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Kinematics of electron—proton collisions are presented for massless and massive parton

constituents and outgoing leptons.

On présente la cinématique des collisions électrons—protons pour des partons constituants

et des leptons émis sans masse et avec masse.
Can. J. Phys., 59, 1742 (1981)

I. Introduction

In this paper we consider the kinematics of the
process e + P — L + X. In the parton model (1),
the hadronic final state X consists of two separate
jets of collinear hadrons: these jets of hadrons are
expected to come from the struck parton (J) and
from the fragments of the proton (T), respectively
(Fig. 1). In order to maintain as close a correspon-
dence as possible to the formulae (and intuition) of
fixed target leptoproduction, we will use the fol-
lowing conventions: (I) all angles are taken with
respect to the direction of the incident electron beam,
and (2) longitudinal components of momenta are
positive in the incident electron direction. The
struck-parton jet J will in general be at an azimuthal
angle of 180° with respect to the outgoing lepton L.
We will adopt the convention that the outgoing
lepton L and the jet J both have positive transverse
momenta; we must implicitly remember that this
positivity refers to J and L coming out at a 180°
azimuthal separation.

In Sect. II we derive expressions for the outgoing
lepton 4-momentum in terms of useful invariants of
the scattering process. Results are obtained for mas-
sive as well as massless outgoing leptons. In Sect. III
we express hadron jet momenta in terms of these
same invariants by assuming the electron scatters off
a massless parton. These results are generalized in
Sect. IV to include the possibility of massive in-
coming and outgoing partons, as well as a massive
outgoing lepton. Surprisingly, we find that the
kinematic scaling variable £ for massive partons is
not the same as that obtained by more sophisticated
techniques (2, 3). The origin of this misconception is
discussed in detail.

The kinematics of the ‘‘virtual-photon”’, proton’
center-of-mass (y*P c.m.) frame are considered in

[Traduit par le journal]

F1G. 1. Laboratory frame scattering angles for electron-
proton collisions.

Sect. V. The Lorentz transformation between lab
and y*P c.m. frames is explicitly constructed, as
quantum chromodynamics (QCD) predictions for
angular energy flow (4), hadronic azimuthal asym-
metries (5), Sterman-Weinberg jet angle parametri-
zations (6), and for the ‘‘event shape’’ structure of
hadronic final states (7) in electron-proton scattering
have all been worked out in the y*P c.m. frame.

The magnitude of mass effects at proposed
CHEER beam energies is briefly considered in our
concluding section.

II. Lepton Observables and Useful Invariants

Consider the reactione + P — L + X, where L is
a charged or neutral lepton of mass m; and X is the
hadronic final state. The electron, proton, and the
final-state lepton L have 4-momenta given by

(1] e p.=(E,0,0,E)
2] P: P = (Ep, 0,0, —Pp)
[3] L: pL = (Ep, pLsin B, 0, py cos b;)

The parameters E,, p;, and 6, are determined from
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| measurement of the final-state lepton trajectory; E,,
| Ey, Pp, Ey, py, and 6, are a set of known parameters
! (E., Ep, Ey, and 8, in the limit m;, and m,_ are small).
| We seek to construct reaction invariants from

| these parameters in order to provide a framework

for hadron jet kinematics. The square of the in-
variant mass of the interaction e + P> L + X is
denoted by s, where

W s =(pc+ B)* =2E(Ep + Pp) + my’

{ For high energies, Ep, Pp > mp, and /5 is just

4E.E;. The invariant Q? is defined to be minus the
square of momentum transfer from leptons to had-
rons:

18] @=-@.-n)
= —E*+ p? + 2E,E, — 2E,p, cos 0,

' The energy transferred to the hadronic final state in
the proton rest frame is defined to be v, where

B-(pe — PL)
Ep(E. — E) + Pp(E, — pcos 0;)

6] mpv

| Finally, the square of the total invariant mass avail-
1 able to hadrons is given by

