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Chapter 1

Hungarian overview
Magyar nyelvi attekintés

Modellen olyan matematikar konstrukciot értunk, amely — bizonyos
szobeli értelmezést hozzdadva — leirja a megfigyelt jelenségeket. Az
ilyen matematikai konstrukciot kizarolag és pontosan az igazolja,
hogy mikodik.

Model means a mathematical construction which describes — with
the help of a verbal interpretation — the observed phenomena. Such
a mathematical construction can be verified solely and exactly
through the fact that it works.

NEUMANN JANOS
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1.1. Bevezetés — a fizika mddszere

A fizika, mint a természettudoményok altaldban, hasonléan miikodik a pszichoanalizishez, mas-
képp szélva, a kutatds folyamata egészen analég azzal a folyamattal, ahogy megismeriink vala-
kit. El6szor kérdéseket tesziink fel neki, figyeljiik, hogyan viselkedik adott szitudcidkban, majd
megprébaljuk megérteni, feldolgozni, hogy mit valaszolt, hogyan reagalt, végiil pedig a valaszai,
reakcidi alapjan kialakitunk réla egy képet.

Ami ezt az egész folyamatot egy allandéan emelkedd spiralld teszi, az az, hogy amikor — a
kialakult képen finomitani akarvan —, az addigi valaszokkal 6sszhangban tGjabb kérdéseket tesziink
fel, akkor 1jabb valaszokat kapunk, ezek pedig felvetik az Gjabb kérdéseket, és igy tovabb.

A fizikdban nagyon fontos ezt a folyamatot egészében litni. Ugyanis mig a személyes kap-
csolatok teriiletén ez dltaldban magatol miikodik, a feladatok nagy részét Osztondsen végzi az
ember, addig a tudomanyban az egyes részfeladatok sikeres elsajatitasahoz hosszu évek gyakor-
lata sziikséges. Fzaltal nehéz Osszehangolni az egyes részfolyamatokat, amelyeket gyakran nem
is ugyanazok az emberek végeznek.

Mik is tehét ezek a feladatok? fme, a lista, az analégidkkal egyiitt:

o Adatfelvétel < Kérdésfeltevés
o Adatfeldolgozis < A vélaszok megértése

e Modellépités < A valaszadd keresése a valaszok mogott

Ha nem latjuk az egész folyamatot egyben, csak az egyes részfeladatokra koncentrdlunk, a
problémak sokkal bonyolultabbd valhatnak szamunkra, mint amilyenek valéjaban. Ugyanis ki
tudhatnd jobban, hogy milyen kérdést kellene feltenni még, mint az, aki a valaszadé természetét
kutatja? Ha rahagyjuk a kérdésfeltevore, kérdezzen, amit akar, konnyen zsakutcaba keriilhetiink.
A kérdésfeltevd pedig segithet megérteni a vélaszt, mivel § rendelkezik a legpontosabb ismere-
tekkel a feltett kérdésekrol.

Szakdolgozatomban mindhédrom feladat részleteibe szeretnék betekintést engedni az olvasénak.
A példdk mind a nagyenergiis nehézion-fizika teriiletérél szarmaznak, de més és més feladatokrol
szolnak.

Ezen rovid bevezetd utan lassuk a részleteket.

1.2. Adatfelvétel — a relativisztikus nehézion-utkozteto

Nehézion-fizikaban jelen pillanatban a legfontosabb és legérdekesebb kérdéseket a RHIC-nél, a
relativisztikus nehézion-litkozteténél lehet feltenni a természetnek. Itt, a nevének megfelelGen
fénysebességhez igen kozeli relativ sebességii nehézionokat titkoztetnek egyméssal. Ezekben az
iitkozésekben olyan koriilmények jonnek létre, amilyenek talan legutoljara Vilagegyetemiink létre-
jottekor, a Nagy Bumm idején uralkodtak. Emiatt a nehézion-titk6zéseket — a benniik uralkodd
oriasi energiasiirtiség és homérséklet miatt — Kis Bummnak is nevezhetjtik.

Amikor a felgyorsitott nehézionok — melyek a Lorentz-kontrakcié hatédsara két lapos ko-
rongnak tiinnek — szembetaldlkoznak és Osszelitkoznek, a 1étrejott hatalmas energiastiriiségnek
koszonhetéen anyaguk a megszokottdl egészen eltéréen viselkedik, a protonok és a neutronok
felbomlanak, és 1j részecskék hadat hozzdk létre. A nagy energiasiriiség miatt a nyomas is
igen nagy, ez pedig azonnal szétveti az addig kis térfogatba koncentrdlt anyagot, amely hiilni
kezd, majd mire — kiilénféle, j6l ismert részecskék formdjaban — az litkozési pont koré rendezett
detektorainkba ér, djra a megszokott formajat mutatja. Azonban az észlelt részecskék fizikai jel-
lemzdit (impulzusdt, energidjat, tomegét, toltését ...) megmérve, eloszldsukat vizsgdlva, fontos
informécidkat kaphatunk arrdl, hogy milyen is volt az az anyag, amely kozvetlenil az titkozés
utan létrejott.

Detektoraink segitségével igy kiilonféle kérdéseket tehetiink fel a természetnek. Az egyik leg-
fontosabb kérdés példaul, hogy kiszabadulhatnak-e nukleon-bortoniikbél a protonok és neutronok



1.3. ADATFELDOLGOZAS — KORRELACIOS FUGGVENYEK 7

épitokovei, a kvarkok és a gluonok, és ha igen, mekkora energidra van ehhez sziikség, illetve ho-
gyan viselkedik ez a — kérdéses egzisztencidji, de mar kvark-gluon plazménak elnevezett — régi-uj
anyag.

Ehhez azonban igen kifinomult detektor-rendszerekre van sziikség, amelyek alkalmasak a
kérdéseink megvalaszolasara. Ha példaul olyan detektort alkalmazunk, amelynek az energia-
mérés soran mutatott pontatlansiga nagyobb, mint egy, az energia-spektrumban vart csics
szélessége, azt a csicsot sosem fogjuk detektalni. Ezért mar a kisérlet megtervezésekor fontos
elére tudni, milyen kérdéseket szeretnénk feltenni.

Ezenkiviil a feltett kérdésekben szerepl6 fogalmak tisztazédsa is rendkiviil fontos. Példaul ha
megmérjiik valamely pentakvark spektrumdt, az elméleti értelmezéshez elengedhetetlen a mérés
pontos folyamatanak ismerete, kiilonben a mérési eredmény egyes effektusairdl kialakult képiink
gyokeresen hibas lehet.

Lathatjuk tehat, milyen fontos a kutatas folyamatdnak lépéseire teljes egészként tekinteni.
Nem mondhatjuk példaul, hogy ,En kisérleti fizikus vagyok, nem tor6dom az elméletekkel”, de
azt sem tehetjiik, hogy modelleket épitiink, gyonyorkodunk a szépségiikben és tokéletességiikben,
kozben pedig elfelejtjiik Osszehasonlitani Oket a természettel. Legyen egy fizikai modell mégoly
tokéletes és szemet gyonyorkodteté matematikailag, ha nem tisztazzuk, hogy a természetet milyen
korilmények kozott és milyen pontossaggal tudja leirni, nincs haszna a fizika szamara.

Visszatérve a RHIC-nél zajlé kisérleti munkara, itt tehat az anyag nagy nyomaésok és hémér-
sékletek hatésa alatt tanusitott viselkedését vizsgaljuk, az ilyen koriilmények kozott létrejovo
részecskék detektalasa dltal. A részecskék sokfélesége és széles energiatartomanyban val6 eldfor-
duldsa miatt detektorok egész sorara van sziikség, hogy megfelel6 képet kapjunk az iitk6zés soran
végbemenos folyamatokrdl. A RHIC gyorsitogylirijében egymaéssal szemben keringé nehézionok
palydja hat ponton keresztezi egymadst, ezen keresztez0désekbol négynél telepitettek kisérletet,
mas és mas specidlis adottsagokkal, hogy kérdések minél szélesebb korére kaphassunk valaszokat.

