31], to the
dipole–nucleus cross section by a Bessel–Fourier transform
(see [15,16]):

ϕA(x, k, b) = − Nc

4π2αs
k2

∫
d2r

2π
exp (i&k · &r)σdA(x, r, b),

(12)
with k2 = &k · &k, r2 = &r · &r and vectors defined in the two-
dimensional transverse space. The unintegrated gluon can
be related to the “ordinary” gluon density (that used in
collinear factorization [25]) by

xG(x, Q2, b) =
∫ Q2

dk2ϕA(x, k, b), (13)

although this expression must be considered with great
care, as it is only true for large Q2 $ Q2

s (the actual
relation is not with the collinear glue but with the gluon
distribution in the light-cone wave function of the hadron;
see [10,12,17]).

For the proton, (12) leads to the result ϕp(x, k) ∝
σ0(k2/Q2

s ) exp (−k2/Q2
s ) [35]5. For the nucleus, using the

technique outlined in the appendix of [16] (or simply ap-
plying [Nc/(2π2αs)]k2∇2

k to the function φ0 defined in
(31) and (34) in that reference), we get

5 In some proposals [12,29] it is considered that the uninte-
grated gluon distribution should tend to a constant as k → 0.
For discussions on the “correct” definition and behaviour of
this quantity, see [15,30]

Armesto EPJC 26, 35 (2002)
Nikolaev, Zakharov ZPC 49, 607 (1991)

Nuclear dependence of R

R =
σL

σT

clear prediction from the 
dipole model

small effect when 
shadowing is weak

usually assumed to be 1 
in fits to data

if not, need to constrain 
both F2 and FL from the 
cross section
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The nuclear FL

]

Altarelli, Martinelli PLB 76, 89 (1978)

d2σ

dx dQ2
=

2πα2
em

Q4x
Y+

(
1 + εR

1 + R

)
F2(x, Q2)

ε =
2(1− y)

1 + (1− y)2

Y+ = 1 + (1− y)2

Q2 = xys

R =
FL(x, Q2)

F2(x, Q2)− FL(x, Q2)

FA
L (x, Q2) =

2αS(Q2)
π

∫ 1

x

dz

z

(x

z

)2




Nf∑

i=q,q̄

e2
i

(
1− x

z

)
zgA(z, Q2) +

2
3
FA

2 (z, Q2)





Usual assumption: R ≠R(A)
not true in dipole model!
what about modification at low-x?
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The nuclear FL

GG-CTEQH1

36

Armesto, Kaidalov, Paukkunen, 
Salgado, Tywoniuk (in preparation...)

36Thursday, November 19, 2009



1x10
-6

1x10
-5

1x10
-4

1x10
-3

1x10
-2

x

0

0.2

0.4

0.6

0.8

1

R
 =

 !
L
 /

 !
T

C12

Q
2
 = 5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 100 GeV

2

1x10
-6

1x10
-5

1x10
-4

1x10
-3

1x10
-2

x

0

0.2

0.4

0.6

0.8

1

Pb206

EPS09 NLO

1x10
-5

1x10
-4

1x10
-3

1x10
-2

x

0

0.2

0.4

0.6

0.8

1

R
 =

 !
L
 /

 !
T

C12

Q
2
 = 5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 100 GeV

2

1x10
-5

1x10
-4

1x10
-3

1x10
-2

x

0

0.2

0.4

0.6

0.8

1

Pb206

1x10
-6

1x10
-5

1x10
-4

1x10
-3

1x10
-2

x

0

0.2

0.4

0.6

0.8

1

R
 =

 !
L
 /

 !
T

C12

Q
2
 = 5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 100 GeV

2

1x10
-6

1x10
-5

1x10
-4

1x10
-3

1x10
-2

x

0

0.2

0.4

0.6

0.8

1

Pb206

FGS

GG-CTEQH1

The nuclear FL

37

37Thursday, November 19, 2009



1x10-6 1x10-5 1x10-4 1x10-3 1x10-2 0.1

x

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

R
(P

b
) 

/ 
R

(C
)

Q
2
 = 5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 100 GeV

2

EPS09 NLO

1x10-6 1x10-5 1x10-4 1x10-3 1x10-2

x

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

R
(P

b
) 

/ 
R

(C
)

Q
2
 = 5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 100 GeV

2

FGS

1x10-5 1x10-4 1x10-3 1x10-2

x

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

R
(P

b
) 

/ 
R

(C
)

Q
2
 = 5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 100 GeV

2

Potentially a 20% effect for large nuclei and low x!
The effect disappears rapidly with Q2

Nuclear dependence of R

How much will this affect @ eRHIC kinematics?. ... work in progress

GG-CTEQH1
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Armesto, Kaidalov, Paukkunen, Salgado, Tywoniuk (in preparation...)
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Outlook

what is the nuclear 
saturation scale, QS, and the 
unintegrated gluon 
distribution from a model 
with inelastic shadowing? 

multiplicity distributions in 
DIS

φA(x, k, b) = − Nc

4π2αS
k2

∫
d2r

2π
eikrσS(x, r, b)

39

Armesto, Braun EPJC 22 (2001) 351
Armesto EPJC 26 (2002) 35

σk
γ∗p =

σP

kZ

[
1− e−Z

k−1∑

i=0

Zi

i!

]
Z ≈ 8σDγ∗p

/
σtot

γ∗p
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Conclusions
CFSKe gives a good baseline to study

low-x structure functions

breakdown of DGLAP - resummation?

nuclear effects calculated

total, longitudinal and diffractive cross section + 
PDFs, nuclear effects on R

a coherent picture of hadronic interactions at high 
energies needs a study of different observables

upcoming facilities call for estimates on those

a MC implementation is needed
40

Diffractive -> controls saturation
Longitudinal -> controls gluon

Saturation -> all observables interlinked, need 
for coherent description of all simultaneously!

MC with saturation ideas!
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