M W= (B + p. - p)

| =mp® — {—E? + p.? + 2E.E,
— 2E.ppcosB} + 2{Ep(E. — E,)
+ Pp(E, — pcos 0.}
= 2mpv — Q% + mp?
In the limit £} = p;, Ep = Pp, corresponding to

lepton and proton masses which are negligible com-
pared to their energies, [4]-[6] become

\B] 5= d4EE, + mp*(l — E,/Ep)
8] ©Q? ~ 4E.E, sin? (6,/2)
[10] mpv >~ 2Ex(E, — Ey cos? (6,/2))

Note that even if my_is not light (E, # p.), [7] and
the relation

[[11] MpVpay = 2E.Ep = 5 — mp?

will still be true. All lepton mass dependence of W2
and s is implicit in Q% and v.
Let us now define scaling variables x and y by

2] x = Q*2mpy
U13) ¥ = V/Viax = mV[2E.Ep

where 02 and v are given in terms of lepton observ-
ables by [5] and [6]. It will prove useful for us to
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express lepton observables in terms of x and y.
Clearly,

[14] Q® = 4E Epxy

and

[15] mpv = 2E Epy

Using [9] and [10], we find that

[16] sin® (8./2) = Epxy/E,

[17] cos? (8,/2) = E,(1 - y)/E,

in which case we see that

(18] E_ = E(l —y) + Epxy

[19] tan® (8./2) = Epxy/[E.(l - y)]

Equation [18] can be substituted into [16] and [17]
in order to find that

[20] cos B, = 2 cos? (8,/2) — |
= [E.(1 = y) — Epxy]
+ [E(l — p) + Epxy]
sin B = 2[xy(1 — y)E, Ep]*/?
+ [E(l — y) + Epxy]

Finally we see that the denominators of [20] and
[21] are the lepton energy, [18]. Consequently, the
respective numerators give parallel and perpendi-
cular components of lepton momentum:

[22] Pi;== Ee([ HE: y) s Eny
[23] po, = [4xy(1 — Y)E Ep]'"?

Equations [18], [22], and [23] are appropriate for
the limit that all momenta are large compared to the
proton and outgoing lepton masses mp and my.
Suppose we no longer disregard these masses —a
massive lepton could be ‘‘electroproduced’ either
through an anomalous nondiagonal neutral current
interaction or else through charged current coupling
to a heavy neutral lepton. We find from [5] and [6]
that

[24]

[21]

E, = E, + [1/(Ep + Pp)]

x [Pp(Q* + m*)/(2E,) — mpv]
[25] po, = pLcos B, = E. — [1/(Ep + Pp)]

x [Ep(Q* + my?)[(2E,) + mpv]
in which case
[26] (pr)? = (pLsinB.)? = E;? — (p,)* — m2
=0% - {(Q* + my ) [E(Ep + Pe)l}

x {mpv + mp2(Q? + m ?)/[AE.(E;, + Pp)])
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Of course, [24]-[26] are equivalent to [18], [22], and
[23] in the limit m; = m, = 0.

III. Hadron Jet Kinematics for Massless Partons

The kinematical relations which we have derived
up to this point have involved only the lepton
observables. We have defined scaling variables in
terms of these observables and then derived model
independent relations between the observables.

In order to discuss the final state of the struck
hadron, on the other hand, we must now appeal to
some model of hadronic structure. This is because
the hadron, unlike the lepton, is a composite, non-
pointlike object which will be torn apart in the col-
lisions of interest to us.

For simplicity (and with an eye on its astonishing
degree of success) we shall adopt the parton model
of Feynman (1). In this model the nucleon is con-
sidered to be (at sufficiently large momentum) a
collection of (approximately) free, on-mass-shell
constituents which share its momentum. Thus, deep
inelastic scattering is the elastic scattering of an
electron with one of the constituents. This is just the
impulse approximation (1). As we show below, the
fact that the initial (incident) and final (scattered)
parton are on-mass-shell will serve to fix the hadron
kinematics. We will assume that the outgoing parton
fragments into a (more or less) collimated jet of
hadrons sharing its momentum (Fig. 1). Conse-
quently, we expect the hadron final state X in
e+ P— L+ X to consist of two jets Jand T, J
corresponding to the struck parton, and T corres-
ponding to target fragments (Fig. 1).