Magam a PHENIX kisérletnél dolgoztam az adatfelvételen, ezen kiviil specidlisan a Zero
Degree Calorimeter (ZDC) nevili detektor fejlesztésében és tizembentartdsaban vettem részt.
Az Aaltaldnos feliigyelet és az itt-ott felmeriild problémék kezelése mellett sajit feladatom az
ugynevezett Online Monitoring szoftverrendszer ZDC-re vonatkozé részének megirdsa és folya-
matos fejlesztése volt. Ez a szoftverrendszer arra szolgal, hogy a kisérletet folyamatosan feliigyeld
személyzet (amely az ottani kutatdsokon dolgozé, fejenként néhdny hét feliigyeletet véllalé fizi-
kusokbdl tevédik Ossze) szdmara lehetévé teszi, hogy kiilondsebb specidlis ismeret nélkiil el tudja
donteni, hogy az egyes detektorok altal felvett adatok olyanok-e, amilyennek varjuk éket, ami-
lyenekre sziikség van.

A 7ZDC anehézion-nyaldb tulajdonsdgait tudja mérni: az energiajat, a nyaldbirdnyra meréleges
sikban vett eloszlasat; ezen kiviil alkalmas az litk6zés nyalabiranyi pozicidjanak meghatarozasara.
En ezen méréseket végeztem el és automatizdltam a kaloriméter segitségével, eredményiik valds
idejii megjelenitését illetve adatbéazisban vald tarolasat oldottam meg. Ezen munkdt mutatja be
szakdolgozatom harmadik fejezete.

Az online monitoring szoftver megtekinthetd a [1] szdmu referencidban.

1.3. Adatfeldolgozas — korrelaciés fiiggvények

Az adatfeldolgozés a valaszok dekddolaséat és megértését jelenti. Nehézion-fizikdban ez konkrétan
a kovetkezd folyamatot takarja:

1. A detektorok digitalizalt jeleibél kiszlirjiik az egyes eseményeknek megfelel§ adathalmazokat
2. Ezeknek kivalogatjuk az egyes részecskékhez tartozo részeit

3. Meghatdrozzuk az egyes részecskék fizikai tulajdonsigait (tomeg, toltés, impulzus .. .)

4. Kiszdmoljuk a kivdnt mennyiséget (példdul a pionok energia-eloszlasit)

5. Ertelmezziik a kapott eredményt (a mérés kortilményeit és pontossigat figyelembe véve)
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Az én feladatom a két- és harom-részecske korrelaciés fiiggvények vizsgalata volt. Ezen fiigg-
vények megmutatjak — kozvetve — hogy mekkora a valészinlisége annak, hogy taldlunk egy
részecskepart illetve részecskeharmast adott impulzusokkal. FEzeket a fliggvényeket azutin a
relativ impulzusok fiiggvényében szokas megmérni. Ha ezek utan a kétrészecske korrelacids
fliggvény értéke — példaul — kis relativ impulzusnal nagy, az azt jelenti, hogy a részecskék jellegze-
tesen kozel azonos impulzusa parokba rendezédnek. Ha ugyanez az érték igen kicsi, az azt jelenti,
hogy nem nagyon taldlhatunk két részecskét azonos impulzussal. Ez jellemzé példiul az azonos
tipusu fermionokra, amelyeknek nem lehet azonos impulzusuk, ha minden egyéb tulajdonsaguk
megegyezik.

Hasonlé mdédon lehet vizsgalni a tobb- vagy n-részecske korrelaciés fliggvényeket, ezeket C),-
nel jeloljiik. Ezek osszességében részletesebb informéciét adnak a részecske-sokasag viselkedésérdl,
mint a kétrészecske korreldcids fiiggvény onmagaban. Mint latni fogjuk, bizonyos kérdések megva-
laszolasahoz nem elég C's meghatarozasa, hanem sziikséges a magasabb rendii korreldciok analizise
is.

Hanbury-Brown és Twiss csillagok radiétartoméanyban mért jelének intenzitaskorrelacidit ele-
mezve észrevette [2], hogy a kétpont korreldcids fliggvény (a kétrészecske korreldcios fiiggvénynek
megfelel6 mennyiség folytonos eloszldsokra) informaciét hordoz a forrds geometridgjarél. Ez a
modszer nehézion-litkozésekben is alkalmasnak latszott a forrds geometridjanak megismerésére.
Kés6bb kidertilt, hogy utébbi esetben a forrds egyéb jellemzéi (tdguldsa, hémérsékletének valtozd-
sa) is befolydssal vannak a korrelacidra, ezért ezen mennyiségek megmérése kiilonosen fontos.

Példaul ha feltessziik, hogy a forras egy ritka, hideg tartoméanyra és egy hidrodinamikai
tagulason keresztiilmeno, termalizalt részre oszthatd, ezenkiviil utébbinak van koherens és nem
koherens része, akkor ezen részek ardnya, mint paraméter a segitségével az n-részecske kor-
relacids fiiggvények nulla relativ impulzusnal vett értéke kiszdmolhaté. Amennyiben utébbiak
kozil kett6t megmériink, meghatérozhatjuk az elobbi aranyokat.

De amig a részecskék impulzus- és energia-eloszlasabdél megkapjuk a korrelacids fiiggvényeket,
hosszui utat kell megtenniink. Tobbek kozott tomegiik és toltésiik alapjan, a detektorok hatésfo-
kanak és pontossaganak ismeretében azonositanunk kell a részecskéket, kiillonféle vagdsokat kell
alkalmaznunk az adatokon, hogy csak a megfeleld eseményeket és részecskéket hasznéljuk fel,
illetve az eredményt bizonyos hatésok figyelembevételével korrigalnunk kell.

En a PHENIX 200 GeV-es arany-arany iitkozéseinek adatai alapjan szémoltam ki a két-
és haromrészecske korrelaciés fiiggvényeket. Vdélasztottam egy megfeleld részecskeazonositasi
moédszert, alkalmaztam a sziikséges egy- és kétrészecske vagasokat, és kiszamitottam az aktudlis és
a hattér par és triplet eloszlasokat pionokra, kaonokra, protonokra és azonositatlan részecskékre,
az Osszes lehetséges toltéskombindcié esetében. A mérés (szdmolds) menete a negyedik fejezet elsé
és harmadik részében szerepel részletesen. A kiszamitott eloszldsok ismeretében meghatdroztam
a nyers korrelacids fliggvényeket. Nyers korrelaciés fliggvények ezek, mert nem végeztem el rajtuk
olyan korrekciékat, mint példaul a Coulomb-korrekcid, amely a részecskék kozotti elektromégneses
kolcsonhatds okozta torzulast veszi figyelembe.

A kiszamitott korrelacids fiiggvények a vart alakot mutatjdk, nagy impulzuskiilénbségeknél
egyhez tartanak, kis relativ impulzusoknal pedig megnd az értékiik. Azonban szembetling a
rossz statisztika, a jovOoben els6sorban ezen kell javitani — a felvett adatok nagyobb részének
feldolgozasaval —, ugyanis éppen a legérdekesebb tartomanyban, kis relativ impulzusoknal van
kevés részecskepar és triplet. A mérés majd a sziikséges korrekciok elvégzésével zarul.

1.4. Modellépités — a Buda-Lund hidrodinamikai modell

Azért épitiink modelleket, hogy megismerjiik a valaszok mogott a valaszadot. Elképzeliink le-
hetséges valaszoldkat, és megnézziik, a miénk is igy valaszol-e, mint ahogy az elképzelt, a modell.
Ha igen, tovabb kérdeziink, hogy megtalaljuk a korlatait, vagy pontosan megtudjuk, mik is az
érvényességének keretei. Ha olyan valaszt kapunk, amit a modelliinknek megfelel6 valésag soha-
sem adott volna, akkor, ha lehet, modelliinket médositjuk gy, hogy mégis alkalmazhaté legyen,
illetve tovabb kérdezhetiink, hatha esetleg mégis taldlunk olyan koriilményeket, amelyek mellett
alkalmazhaté. Altaldban mindenesetre az igazi kihivas taldlni egyetlen olyan modellt is, amely
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megfelel a latott képnek, azaz leirja a valdsdg megfigyelt szegmensét. Ha ez sikeriil, akkor pedig
el kell kezdeni olyan kérdéseket keresni, amelyekre nem tudjuk a természet valaszat, viszont pre-
dikciot, joslatot tudunk tenni a sajat modelliink alapjan. Ezzel a 1épéssel visszajutunk az els6hoz,
az adatfelvételhez.

