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1 Statistical errors

1.1 Introduction.

The problem of calculating the error of an expression containing quantities that
are correlated, i.e. measured on a common data sample, is common in data analy-
sis. The way to handle the propagation of errors is not always clear, though. The
case when one wants to see whether the measured asymmetry in one particular
time period is compatible with the asymmetry calculated over the whole data set
(which includes all time periods) is an example in which one needs to propagate
the error in a function of two quantities (the asymmetries) that are totally corre-
lated. If one wants to check that the asymmetry calculated in a certain zvertex bin
agrees with the asymmetry in a different zvertex bin then the error for independent
variables should be used. In the cross-check between two different analysis the
problem becomes very complicated, as one needs to consider that there are events
that are not common to the two data sets, so the propagation of errors in partially
correlated variables should be used. In this brief report I will review the error
calculation for the three cases of independent, partially correlated and totally cor-
related variables. I will always assume that the quantities under consideration,
that I will call EA and EB , represent the same physical entity, as for example an
asymmetry.

1.2 Independent variables.

A

B

Given M independent measurements Ei of the same quantity E with different
standard deviations �i, the best estimate for E is given by the weighted mean:E = MXi=1 Ei�2iMXi=1 1�2i ; 1�2 = MXi=1 1�2i (1.1)
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where � is the standard deviation in the weighted mean.
For example, if two quantitiesEA��A andEB��B are calculated from different

data sets, namely A and B, with A \ B = ?, then they are independent, and the
best estimate of E, over the whole data set A+B is given by the weighted mean.

The error of any function f(EA; EB) has the form:�f =s� �f�EA�A�2 + � �f�EB �B�2 (1.2)

This is, for example, the case when one wants to compare the asymmetries in two
different bins of zvertex, were the function f may be the difference EA � EB or the
ratio EA=EB.

1.3 Correlated variables.

When the statistics involved in calculating EA and EB are not independent, the
error for a function f(EA; EB) has the expression:�f =s� �f�EA�A�2 + � �f�EB �B�2 + 2 �f�EA �f�EB cov(EA; EB) ; (1.3)

where the last term takes care of the correlations between EA and EB .
Given a large number N of measurements EAi , the standard deviation �A is

empirically defined as: �2A = 1N � 1 NXi=1 (EAi � EA)2 ; (1.4)

while the covariance between EA and EB is given by:

cov(EA; EB) = 1N � 1 NXi=1 (EAi � EA)(EBi � EB) (1.5)

where EA and EB are the averages of EAi and EBi1. When EA and EB are inde-
pendent, over a large number N of measurements they will fluctuate around their
average in an uncorrelated way, so that the covariance is zero and one recovers the
usual formula for the propagation of errors in a function of independent variables.
From eq.(1.4) it follows that

cov(EA; EA) = �2A ; (1.6)

while the linearity properties of the covariance follow from eq.(1.5):

cov(aEA + bEB; E) = a cov(EA; E) + b cov(EB; E) (1.7)

that will prove to be useful later (here a and b are constants).
It is worth noting that the covariance is a property only of Ea and EB , and not

of the specific form of the function f .
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A B

1.3.1 Totally correlated variables.

Let us suppose that our data (the set A) is divided into M disjunct samples (as bins
in time, or in zvertex, or �y).

In this case the relation EA�2A = MXi=1 Ei�2i (1.8)

holds (see eq.(1.1)), where the indices i indicate the independent subsets of A.
We need to check whether EB agrees with EA, where A is the total set that

includes all M bins, and B is a subset of A.
Then for a particular bin corresponding to set B, the relation between EA andEB is given by the weighted mean:EA = �2A�2BEB + �2A�2A�BEA�B (1.9)

where remaining terms containing the values of Ei in the other bins i have gone
into A � B. The relation between EA and EB is then linear and one can apply
eqs.(1.6) and (1.7) to get the covariance cov(EA; EB):

cov(EA; EB) = �2A�2B cov(EB; EB) + �2A�2A�B cov(EA�B; EB) = �2A�2B �2B = �2A ; (1.10)

where we used the independence of EA�B and EB , which gives cov(EA�B; EB) =0.
The standard deviation in f will be:�f =s� �f�EA�2 �2A + � �f�EB�2 �2B + 2 �f�EA �f�EB �2A B � A: (1.11)

1.3.2 Partially correlated variables.

A more difficult case is when the two quantities EA and EB under consideration
are calculated using two data sets that have a non zero intersection, as it could
happen for example if one wants to see the agreement between the asymmetry
calculated in 12 cm < zvertex < 18 cm and one calculated for 10 cm < zvertex <15
cm. In this case the two quantities are only partially correlated.

1The averaged value of E is supposed to be a good approximation of the true value, so they are
assumed to be equal, and no distinction is going to be made between the two.
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To calculate the covariance let us introduce two sets A0 and B0 such that A =A0 + A \ B and B = B0 + A \B. It must be:EA�2A = EA0�2A0 + EA\B�2A\BEB�2B = EB0�2B0 + EA\B�2A\B
(1.12)

so that EA = �2A�2A0EA0 + �2A�2BEB � �2A�2B0EB0 (1.13)

The covariance cov(EA; EB) is:

cov(EA; EB) = �2A�2A0 cov(EA0 ; EB) + �2A�2B cov(EB; EB)� �2A�2B0 cov(EB0 ; EB)= �2A � �2A�2B0 cov(EB0 ; EB)= �2A � �2A�2B0 �2B
(1.14)

where we used the fact that cov(EA0; EB) = 0 (A0 and B are independent) and
cov(EB; EB0) = �2B as follows from eq.(1.10), since B0 � B. Using the relation1�2B = 1�2B0 + 1�2A\B , we get the covariance in the case of partially correlated variables:

cov(EA; EB) = �2A�2B�2A\B (1.15)

This expression recovers both the errors for the case of independent variables than
the one for totally correlated, in the two limits of �A\B = 1 and �B = �A\B . In
this case however the knowledge of EA � �A and EB � �B alone is not enough to
calculate the error in any expression including A and B, since one also needs the
error in the intersection A \ B.

1.3.3 A useful table.

Table 1.1 contains a compilation of errors for some functions, for the three cases of
independent, completely and partially correlated quantities.
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Independent Completely Correlated Partially Correlatedf �f f �f f �fEA � EB q�2A + �2B EA � EB qj�2A � �2Bj EA � EB s�2A + �2B � 2�2A�2B�2A\BEA � EBp�2A + �2B 1

EA � EBpj�2A � �2Bj 1 EA � EBs�2A + �2B � 2�2A�2B�2A\B 1

EAEB EAEBs �2AEA2 + �2BEB2 EAEB EAEBs �2AEA2 + �2BEB2 � 2EAEB �2A EAEB EAEBs �2AEA2 + �2BEB2 � 2EAEB �2A�2B�2A\B

Table 1.1: This table shows the errors for some simple functions, useful to check the agreement between two quantities EA and EB . The cases of
complete independence, complete and partial correlation (that is one of the two, either EA or EB , is calculated over a data set that is
included in the other) are considered.
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