We begin by considering the scattering of an
electron from a parton carrying a fraction £ of the
proton momentum. The 4-momentum of the parton
Is given by
[27] pi = &P = (£, 0,0, ~EE,)
where both parton and nucleon masses are neglected
compared to Ep. The 4-momentum of the outgoing
parton is given by p; = (EB + p, — PL), where p,
and p, are given by [1] and [3], and where we ignore
the outgoing lepton mass (p, = E}). The require-

ment that the outgoing parton be on-mass-shell
allows us to find & in terms of x and ». First note that

(28] 0=p? = EB + p. — p)?
4§E¢Ep S 2E2EL([ — COS§ GL)
— 28E Ep(l + cos 0))

Substituting [18] and [20] into [28]. we find that the
right-hand side becomes 4E.Ep(—xy + Ey), which
vanishes provided

29 E=x

I
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We conclude that the struck parton must carry g
fraction of the proton momentum given by x =
Q?/2myy in order for the parton subprocess of Fig. |
to remain on-shell. Of course, x can be obtained from
the lepton observables E, and 0, (see [9], [10], and
[12]).

Using this result, we may now determine the
momentum of the outgoing ‘‘current™ jet (J) of
hadrons. The transverse component of the jet
momentum p;, must balance that of the outgoing
lepton. We take the convention that positive hadron
p, is opposite to positive lepton p. (see [23));
therefore,

(301 ps, = pusin b, = [4xy(l — y)E,Ep]'
B1] py, = E. — xEp — E} cos 6
= yE. — (1 - p)xE,

If hadrons in the current jet all have small masses
compared to the jet momentum, then the energy of
the current jet is given by

{32] EJ =~ [p]‘l_z —i_pJuz]l.’:2 = yEt = (l =i y}pr

to the incoming electron (Fig. 1) is given by

The angle 6, that the current jet makes with n=:spectA

[33] cosB, = PulEy = [YE, — (1 — y)xEp]
: + DE. + (1 — p)xE)
[34] tan® (6,/2) = (1 — cos 6,)/(1 + cos 0,

= (I = y)xEp/(YE,)

Note that expressions for the outgoing lepton an
current jet momenta are related by an interchange of
Y and (I — y), and that the expressions satisfy
energy-momentum conservation:

[35] E. + E, = E, + xE,
[36] pr, + py, = E, — xEp
[37] p, +py, =0

Finally we note that the proton target fragmentsT
(Fig. 1) remain unscattered:

[38] Br= (1 —x)P =[(I = x)Ep,0,0, — (1 —x)E]

Consequently, the rotal longitudinal momentun,
transverse momentum, and energy of the hadroni
final state X is given by summing jet, [30]-[32], an.
target, [38], 4-momenta:
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IV. Kinematics for Massive Scattering Constituents
So far we have assumed that the proton, the

| incident parton, and the outgoing parton are all

massless. Although this approximation is appro-
priate for most values of v and Q2 for present beam
emergies, there remain parameter domains which are
sensitive to these masses. We choose to parameterize
this sensitivity by redefining & to be the ratio of
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parton 4-momentum is given by

[43] :pi = (Eit 05 09 _pl}

such that P2 = mp? and p;> = m;?, the squared
masses of the proton and incoming parton, respec-

tively. If the outgoing parton is on-mass-shell
(p? = m;?), then

[44] m? = (p; + . — PL)* = m? + 2p;-q — O

651 29,9

parton-to-proton energy-plus-momentum (2):
2] & = (E + p)/(Ep + Pp)

The proton 4-momentum R} is given by [2], and the

where q = p, — p_ (see [1] and [3]). A little algebraic
manipulation transforms [44] into a quadratic
equation in the variable [(E; + p;)(go + g3)]:

2(Eiqo + piq3) = [(E; + pi)(g0 + 93)] + (E; — p;)(g0 — g3)
[(Ei + pi)(go + 43)] — {m2(Q* — ¢, D/I(E; + pi)(go + 93)]}

Il

in which case

{16 [(Ei +pi)(go + g2)] = H{Q* + m® — m? + [(Q* + m® — m?)? + 4m>(Q* — ¢,%)]'/%)

{ We have taken the positive root, as g, + g, is positive definite.! Note that g, is just equal to pL, (see [26]),
, the transverse component of the outgoing lepton momentum.