Modellépitésen beliil konkrétan a Buda-Lund hidrodinamikai modellel foglalkoztam, amely
a valésdg nagyenergids nehézion-iitkdzésekben, a ,kis bummokban” mutatott arcat hivatott
leirni [3]. A hidrodinamika egyenleteire ad egy megoldast, amelybdl paramétereinek adott értéke
esetén mar ki lehet szamitani kiilonféle részecskespektrumokat, korrelacios fiiggvényeket és egyéb,
nehézion-litkozésekben mért mennyiségeket.

A modell az iitkozések ,,forrd zonajaban” 1étrejové tlizgombbdl indul ki, paraméterei pedig
ezen tlzgomb homérsékleti és aramldsi profiljat hatdrozzak meg. Ha a modell eredményeit a
paraméterek értékét valtoztatva illesztjiikk a mérési eredményekhez, akkor azon kiviil, hogy meg-
tudjuk, hogy miikodik-e a modell, a paraméterek értékét is meghatarozhatjuk.

Végiil a kapott paraméter-értékekkel joslatokat tehetiink nem illesztett mennyiségekre is. Az
ezekere vonatkozoé kisérleti adatok segitségével finomithatunk a modellen, és tisztabb képet kap-
hatunk a valésagrél. De azt, hogy milyen mennyiségeket lenne még érdemes megmérni, csak a
modell készitoi és fejleszt6i tudjak, ezért is kiemelkedben fontos az elméleti és a kisérleti munka
Osszehangolasa.

Szakdolgozatom 5. fejezetében a fentiek alapjan el6szor az eredeti, tengelyszimmetrikus, nem-
relativisztikus Buda-Lund modell eredményeit vizsgdlom meg a kisérleti adatok tiikrében.

A 5.1 tablazat és az 5.1-5.2 dbrdk alapjan megdllapithaté, hogy a Buda-Lund modell jol
miikodik mindkét RHIC energidnal, leirja az egyrészecske-spektrumok és korrelacids sugarak
transzverz impulzus fliiggését. Ez a korabban — meglehet6sen gyakran —, RHIC HBT rejtvényként”
emlegetett probléma megoldasdnak tekinthetd, ugyanakkor az erre vonatkozé irodalom alapjan
kitlinik, hogy ez a ,rejtvény” csak olyan modellekben volt jelen, amelyek nem vették figyelembe
a CERN SPS eredményeit.

Megallapithatjuk, hogy a modell alapjdn a legcentralisabb (0-5%), y/sxn = 130 GeV-es arany-
arany itkozésekben létrejove tiizgémb kozépponti hémérséklete kifagyaskor Ty = 214 £ 7 MeV,
bariokémiai potencialja pedig up = 774138 MeV. A legtijabb racstérelméleti szamitésok alapjan a
kvark-gluon plazméba valé atalakuléds kritikus hémérséklete a 0 < pup < 300 MeV intervallumban
hiban beliil a konstans T, = 164 + 3 MeV értéket veszi fel (14sd [22] és [23], haromszoros illetve
valés kvarktomegekkel szdmolva). Ez, és a fenti eredmények alapjén a (T, up) érték a RHIC
V/sun = 130 GeV-es arany-arany iitkiizéseiben kifagydskor szignifikdnsan a kritikus vonal felett
van. Ez a viselkedés a kvarkok kiszabadulasara vald erés utalasként értelmezheto.

Hasonl6 jelenséget tapasztalhatunk /sy = 200 GeV-es iitkozések esetében, ahol 0-30% cent-
ralitdsu adatokat dolgoztunk fel. Ugyanakkor itt a modell és a fittelés jelenlegi pontossdga és
az illesztett PHENIX és BRAHMS adatok alapjan nem tehetiink a fentiekkel azonos erdsségii
kijelentést. Azonban megallapithatjuk, hogy |/sxy = 200 GeV-es iitkézésekben is a kvark-gluon
plazmaba valé atalakulas nyomaként értelmezheto jelet talaltunk.

Az 5. fejezet kovetkezd részében bemutatom a Buda-Lund modell elliptikusan szimmetrikus
esetre vald altaldnositasat. Megtartottam az egyrészecske-spektrumok és korrelacios fiiggvények
illesztésébol meghatarozott paramétereket, és ezeket felhasznalva az altalanositott modellt Gssze-
hasonlitottam a kisérleti adatokkal.

Azt kaptam, hogy a tlizgdmb két transzverz iranyban vett tagulasi sebességének csekély felha-
sadasa és a forras kis elforgatasa elég ahhoz, hogy egyszerre leirjuk a spektrum masodik harmo-
nikus momentumaénak, az elliptikus folydsnak a transzverz momentum [25] és pszeudorapiditds
fliggését [26, 27].

Az eredményeket az 5.5 és az 5.6 abrakon és az 5.2 tabldzatban mutatom be. Ezek megerositik
a kvarkok kiszabauldsdra, a kvark-gluon plazma létrejottére kordbban taldlt utaldst (lasd 5.2.
részt és a [66, 19] referencidkat). Ez azon a megfigyelésen alapszik, hogy a részecskék egy hanyada
egy a kritikusnal nagyobb hémérsékletli, T > T, = 170 MeV tartoméanybdl szarmazik. A mo-
dell alapjan megbecsiiltem, hogy ezen 7 = 7 hiperfeliileten vett tartomany térfogata a teljes
térfogatnak hozzévetSlegesen 1/8-a, azaz 754 fm3.

Ez a megfigyelés, hogy a hémérséklet egyes térrészekben magasabb a kritikusndl, azonban
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csak jel, mas szavakkal az 1j fazis létrejottére vonatkozé indirekt bizonyiték vagy utalds, mert a
kritikus homérsékletet nem kozvetleniil az adatokbdl hataroztuk meg, hanem egyszertien atvettiik
a legfrissebb racstérelméleti eredményeket.
Az analizis ugyanakkor azt is megmutatja, hogy a forrds dtlagos hémérséklete lényegesen
kisebb, T ~ 105 MeV, igy a részecskék legnagyobb része egy hideg hadron gazbdl szarmazik.
Ezen eredményeket a RHIC /sy = 130 GeV-es arany-arany iitkozéseiben a kvark-gluon
plazma illetve egy cross-over jellegii &tmenet nyomaként lehet értelmezni.

1.5. f)sszefoglalés

Szakdolgozatomban bemutatom a természet fizika altali megismerésének folyamatanak harom f6
lépését, az adatfelvételt, az adatanalizist és a modellépitést, egy-egy példan keresztiil.

A magyar nyelvii Gsszefoglald és a bevezetés utdn a 3. fejezetben a RHIC-r6l, a Relativiszikus
Nehézion Utkoztetérdl frok, ezen kiviil a PHENIX kisérlet Zero Degree Calorimer nevii beren-
dezésének mitkodtetésérol és az dltala felvett adatokrdl. Itt a kovetkezd munkakat végeztem

el:
o Az adatfelvétel idészakos feliigyelete a PHENIX kisérletnél

e A Zero Degree Calorimeter online monitoring szoftverének kifejlesztése és karbantartdsa
(3.6. rész)

e A Zero Degree Calorimterhez kapcsolédé kisebb-nagyobb munkak elvégzése

— Vernier scan analizis (3.7. rész)

— Szakért6i feliigyelet (3.4. rész)

Tovabb haladva a 4. fejezetben az adatanalizis terén végzett munkamat mutatom be, en-
nek eredménye a PHENIX 200 GeV-es arany-arany adatokbdl kiszamolt két- és haromrészecske
korreldciés fiiggvények pionokra, kaonokra, protonokra és azonositatlan részecskékre, az Osszes
lehetséges toltéskombindcié esetében.

A munka 1épései a kovetkezdk voltak:

o Az felvett adatok strukturajanak megismerése, részecskeazonositas, eseményszelekcio, va-
gasok elvégzése (4.3. rész)

e Pér- és triplet-eloszldsok kiszdmitdsa (4.4.1. és 4.4.3 részek)
e Nyers két- és harom-részecske korreldcids fliggvények kiszdmitdsa (4.4.2. és 4.4.4. részek)
e Az eredmények értelmezése, tovdbbi feladatok meghatdrozdsa (4.5. és 4.6. részek)

Az 5. fejezetben a folyamat utolsd 1épését, az elméleti munkat, a modellépitést mutatom
be. A Buda-Lund modellel foglalkoztam, a RHIC adataira valé fittelésekkel illetve az eredeti,
nemrelativisztikus és tengelyszimmetrikus modell elliptikus szimmetriara és relativisztikus alakra
valé altalanositdsaval. Részletesen a kovetkezd feladatokat végeztem el:

Az eredeti modell feldolgozésa (5.1. rész)

Centrélis iitkozések vizsgalatdban vald részvétel (5.2. rész)

— Nyeregpontok pontosabb megkeresése

— A modell eredményeinek djraszamolésa

Elliptikus, relativisztikus esetre dltaldnositott modell kialakitdsa (5.3. rész)
o Az altaldnositott modellb8l mérhetd mennyiségek kiszdmitdsa (5.4. rész)

e Az altaldnositott modell adatokkal valé Gsszehasonlitdsa (5.5. rész)

Predikciék 1j mérheté mennyiségekre (5.6. és 5.4.3. rész)
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2.1 Method of physics

Physics, as a natural science, works in a way very similar to psychoanalysis, just Nature is our
subject of investigation. The three main steps in researching the secrets of nature are data taking,
data analysis and model building. These three steps are analogous to a situation, where one wants
to get to know another person, by asking questions. The analogies for the three steps are:

e Data taking < Asking questions

e Data analysis < Decoding and understanding answers

e Model building < Trying to see the answerer behind the answers

There is one more step, which makes this above process to a continually rising helix. This is
represented above by the curved arrow, and means, that a model has to make predictions and
call the next questions to see if they are right, and then comes the next answer, the next model
and the next prediction, which calls a question again, and so on.

It is very important to see the whole process. For example, the one who does the third task,
who tries to discover the source of the answers, knows best what questions to ask, and asker can
help to understand answers, because he/she knows to most details about the asked question.

This is not a big problem in the process of getting to know a person, where learning and
practicing the separate tasks do not require a whole life, especially the second task, which is done
by our ears and brain automatically.

In physics, the situation is not so easy. While the first two tasks are often done by the same
people, the third is mostly separated from them. In my present M.Sc. thesis, I would like to show
examples for all three tasks. The examples are from the field of heavy ion physics, but they are
on different topics, and give insight into different kind of problems.

After this short introduction, let us see a description and some details of the three parts.

2.2 Data taking - the relativistic heavy ion collider

The front line of asking questions from Nature in the field of high energy physics is at heavy ion
colliders. Currently, the largest one is in Brookhaven on Long Island, New York, and this is the
Relativistic Heavy Ion Collider. Here heavy (or sometimes not so heavy) ions are accelerated to
enormous energies and collided to each other. In these high energy collisions lots of new particles
are produced, and through observing properties of these particles, we may see circumstances
similar to the time when our Universe was created, the Big Bang.

The accelerating is done by linear accelerators and a synchrotron, and then two beams of ions
are led in two beampipes which are on the same circle but the ions go in different directions in
the two pipes. They cross each other at six points, and at four of these crossings there is an
experiment. These experiments are aggregations of detectors, which measure different properties
of the particles produced in the collisions.

I was involved in data taking at one of these experiments, in PHENIX (Pioneering High EN-
ergy lon eXperiment). It consists of many detectors, there are some that measure the momentum
of the particles, some measure the charge, then time of flight in the detectors and pathlenght is
measured, and so on.

With these detector-aggregations we can ask questions from nature, for example we could
ask:

“Is the spectrum of pions in such collisions a thermal spectrum?”
or

“Are there among the products of these collisions any pentaquarks?”
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or

“What is the temperature of the center of the system that comes into existence after
the collision?”

First important thing is, that we have to build detectors, which “understand” our questions,
eg. if we cannot observe particles with an energy higher than the pion mass, we won’t be able
to measure pion spectrum. Or, we have to build detectors, which have a high enough acceptance
to measure the decomposition products of pentaquarks. And, our heavy ion collisions have to be
intense enough to see lots of particles.

Furthermore, all these questions depend more or less on idea on the meaning of the words in
them. For example, it is a question, what we consider as temperature in those collisions, or how
we want to see our pentaquarks.

There is a need to see the whole process of physics in one, and not just say: we are experimental
physicists, and do not care about theories. Another problem could be, if one builds a model
without respect to Nature. A model may be the most original and creative and beautiful model
ever made, if it does not describe Nature, it’s beauty does not correct this problem.

My data taking task was specifically to develop and maintain the online monitoring software
of PHENIX’s Zero Degree Calorimeter [1].

2.3 Data analysis - correlation functions

Data analysis means decoding and understanding the answers. For example we have to extract
the particular events from the digitalized signal of the detectors, the particles in the events and
their physical properties. After that, if we have the particles, we can measure eg. the pion
spectrum, and in my case, the correlation functions.

Correlation functions measure, how correlated the momenta of the particles in an ensemble
are. For example, there are the two particle correlation functions, which depend on the two
momenta of particle pairs, but can be projected on the sub-space of the momentum-difference
of the pair. If the correlation function is high at zero relative momenta, it means, that there
are many particles with nearly the same momentum. We can measure n-particle correlation
functions, too, they count, how many particle n-tuple we had at a given momentum n-tuple.

Correlation functions are important to see the collective behavior or properties of particles.
For example the observed size of a system can be measured by looking at two particle Bose-
Einstein correlations [2], and from the three-particle correlation function we can conclude some
other properties of the examined particle-ensemble, because if we see strong correlations, it can
be a hint for jets, while less correlated matter means a fireball-like behavior.

But until we get from particle-ensemble to the correlation function, there is a long way, which
includes understanding the detectors to be able to make necessary corrections on the measurement
and understanding the theory of correlations to be able measure the right correlation functions.

2.4 Model building - the Buda-Lund hydro model

We build models to understand the answerer behind the answers. We imagine possible answerers,
and if we see, that for example this answerer would have given other answers, that we have heard,
we can tell, that the answerer is unlike this picture. And in most cases, the real quest is to find
one answerer at all, that would give the same answers. And then, we are back at the first step,
ask questions to see, if the answerer is really like what we imagined.

The Buda-Lund model [3] is a hydrodynamical model which was developed to describe the
"Little Bang’, the heavy ion collisions. It includes a solution of the equations of hydrodynamics,
and calculates for a given set of parameters particle spectra, correlations functions and other
observable quantities measured in heavy ion collisions. It assumes the existence of an expanding
fireball arisen from the hot zone of these collisions, has the fireballs temperature and flow profile
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as input parameters. After fitting the results of the model to the data, these input parameters
can be determined.

Finally, with the found set of parameters, it is possible to make predictions for not fitted
quantities also. If we measure these quantities, we can make refinements on the model to get
a more clear picture. But only who works on the model knows, which quantities are to predict
from the model, or which measurements could exclude or confirm some characteristic features of
the model.
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3.1 Introduction

Heavy ions are accelerated and collided with relativistic energies at the Brookhaven National
Laboratory’s RHIC complex. The properties of particles coming from the heavy ion collisions
are measured by four experiments, BRAHMS, PHENIX, PHOBOS and STAR. I was working at
PHENIX on data taking, my task was specifically to develop and maintain the online monitoring
software of PHENIX’s Zero Degree Calorimeter for the d+Au, Au+Au and p+p runs. The
software calculates from the signals coming from the detectors main properties of the beam, such
as energy and transverse profile, as well as the event position. These quantities are then collected
on histograms for short time-intervals and put in databases to be able to look at them later. The
software is avaliable in ref. [1].

3.2 The Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a research

facility that began operation in 2000, following 10 years of development and construction. Hun-

dreds of physicists from around the world use RHIC to study what the universe may have looked

like in the first few moments after it’s creation. RHIC drives two intersecting beams of gold ions

head-on into a subatomic collision. These collisions may help us understand more about why the

physical world works the way it does, from the smallest subatomic particles, to the largest stars.
An areal view of the RHIC complex with all it’s facilites is to see on figure 3.1.