To obtain an expression for &, [42], we take the ratio of [(E; + p;)(go + ¢g3)] to [(Er + Pp)(go + ¢3)]-
This latter quantity can be expressed entirely in terms of mp, Q%, and v as follows:

41 mpv = Brq = H{[(Ep + Pp)(go + 45)] + (Ep — Pp)(go — 43)}

= HI(Ep + Pp)(@o + 93)] — mp*(Q* — 9. D)/[(Ep + Pp)(g6 + 93)1}
in which case
48] [(Ep + Pp)(go + g3)] = mpv{l + [1 + (Q* — q,*)IV*]'/*}
Substituting [46] and [48] into [42], we find that
Q* + m® — m? + [(Q® + m — m?)? + 4m*(Q* — q,H)]"?

2mpv{l + [1 + (Q* — g, )NV?]'?}

where (Q? — ¢,%) = 0% — p.,* = (Q% + m.2){mw + mp*(Q? + m®)/[AE(E, + Pp)/[E(Ep + Pp)l.

B &=

{ Note that our derivation of [49] applies for a massive or massless outgoing lepton (provided Q% and myv

are given by [5] and [6]) and that £ — x in the limit all masses vanish.
Equation [49] differs from the *‘standard’’ expression for &,

_ 0+ m? —m? + [(Q® + m? — m?) + 4m;*Q*]'?

- 2mpv[l + (1 4+ Q*V))'72]

(0] §

| obtained from either the short distance operator product expansion or from the light cone analysis of current

commutators (3). Although our definition, [42], and kinematic derivation of £ correspond to Frampton’s
parton-model calculation (2), Frampton obtained [50] because he assumed that (g, + ¢5)(q0 — g3) = — 0?2,
thereby neglecting the perpendicular component of the outgoing lepton’s momentum (g, = —pg ).
Consequently, the statement (frequent in the literature) that parton model kinematics alone lead to exactly
the same scaling variable as more sophisticated treatments is incorrect. Note, however, that [49] does not
contradict the standard expression & = Q%/{2mpv[l + (I + Q%/v*)'/?]} obtained by assuming that m, = 0
and 2that p; = 2?.';‘13‘ The expressions can be reconciled once one realizes that for the latter expression m;?
PPt = (Emp).

We now wish to obtain an expression for jet momenta and the jet angle 8, for nonzero values of the four

_: masses m;, mg, mp, and m,;. First note from [42] that E; + p; = E(Ep + Pp), E; — p; = m2/[E(Ep + Pp)),

'See [53] and [54] below.
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in which case
[511 E; = HE(Ep + Pp) + m2[[E(Ep + Pe)l}
[52] p; = HE(Es + Pp) — m;*|[E(Ep + Pp)l}

where & is given by [49]. We obtain the components of the momentum transfer 4-vector q from [24]-[26]:

Il

[33] g0 = Ec — EL = [(=Py2E)Q* + m.?) + mp)/(Ep + Pp)
[54] g5 = E. — pLcos O, = [(Ep2E)(Q* + mi?) + mpv]/(Ep + Pp)

The transverse component g, is just ~pr, (equation [26]).
The outgoing parton 4-momentum p; has components corresponding to the energy and momentum of the
current jet J:

[55] by, = —pi +¢3 = —&(Ep + Pp)[2 + [mpv + Ep(Q* + m *)2E, + m2[2E]/(Ep + Pp)
[56] E,=E; +qy=E&(Ep + Pp)2 + [mpv — Pp(Q* + m ®)2E, + m;?[2E)/(Ep + Pp)

These expressions reduce to [31] and [32] when m;, my, and mp (but not mpv = PB-q) go to zero, as £ — xin

this limit (see [49]). The perpendicular component of jet momentum Pj, is just the positive square root of |

the right-hand side of [26], and
[57] tan®8, = (p.,)*/(p,,)?