RHIC
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Figure 3.1: Arial view of RHIC

On this figure, we see the RHIC ring and it’s pre-accelerator facilites. Gold ions start their journey in
the Tandem Van de Graaff generator, then they travel to the Booster accelerator, after that they are
accelerated to a higher speed in the Alternating Gradient Synchrotron, and finally they are injected into
the RHIC ring where they reach their final speed and collide into one another.

3.2.1 Tandem Van de Graaff generator

Completed in 1970, the Tandem Van de Graaff facility was for many years the world’s largest
electrostatic accelerator facility. It provides accelerated ion-beams ranging from hydrogen to
uranium. The facility consists of two 15 million volt electrostatic accelerators, each about 24
meters long, aligned end-to-end.

To study heavy ion collisions at high energies, a 700 meter-long tunnel and beam transport
system called the Tandem to Booster (TtB) Line was completed in 1986. From the Tandem,
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the bunches of ions enter the Tandem to Booster Line, which carries them through a vacuum
via a magnetic field to the Booster. At this point, they’re traveling at about 5% of the speed of
light. This facility allows the delivery of heavy ions from Tandem to the Alternating Gradient
Synchrotron (AGS) for further acceleration. The TtB now makes it possible for the Tandem to
serve as the Relativistic Heavy Ion Collider’s ion source.

3.2.2 Linear Accelerator

In addition to heavy ions, also proton-proton collisions are studied at RHIC. For these measure-
ments, protons are supplied by the Linear Accelerator (Linac).

The basic components of the Linac include ion sources, a radiofrequency quadropole pre-
injector, and nine accelerator radiofrequency cavities spanning the length of 140 meter. The
Linac is capable of producing up to a 35 milliampere proton beam at energies up to 200 MeV for
injection into the AGS Booster or for the activation of targets at the Brookhaven Linac Isotope
Producer. The Linac’s location relative to the rest of the AGS complex is shown on figure 3.1.

3.2.3 The Booster synchrotron

The Booster synchrotron is used to pre-accelerate particles entering the AGS ring. It’s construc-
tion was begun in 1986 and completed in 1991. The Booster is less than one quarter the size of
the AGS.

The Booster also plays an important role in the operation of the Relativistic Heavy Ion Collider
(RHIC) by accepting heavy ions from the Tandem Van de Graaff facility via the Tandem to
Booster beamline. It then feeds them to the AGS for further acceleration and delivery to RHIC.
Due to its superior vacuum, the Booster makes it possible for the AGS to accelerate and deliver
heavy ions up to gold with its atomic mass of 197.

3.2.4 The Alternating Gradient Synchrotron

The Alternating Gradient Synchrotron name is derived from the concept of alternating gradient
focusing, in which the field gradients of the accelerator’s 240 magnets are successively alternated
inward and outward, permitting particles to be propelled and focused in both the horizontal and
vertical plane at the same time. Capable of accelerating 25 trillion protons with every pulse, and
heavy ions such as gold and iron, the AGS is used by 850 users from 180 institutions from around
the world annually.

As ions enter the AGS from the Booster, they are travelling at about 37% the speed of light.
Then in the AGS, the velocity of the ions reaches 99.7% the speed of light.

Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world’s premiere
particle accelerators, well known for the three Nobel Prizes won as a result of research performed
there.

3.2.5 The AGS to RHIC transfer line

When the ion beam is travelling at top speed in the AGS, it is diverted to another beam line
called the AGS to RHIC transfer line. At the end of this line, there is a “fork in the road”, where
a switching magnet sends the ion bunches down one of two beam lines. Bunches are directed
either left to the clockwise RHIC ring or right to travel counter-clockwise in the second RHIC
ring. From here on, the counter-rotating beams are accelerated, as in the Booster and AGS, and
then circulate in RHIC where they will be collided into one another at six interaction points.

3.2.6 The experiments

RHIC’s 2.4 mile ring has six intersection points where it’s two rings cross each other, allowing
the particle beams to collide.



20 CHAPTER 3. DATA TAKING

If RHIC’s ring is thought of as a clock, the four current experiments are at 2 o’clock (BRAHMS),
6 o’clock (STAR), 8 o’clock (PHENIX) and 10 o’clock (PHOBOS) and. There are two additional
intersection points at 12 and 4 o’clock where there are no experiments, but in the future some
may be placed.

Let us now see some details about the four experiments.

BRAHMS

One of RHIC’s two smaller detectors is the Broad Range Hadron Magnetic Spectrometer, or
“BRAHMS”. This device studies charged hadrons as they pass through it’s spectrometers.
BRAHMS measures only a small number of particles emerging from a specific set of angles
during each collision. The momentum, energy and other characteristics of the particles are
measured very precisely.
This collaboration has 51 participants from 14 institutions in eight countries.

PHENIX

The PHENIX detector records many different particles emerging from RHIC collisions, including
photons, electrons, muons, and hadrons.

Photons and leptons are not affected by the strong interaction and can emerge unchanged
from the interior of a RHIC collision, so they carry unmodified information about processes within
the collision. A good analogy is that PHENIX looks “inside” the hot, dense matter formed in the
collision, much like x-ray or MRI images show medical doctors the “inside” of the human body.
For example, escaping photons can reveal information about the temperature of the collision.

PHENIX weighs 4,000 tons and has a dozen detector subsystems. Three large steel magnets
produce high magnetic fields to bend charged particles along curved paths. Tracking chambers
record hits along the flight path to measure the curvature and thus determine each particle’s
momentum. Other detectors identify the particle type and/or measure the particle’s energy. Still
others record where the collision occurred and determine whether each collision was a central
one, a peripheral one, or something in between.

PHENIX has over 450 members from 51 institutions in 11 countries. A more detailed descrip-
tion of PHENIX is shown in the next section.

PHOBOS

The PHOBOS experiment is based on the premise that interesting collisions will be rare, but
that when they do occur, new physics will be readily identified. Thus PHOBOS is designed to
examine and analyze a very large number of unselected gold ion collisions. It consists of many
silicon detectors surrounding the interaction region. With these detectors, it is possible to count
the total number of produced particles and study their angular distribution. With this array it is
looked for unusual events, such as fluctuations in the number of particles or angular distribution,
because it is known from other branches of physics that a characteristic of phase transitions is a
fluctuation in observable events.
Seventy scientists from 12 institutions in three nations are working on PHOBOS.

STAR

The Solenoidal Tracker at RHIC (STAR) is an experiment which specializes in tracking the
thousands of particles produced by each ion collision at RHIC.

STAR’s “heart” is the Time Projection Chamber, which tracks and identifies particles emerg-
ing from the heavy ion collisions. As a collision occurs, STAR measures many parameters simulta-
neously to look for signs of the quark-gluon plasma. By using powerful computers it reconstructs
the sub-atomic interactions which produce the particles emerging from the collision.

The STAR team is composed of over 400 scientists and engineers from 33 institutions in 7
countries.
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3.3 The PHENIX

The PHENIX Experiment consists of a collection of detectors, each of which perform a specific
role in the measurement of the results of a heavy ion collision. The detectors are grouped into
two central arms, which are capable of measuring a variety of particles including pions, protons,
kaons, deuterons, photons, and electrons, and two muon arms which focus on the measurement of
muon particles. There are also additional event characterization detectors that provide additional
information about a collision, and a set of three huge magnets that bend the trajectories of the
charged particles. In table 3.1 is a list of the detectors of PHENIX and what they do. How the
detectors are arranged in the experiment is to see on figure 3.2.

Central Arm Detectors

Measures the position and momentum of
charged particles

Measures the position of charged particles
with precision

Ring Imaging Cherenkov Detector (RICH) | Identifies electrons

Measures the position and momentum of
charged particles. Identifies particles.
Measures the position of charged parti-
cles. Identifies particles.

Measures the position and energy of
charged and neutral particles. Identi-
Electromagnetic Calorimeter (EMCal) fies photons and charged particles. Has
two types of detectors: Lead scintillator
(PbSc) and lead glass (PbGl)

Muon Arm Detectors Detector

Measures the position and momentum of
muon particles

Muon Identifier (MulD) Identifies muon particles

Drift Chamber (DC)

Pad Chambers (PC)

Time Expansion Chamber (TEC)

Time-of-Flight (TOF)

Muon Tracker (MuTr)

Event Characterization Detectors
Measures collision location and centrality.
Starts the stopwatch for an event.

Beam-Beam Counters (BBC)

Zero Degree Calorimeters (ZDC) Measures collision location and centrality.
For deuteron+Au collisions, it can mea-
Forward Calorimeters (FCal) sure surviving neutrons and protons from

the original deuteron.
Measures collision location and charged
particle distributions.

Heavy Metal Detector

Bends charged particles so that their
charge and momentum can be measured
in both the central arm and the muon arm
detectors.

Multiplicity Vertex Detector (MVD)

PHENIX Magnets

Table 3.1: PHENIX detector overview

The primary goal of PHENIX is to discover and study a new state of matter called the Quark-
Gluon Plasma (QGP). This form of matter was predicted from perturbative QCD calculations
to exist when quarks and gluons are not bound inside of nucleons. Our Universe is thought to
have been in this state for a very short time after it’s birth. There is still no real consensus in
physics, what we consider as the QGP, and if we have already sawn it or not. The situation is a
little bit similar to that of Columbus, who thought to have found India, but it took decades until
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it was clear where his ships dropped the anchors [4].
Now, the science mission of PHENIX can be summarized as follows:

e Search for a new state of matter called the Quark-Gluon Plasma, which is believed to be
the state of matter existing in the universe shortly after the Big Bang. If it is found, then
measure its properties.

e Study matter under extreme conditions of temperature and pressure.

e Study the most basic building blocks of nature like quarks and gluons, and the forces that
govern them.

Some important results of PHENIX are the following:

There appears to be suppression of particles with a high transverse momentum — the momen-
tum component perpendicular to the beam axis — in Au+Au collisions [5]. PHENIX observes
that there are fewer particles with a high transverse momentum than what is expected from
measurements of simpler proton collisions. This effect is referred to as jet suppression, since
the majority of these particles are products of a phenomenon called jets, high energy and high
transverse momentum particles. Jet suppression was predicted to occur if the QGP is formed,
because of the energy loss of partons in the dense and hot matter.

There does not appear to be suppression of particles with a high transverse momentum in
d+Au (deuteron+gold) collisions [6]. In these collisions, due to the small size of the deuteron,
QGP can be formed only a very small region. This observation confirms that the suppression seen
in Au+Au collisions is most likely due to the influence of a hot, dense and strongly interacting
matter being produced, such as a Quark-Gluon Plasma.

PHENIX is unique at RHIC in that it can identify individual electrons coming from the
collision, many of which are the result of decays of heavier particles within the collision. PHENIX
measures a number of electrons that is above the expected background [7]. The excess electrons
are likely coming from decays of special particles with heavy charm quarks in them. Further
study of these charmed particles will help us better understand if the Quark-Gluon Plasma has
been formed.

PHENIX has measured the fluctuations in the charge and average transverse momentum of
each collision, because during a phase transition, it is typical to see fluctuations in some properties
of the system. Thus far, PHENIX reports no large charge fluctuations that might be seen if there
is a phase transition from a Quark-Gluon Plasma [8]. PHENIX reports that there are excess
fluctuations in transverse momentum, but they appear due to the presence of particles from
jets [9]. The behavior of the fluctuations is consistent with the jet suppression phenomenon
mentioned previously. Recent lattice calculations indicate, that the QGP may be formed in a
cross-over like transition, so we do not have to see signs of a phase-transition necessarily, but
these features need further investigation.

PHENIX observes high particle flow, which is expected when heavy ions collide [10]. However,
those high transverse momentum particles surprise again, and show a flow effect that is not yet
understood.

Finally, here are some questions which need to be answered by PHENIX in the future:

e Are the jets really disappearing? Do they really look different than what has been seen
before in collisions of protons? If the jets are disappearing, where does all of the energy go?

e Are J/V particles disappearing? Do they decay differently than expected? Data taken in
2004 should be able to answer this question.

e Can we see photons radiating directly from a Quark-Gluon Plasma? PHENIX has a pre-
liminary measurement that confirms the presence of these direct photons. Data taken in
2004 should improve this measurement.

e Are the masses of the particles moving due to physical effects in a Quark-Gluon Plasma?
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Expanding fireball

Heavy ions

1. 2. 3.

Figure 3.3: Sketch of a high energy heavy ion collision

In the first part, the two heavy ions are nearing to each other. Lorentz-contraction is neglected here
to have a more clear picture. After that, they collide. From the region where they overlap arises an
expanding fireball of new particles, and the other parts, the so called spectators continue their way.
From these parts, protons and neutrons evaporate.

e Do the particles decay in the same way as has been measured in simpler particle collisions?

Has PHENIX found the Quark-Gluon Plasma? It is too early to say for sure, but the obser-
vation of jet suppression and the very large amount of flow are very promising, while there are
lots of unanswered questions. The optimistic point of view says, that we see already a few signs
of QGP, so we may have found it. From the pessimistic point of view one could think, that we
have some signals, which should not appear if the QGP was formed. A realistic point of view is,
that we have found a hot, dense matter, and it’s properties have to be investigated to decide, if
it is the expected QGP or something else.

We would like to study more data in order to answer all these questions.

3.4 The zero degree calorimeter

The Zero Degree Calorimeter (ZDC) is a neutron detector, which is placed in the line where the
two beams of RHIC cross each other (the interaction region). It is present at all four experiment
of the Relativistic Heavy Ion Collider and may be considered to be part of RHIC instrumentation
also.

The ZDC was designed as a detector for luminosity measurement and monitoring, event
geometry characterization. In heavy ion collisions it is used for centrality selection (with the Beam
Beam Counters), to study Coulomb-dissociation, nuclear fragmentation processes, investigation
of -7 collisions, etc ...In d4+Au runs the ZDC (together with the Forward Hadron Calorimeter)
is used for p(d)+Au — n+X, n(d)+Au — p+X , d+Au — X event classification [11, 12, 13].

My task at the ZDC was to develop the online monitoring software for this detector com-
ponent. The online monitoring is a program that has to produce plots from the data that is
currently taken.

3.4.1 Goals of the calorimeter

It measures the energy of the neutrons that are evaporated from the spectators of the collision.
These neutrons do not take part in the collision, and if they decouple from the protons, the
magnetic field will not guide them to stay in the beampipe, and go straight forward into the zero
degree calorimeter.

The energy of these neutrons can be computed from the center of mass energy (y/syn). If
we use the center of mass frame, where p;=-p2=p:

SNN = (p1 +p2)2 =2m? + 2(|p| + E2) = 4F? (31)

So, by measuring the energy of the evaporated neutrons, we access the fluctuations of the center
of mass energy.
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channel number
south analog sum 0
south slabs 1-3
north analog sum 4
north slabs 5-7

Table 3.2: ZDC channels

There are eight ZDC channels, six for the south and north slabs, and two more for the analog sums of
these channels.

Another purpose of the ZDC is to measure the vertex position, the position, where the collision
happened. This is possible, because the evaporated neutrons start their flight with the spectator
part of the nucleus at the same time from the collision point. If in one direction, the neutrons
reach the ZDC earlier, the vertex was nearer to this side. This is possible, because we read out
not only energy, but timing information, too. The velocity of the neutrons equals within error
the speed of light.

Expressed with a formula:

Zverter — (tsouth - tnorth)c (32)

3.4.2 Construction of the ZDC

The Zero Degree Calorimeter is a Cherenkov light sampling calorimeter, and there is one at both
ends of the interaction region.

Mechanically, each arm of the ZDC is subdivided into 3 identical modules with 2 interaction
length each. The active medium is made from clear PMMA fibers interleaved with Tungsten
absorber plates. This sandwich structure is tilted at 45 degree to the beam to align the optical
fibers with the Cherenkov angle of forward particles in the shower. The energy resolution of the
ZDC for 100 GeV neutrons is 21%. Time resolution is around 120 ps for 100 GeV neutrons which
may be translated into a vertex position resolution of around 2.5cm.

The three analog signals coming from the slabs are digitalized after some amplifying, as well
as their analog sum, and a timing signal for each channel. This information is then stored and
analyzed by computers.

The energy is calibrated with an LED, which pulses with a low frequency. We take some
events where there was no collision only an LED pulse, and we know the energy of the LED sigal,
and through this, energy of the detected particles can be calibrated. We monitor the LED energy
too.