V. The y*P Center-of-mass Frame

A great deal of QCD phenomenology relevant to deep inelastic scattering has been worked out in the
frame moving with the center-of-mass of the proton and the “‘virtual photon’’ (leptonic momentum transfer),
hereafter denoted as the ““y*P c.m. frame’’ (4-7). In this section we develop the Lorentz transformation
taking any lab frame 4-momenta into the y *P c.m. frame. This transformation could be applied, for example,
to the momenta of hadrons produced at CHEER in order to determine empirical “‘event shape’’ moments
which could then be compared to published predictions (7).

We shall assume that parton, proton, and lepton masses can be neglected; proton, electron, and outgoing
lepton 4-momenta in the lab frame are then given by

[58] P = (£ 0,0, —Ep)
[59] 'pe — (Egs O) 0, Ec)
[60] pL = (Ep, E_sin 6,0, E; cos 6,)

The dimensionless variables x and y are obtained for measured values of £, and 8, from [5], [6], [12], and
[13]:

[61] x = E.E, sin® (8,/2)/[Ep(E. — Ey cos? (6,/2))]
[62] y = [E. — Ey cos® (6,/2)]/E.

Consequently, we shall regard E,, Ep, x, and y to be the set of known parameters for a given scattering event.
The *virtual photon” (or momentum transfer) 4-vector is given in the lab frame by

[63] a=p. — p = [(E. — Ep), (~Eysin8)),0, (E, — E, cos 8,)]

where E,, cos 8, and sin 6, are respectively given in terms of E,, Ep, x, and yin [18], [20], and [21].
To find the center-of-mass frame, we first rotate the lab frame axes %, 2 to axes ¥, T such that transverse
(1) components of ¢ and P cancel:

[64] = —cosmZ — sinn £
[65] 1

il

—sinnZ + cosn £

[66] P-i= —gq-i
We substitute spatial components of q, [63], and %, [58], into [66] in order to find that

L [67] tann = E, sin@

= 2[xp(l —

[68] sinn = 2[xp(l —

[69] cosm

[Ee(l —.

We now boost along

" frame such that
L [70] P

= =g
* Since
pr Py = (1 - )
(2] g/ = (1 —u?)™Y

._ - we find that
B] u=(Pd+ q0)

= {[Ee(1 = xy)
4] y=(1 —u?)"'72

Finally, we again rota

| that the electron momen
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L[76] 2 = —sin$d +
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[77] tan ¢ = 2Ep[x(1 -
[718] sind = 2E,[x(1 -
[19] cosd = [Ep(l —:

We summarize the Lo

Suppose we have a 4-
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80] Ay = y(do + usi
BIl A4, =yusind 4,
82] A4, =4,

[83] A, =yucosd A4,

where sinn, cosn, u, 7, ¢
The inverse transform:

[84] Ay = v(Ay — usi
B5] A, = —yusinm A4
86] 4, = A4

[87] A, = —yucosn A

*Consequently, the positiv
muthal angle of 180°.
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tann = £, sin 0, /(£p + E cos B, — E,)
= 2[xy(1 — p)E.Ep]'?|[Ex(l — xy) — E.y]
J18] sinn = 2[xy(1 — P)EE]'"*{Ep(1 — xy) — Ey) + 4xy(l — y)E.Ep}'"?
8] cosm = [Ep(l — xp) — EJV{[Es(l — xy) — EyP + 4xy(1 — y)E Ep}'"?