3.5 The Shower Max Detector

The Shower Maximum Detector (SMD) is unique to the PHENIX ZDC’s. It is useful for a study
of transverse momentum distribution of beam fragmentation products, beam steering and beam
profile studies due to beam divergence.

SMD is an X-Y scintillator strip detector inserted between 1st and 2nd ZDC modules. This
location corresponds (approximately) to hadronic shower maximum position. The horizontal x
coordinate is sampled by 7 scintillator strips of 15 mm width each, while the vertical y coordinate
is sampled by 8 strips of 20 mm width each, tilted by 45 degrees. The active area covered by
SMD is 105 mm x 110 mm. The SMD position resolution depends on energy deposited in the
scintillator and varies from around 10 mm at small number of charged particles crossing the SMD
to values smaller than 3 mm when number of particles exceed 100. For comparison, the spread
of neutrons due to of nucleon Fermi motion is about 2.2 cm at 100 GeV.

As mentioned before, with the SMD we can measure the beam position, if we look at the
energy distribution of the shower in the vertical and horizontal strips. I measure the beam
position on the following way then:
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channel

number

south horizontal strips
south vertical strips
south analog sum

8-15
16-22
23

north horizontal strips
north vertical strips
north analog sum

24-31
32-38
39

Table 3.3: SMD channels

There are 32 SMD channels, seven and eight for the vertical and horizontal strips respectively, and two
more for the analog sums.

where E; is the energy deposited in the ¢th slab and z; is it’s position. Figure 3.4 shows a possible
energy distribution. In the formulas the average position of the slabs is subtracted to have the
(z,y) = 0 position at the physical center of the SMD.

Statistics
Entries 7
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Figure 3.4: SMD energy distribution

In this figure, we see the energy distribution in the horizontal slabs of the north SMD. If we take the
average of the positions weighted with the deposited energy, we get the mean position.

Now, we have the beam energy and position at both the north and south side. It is very
important to monitor these to see immediately, if there is a change in these basic quantities.
3.6 The online monitoring

The online monitoring is a software system, that has the purpose to monitor the data that is
taken at the moment. For every detector-component there has to be an online monitor program,
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because if there won’t be one, we might not notice that that particular component is not working
properly, and the data from that detector is unusable.

In this section, I show some plots of the ZDC and SMD online monitor. The code is available
in ref. [1].

3.6.1 Beam energy monitoring

We have a monitor for south and north beam energy. The upper panels in figures 3.5 and 3.6
show the energy distribution in the north and south ZDC. The red dashed lines show the allowed
region for the maximum of the curve. This is around 1700-1900 GeV for gold beam, and at 100
GeV for deuterium beam. In the latter case, we can have only one evaporated neutron, so the
energy should be around 100 GeV, and in the former case, we saw, that the most likely number
of evaporated neutrons is 17-19, so this energy region should be maintained.

3.6.2 Vertex position monitoring

We have a monitor for the south and north beam position. The left middle panel in fig-
ures 3.5 and 3.6 show the vertex position, and the middle right is the same just for the events
where the BBC level 1 trigger fired. The latter, corrected distribution has a gaussian shape,
because if we have an event, where BBC level 1 trigger did not fire, it is very likely, that this
was a fake event. Some timing correction is still missing in figure 3.6, as the maximum is very
far from zero. This correction was already made for the Au+Au run, so the vertex position is in
figure 3.5 near to zero.

3.6.3 Beam position monitoring

There is a monitor for the vertex position. The last two plots in figures 3.5 and 3.6 show the
north and south SMD position distribution. Scattering is bigger in the deuteron case, the hits
for the gold beam are relatively more concentrated. IIn figure 3.5 there is a circle drawn around
the middle, and the maximum of the distribution should be in this circle.

3.6.4 Main expert plots

If there is something strange in the main monitors, it is more easy to detect the root of the
problem, if we have already some special plots which show some useful information. Shifters do
not have to understand and monitor these plots, but they are useful for experts.

Main expert plots are in figures 3.7 and 3.8. These show in the first line the separate beam
centroid distributions in the SMDs. After that, there are plots to see correlations between position
and energy. This is very useful, because if a little peak appears in energy, we could possibly see,
from which direction this noise’ comes. The other four plots show the raw ADC distributions
for the sum of the SMD channels.

3.6.5 LED signal monitoring

As we saw already, the energy calibration in ZDC is done via an LED signal. There is a plot for
the LED energy values in figure 3.9, where we can see, if the gain of some channels went bad
for example, or somehow the energy of the LEDs changed somehow. This would cause the LED
energy plots not to be constant. There are green lines on these plots, which show the values of
the energy seen a few days ago. The values at the first ZDC slab on the north side deviate from
this green line, because gain for that channel was changed in the meantime.

The timing is monitored as we see in figure 3.10, this is more constant.

History of LED values for every channel is stored in a database and monitored. Some of these
plots are shown in figure 3.11. Values on the horizontal axis are in units of 10* seconds. There
were in the monitored interval of a few weeks four changes.
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Figure 3.5: ZDC main online monitor in a Au+Au run

This figure shows the ZDC online monitor in a Au+Au run. In the first row, we see the energy distri-
butions in the north and south side calorimeters. The plots in the second row show the vertex position
distribution, on the left hand side with a cut made with help of the BBC. In the last row, we see the
transverse position distribution measured via the SMD. All plots show values within the normal ranges.
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Figure 3.6: ZDC main online monitor in a d+Au run

The plots shown in this figure are similarly arranged as in figure 3.5. The nominal value of the energy
maximum on the deuteron side is smaller here, and the measured value is in the allowed 100 GeV =
10 GeV range. An other feature is, that the vertex distribution was broader here and had a maximum
shifted towards the south side. Later, the ZDC timing was corrected and then the maximum moved to
zero, as in figure 3.5.
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Figure 3.7: Expert plots in a Au+Au run

The first four plots show the beam position distribution in the four (south and north, horizontal and
vertical) SMD sets. The first two plots in the second row show the correlation between energy and
position, while the in the last plots we see the distribution of the raw ADC signal from the SMDs.
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Figure 3.8: Expert plots in a d+Au run

The plots shown here are the same as in figure 3.7, just in a d+Au run. The south, Au side plots are very
similar, but on the north side the energy is smaller, and the scale of the correlation plots was changed

also.
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Figure 3.9: LED energy values versus event number

In this set of plots we see the time (event number) dependence of the LED energy. The south side is
shown on the right, the north side on the left. The individual raws correspond to the deposited energy
measured in the first, second and third ZDC slab, respectively. Green lines represent the average values
measured a few days formerly.
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Figure 3.10: LED timing values versus event number

LED timing values are plotted here versus the event number. Arrangement of the plots is the same as
in figure 3.9. There are acceptable random fluctuations, but in the first slab on the south side, all values
are in the last bin. Because of this overflow, some corrections on the timing signal had to be made.
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Figure 3.11: Expert plots in a Au+Au run

The average LED energy deposited in the north vertical SMD strips is plotted here versus the time of the
run in which it was measured. Two significant changes are noticeable on all eight plots corresponding to
the eight strips. Both of the shifts are due to a change in the high voltage setting in our detectors. The
covered period of time plotted in these figures is around one and a half month.
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3.6.6 Other expert plots

It is important to monitor the history of the main values that are measured by the ZDC, to keep
track of changes. Because of this I included figure 3.12 in the online monitoring. On this figure,
the first two lines we see the history of the four SMD positions. In the monitored time-interval,
there were no big changes, we can just see, that in a short interval of around 80000 seconds we
had no beam. The strong deviations on these plots are due to averaging problems. I average
1000 events and put their value to the database, but there can be a short period with lots of bad
events, or if a run ends before the completion of 1000 events, averaging goes wrong.

We have two plots for the energy history, what we see here is a constant energy with rare bad
values. The explanation for them could be the same as in the previous paragraph. Interesting is
here furthermore the small scattering of the energy values.

The vertex position history seems to have a large scattering, but this just due to the lack of
strong deviations and small scales. It is nearly constant in the monitored interval.

SMD position history is monitored inside of a run as well, these plots are in figure 3.13. The
green lines are at hard-coded values and represent the value seen a few weeks ago. We see, that
the south horizontal position did slightly change, the others are pretty constant. The error bars
come from the averaging, which is made for 1000 events here also.