]

We now boost along the # axis to a (primed) reference frame moving with velocity u relative to the lab
frame such that

[FO] PIJ : - qu :

Since

M) P, = (1 —u?)""12[Pd — uEp)

M g = (1 —u*)""?qd - w(E, — Ep)]
| ve find that

Ml u=(Pb+ q0)(E+ E. — E)

= {[Ep(1 — xp) — Ey)* + dxy(l — y)EEp}' *[[Ep(l — xy) + Ey)
M) y= (=)' = [E(l — xp) + EQ)[4y(1 — X)E Ep]'?

Finally, we again rotate axes in the primed frame such that ¢’ (= —P’) is in the +2’ direction (and such
{hat the electron momentum p,’ is in the (£, 2) plane with a positive £’ component?). If we define the rota-

| tion angle ¢ such that

[15] 2’
6] x'
then the requirement that P'- %’
17 tan¢ = 2E[x(1 — x)(1 — »)]I"*/[E(1 — 2x + xp) — E.y)

1] sind = 2Ep[x(1 — x)(1 = ' 2{[Ep(1 — xy) — Ey)* + 4E Epxy(l — p)}'/?
1] cos¢ = [Ep(l — 2x + xp) — EJJ{[Ee(l — xp) — Ey)* + 4EEpxy(l — y)}'/2

We summarize the Lorentz transformation to the y*P c¢.m. frame as follows:
Suppose we have a 4-vector A = (4, 4,, A,, A.) in the lab frame, and we wish to find A’ = (4, 4.,
A/, 4,') in the y*P c.m. frame. We see that

—cosd i — sindi

—sindd + cosdi

= 0 leads to the following expressions for ¢:

80] Ay =7y(A4y + usinm A, + ucosmA,)

18] A =vyusind Ay + (ysinnsind + cosmncos ¢)4, + (ycosnsind — sin 1 cos ¢p)A4,
82] 4, =4,
[83]) A, =yucosd Ay + (ysinmcosd — cosmsin )4, + (ycosncosd + sinnsin dp)A,

where sin m, cos m, &, v, sin ¢, and cos ¢ are given by [68], [69], [73], [74], [78], and [79], respectively.
The inverse transformation between 2" and U is given by

84 Ag =7v(4y — usind 4, —ucos¢p A,)

85] Ay = —yusinn A" + (ysinmsind + cosncos )4, + (ysinncosd — cosnsin )4,
d86) 4, = 4

[87] A, = —yucosn Ay, + (ycosmsind — sinncosP)4,’ + (ycosncosd + sinnsind)A4.’

*Consequently, the positive x” axis represents azimuthal zero, and a single hadron current jet would be expected at an azi-
muthal angle of 180°.
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TaBLE 1. Jet energies E, (GeV) and angles 8, (degrees) for collisions between 1000 GeV protons and 10 GeV electrons. x and ¥y

are assumed to be obtained from outgoing lepton kinematics, as described in the text. The following cases have been considered:

(I) no parton or lepton masses (m; = m; = my = 0); (II) scattering off a heavy quark (m; = m; = 5 GeV, my = 0); (III)

production of a heavy lepton (m. = 5 GeV, m; = m; = 0); (IV) production of a very heavy lepton (m. = 25 GeV, m, = m; =

0); and (V) production of a very heavy parton (m; = 25 GeV, m; = my = 0). Blank entries are kinematically forbidden at
x and y values indicated

Case I Case II Case III Case 1V Case V

X P E, 0, E, 0, E; 0, E, 8, E, 9,
0.05 0.05 48.0 168.3 48.74 168.4 47.4 168.2 32.4 165.7 360.5 178.4
0.05 0.30 38.0 147.4 38.74 147.8 37.4 147.1 22.4 137.0 90.1 166.3
0.05 0.80 18.0 96.4 18.74 97.9 17.4 94.5 — — 37.5 140.3
0.30 0.05 285.5 175.2 298.6 175.4 284.8 175.2 269.9 175.1 598.0 177.7
0.30 0.30 213.0 166.4 213.6 166.4 212.3 166.4 197.4 165.8 265.1 169.0
0.30 0.80 68.0 139.9 68.6 140.2 67.3 139.7 52.4 134.0 87.5 148.5
0.80 0.05 760.3 177.1 761.1 177.1 759.6 177.1 744.9 177.0 — —
0.80 0.30 562.8 171.6 563.6 171.6 562.1 171.6 547.4 171.5 615.1 175.7
0.80 0.80 167.8 154.8 168.6 154.9 167.1 154.7 152.4 153.5 187.5 157.4

Using [80]-[83], we can determine the 4-momenta of the scattering particles in the v*P c.m. frame. For
example, the lab frame proton 4-vector P, [58], transforms to

(88] ' = [E.Epy/(1 — x)]'*(1,0,0, —1)

and the lab frame 4-vector q, [63], transforms to

[89] q' = [E.Epy/(1 — x)]'/*(1 — 2x,0,0,1)

Also, the leptonic 4-momenta in the y*P c.m. frame are given by F
i R [ (1= x)1 = I (= 2x + xp))

90] P = [EEnp/(1 = 1701 = xp)y§1, 2 5= o2 i o, S S 2

B1] p/=»p' -7
1 —y+xy—2x)|

(1 o XL = xX1 — )12
! 1 —y+xy

[EEpy/(1 — 0]'?[(1 — y + xy);’y]{l T=y+xy

3 H

Recall from Sect. III that the incident parton 4-momentum p; is a fraction & = x of the proton 4-momentum
B if the partons are on-mass-shell; consequently,

[92] v = &P’ = [E.Epy/(1 - x)]'/*(x, 0,0, —x)

The current jet J has the energy and momentum of the outgoing parton,
B3] »/ =9’ +q = [EEy/(1 — )]'*[1 = x,0,0, (1 — x)]

and the target fragments T have energy and momentum '

[94] »r' =B — 9/ = [EEpy/(1 = D[ — x,0,0, = (1 — x)]

VI. Conclusions In Table 1, lab frame values are tabulated for E,

In this paper we have attempted to develop an
error-free description of the kinematics of electron—
proton collisions in both the lab and the y*P c.m.
frames. Particular attention has been paid to parton
and lepton mass effects, as it will be important to be
able to distinguish empirically between ‘‘nuisance’’

masses, which one would like to neglect in order to
test the nature of scaling violation, and those masses
which would indicate the presence of new physics.

and 0, for a variety of choices for m;, m;, and m and
assuming beam energies appropriate for CHEER.
Given an empirical range of values for x (= Q?/2my)
and y (=v/[v,,,) between 0.05 and 0.8, we see that
jet kinematics are virtually the same for mass-
less processes as they are for scattering off massive
bottom quarks, or even for producing a 5 GeV
massive lepton! Target mass corrections (mp) are
completely negligible for the range of x and y con-

sidered. Consequently,
insensitive to expectea
capable of testing QCI
tion without mass-eff
mass-effects are seen t
signatures. For exampl
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energy and angle (as d
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moreover, production
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Finally, we note tha
able, [49], is much less
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because mass-effects v
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0 E, 0,
165.7 360.5 178.4
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— 37.5 140.3
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sidered. Consequently, a machine such as CHEER is
insensitive to expected mass-effects and should be

| capable of testing QCD predictions of scaling viola-

tion without mass-effect ambiguities. Unexpected
mass-effects are seen to carry their own kinematic

| signatures. For example, production of an extremely

heavy lepton (m; = 25 GeV) decreases the jet

4 energy and angle (as defined in Fig. 1) from values

obtained in the massless case for the same x and y;
moreover, production of an extremely heavy parton

| (m; = 25 GeV) increases jet energy and angle.

Finally, we note that our kinematic scaling vari-

| able, [49], is much less sensitive to mass effects than

the ‘‘operator product’” expression, [50]. This is
because mass-effects will not occur in either case
unless @2 is sufficiently small to be comparable to

parton masses, but for such values of 92, 0% — ¢,’~

Q%y « Q2
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