The raw ADC values of the SMD channels are included in the online monitoring also, the
north channels are to see in figure 3.13. The smaller histogram is made with a cut in the ZDC
energy (eg. here in Aut+Au, Ezpc < 200MeV), and it helps testing that cut. If we see, that
these small histograms start to increase, the cut limit has to be revised. Furthermore, the location
of the peaks in the larger histograms helps to determine gain factors in SMD channels.

It is important to determine gain factors in the ZDC channels, too. With the plots in fig-
ure 3.15 we constantly check, if have correct values for this. If the gains are correct, the ratio
deposited energies in the first and second plus third slab should be equal for north and south side,
due to same geometry. The bend in the curve is still unexplained, but could be due to different
acceptance of the detectors at different energies.

3.7 The vernier scan

Vernier scans are done from time to time in RHIC to be able to calibrate the SMDs. In a vernier
scan, the beam position is changed by the main control room stepwise, and we look at our position
values, if the give back the motion. We get the positions from the control room as a function of
time, and then compare to the monitored values. This is shown in figure 3.16.

What we have learned from the plots, is that there is a small synchronization problem still,
and the calibration has to be improved, too, but the beam movement is to well monitored.
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Figure 3.12: Expert plots in a Au+Au run

In the first four figures the history of the position measured in the SMDs is plotted here. After that the
average deposited energy in the south and north ZDC is shown. There is a clearly visible constant line
at around 2000 GeV, the higher values are due to a numeric problem in the averaging method. The last
plot shows the vertex position history. The covered period of time plotted in these figures is around two
weeks.
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ZDC ONLINE MONITOR
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Figure 3.13: SMD position versus event number

Time — event number — dependence of the beam position is shown in these figures. There are large but
acceptable random fluctuations in this run.
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Figure 3.14: Raw ADC value distributions in the north vertical SMD

Distribution of the raw ADC signal coming from north vertical SMDs is shawn here. The width of the
distribution changes from plot to plot, due to different gains in different photomultipliers. Red curves
show the ADC signal only for events with Ezpc < 200MeV.
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ZDC ONLINE MONITOR
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Figure 3.15: Expert plots in a Au+Au run

In the top panel, the correlation between the deposited energies in the first and the second plus third
ZDC slab is plotted. The bottom panel shows the same correlation for the south side. The slope of the
distributions should be the same for both sides, as it represents the ratio of the gain factors used in the
individual ZDC slabs.
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Figure 3.16: Vernier scan plots
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Plots of a Vernier scan. Green straight lines show the desired position, while the values with error bars
are the monitored positions. The moving is clearly visible while it does not reproduce the beam positions
given by the main control room. Further corrections are necessary and the calibration of the detector

has to be improved.
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Data analysis

The answer to the great question ... of life,
the universe and everything .. .is forty-two.
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4.1 Experimental definitions

4.1.1 The two-particle correlation function

The two-particle correlation function measures the correlations between particle pairs. It’s defi-
nition is:
Na(p1, p2)

Ca(p1,p2) = N (p1) N1 (p2)’ (4.1)

where Ny(p1,p2) is the two-particle invariant momentum distribution, and Nj(p) is the one-

particle spectrum
FE do
Ni(p) = —_—, 4.2
1p) Otot Ap (4.2)

where o, is the total inelastic cross-section.
The correlation function C'> can be measured as a function of the two momenta p; and po,
but if there is not enough statistics, we can project it to one dimensions: we measure it as a

function of
Q12 = vV —(p1 —p2)% (4.3)

The experimental definition is, when projected to one dimension:

A(Q12)
B(Q12)

Experimentally, the two particle correlation function is the ratio of the actual and mixed or
background pair distributions. The actual pair distribution is

C2(Q12) = (4.4)

A(Qr2) = /d4p1 d*ps SAQ (Qi2 — Q12(p1,p2)) Na(p1,p2) (4.5)

and the mixed or background pair distribution is
B(Q12) = /d4P1 d'p2 0aq (Q12 — Qu2(p1,p2)) N1(p1) N1(p2), (4.6)

where the SAQ (Q12 — Q12(p1,p2)) function is similar to the Kronecker-delta, as it gives one, if
the invariant momentum of the pair is in a AQ wide bin around a given @12, and zero otherwise.
can be defined via the

O(z)=0if z < 0else 1 (4.7

me@=0(52+0)e(52-0). (48)

The momentum distributions can be measured, so we have to integrate them in order to
get the two-particle correlation function. But if we integrate over the whole momentum-space,
we waste a lot of time as in momentum-space cells there are no pairs. Fortunately, the pair
distributions can be computed on a more reasonable way from the data. First, the actual pair
distribution can be measured as

function as

A(Q12) = Z Z 0aq(Q12 — Q12(p1,p2)) (4.9)

events \ pairs

Here, the first sum is on the selected events, and the second on the detected particles in an event.
This way, we get a histogram, which is filled at one @12 value everytime there is a particle pair
in an event with this Q1s.

Now we have to sum only on the momentum-pairs, where we have a real particle pair, and in
eq. 4.5 we summed (or integrated) on all momentum-pairs.
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The mixed distribution can be measured similarly, but here we sum on every particle pair,
not just on pairs from the same event. This will give a background distribution:

B(Q12) = Z 0aq(Q12 — Qi2(p1,p2)) (4.10)

mixed pairs

Furthermore, we can pre-normalize the correlation function, as we multiply it by the ratio of
the integral of the distributions:

AQz)  [B

X

B(Q2) [A

This way, we won’t have to worry about the different number of actual and mixed pairs. Also,
we neglect long range correlations here.

C2(Q12) = (4.11)

4.1.2 The three-particle correlation function

The theoretical definition is

C3(p1,p2,p3) = N (ZS)(]Q?(]IZS?\Z)(]%) (4.12)

so it is defined through the three- and one-particle invariant momentum distribution.
Again, we have to project it to one dimension with

Qs = \/*(Pl —p2)? — (p2 — p3)? — (p3 — p1)? (4.13)

Then, the three-particle correlation function can be measured on the following way, similarly
to the two-particle case:

A(Qs)
Cs(03) = 4.14
3(Q3) B(Qg) ( )
here, the normalization can be determined from the fit, or the
AQs) B
C(Qs3) = X 4.15
definition can be used.
In my calculations, I used the latter definition.
The actual triplet distribution is
A(Qs3) = /d4p1 d*py d*ps SAQ (Qs — Q3(p1,p2,p3)) N3(p1,p2,p3) (4.16)
and the mixed triplet distribution is
B(Q3) = /d4p1 d*ps d*ps 5aq (Qs3 — Q3(p1,p2,p3)) N1(p1) N1 (p2)N3(ps) (4.17)
Here we use the one method described in the previous subsection:
AQs)= > | Y 0a0(Qs — Qs(p1,p2.ps)) (4.18)
events \ triplets
and B
B(Qs)= Y. 6ae(Qs— Qs(p1,p2,p3)) (4.19)

mixed triplets
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4.2 Goals of measuring the correlation functions

If we have the shape of the correlation function, we can fit it by a Gaussian function:
C(Q) = Ne Q% (4.20)

or the more general Edgeworth function:

CQ) =N [1+e 8 (14 gﬂg(\/ﬂz@) + ST Hi(VERQ) + -+ ). (4.21)
with the Hermite-polynomials
e ep
H; o Tame (4.22)

Then, we can extrapolate their value at zero relative momenta. This is very useful, because
then we can determine basical properties the observed matter.

4.2.1 Partial coherence and core-halo picture

We defined the two- and three-particle correlation function by the following shape:

Ca(p1,p2) m (4.23)
s ) N3(p1,p2,p3) (4.24)
s\ b2 Ni(p1) N1 (p2) N1 (ps) '

But our source can be described in the core-halo picture, where the the source has two parts, a
hydrodynamically evolving core and a halo of the decay products of the long-lived resonances [14].
This way we will have an N, and an N}, for the particles which come from the core and the halo,
respectively. Then, we define the fraction of the core as

fe(p) = Ne(p)/Ni(p) (4.25)

The core may have an incoherent and a partially coherent part, the fraction of the partially
coherent part is

pe(p) = NZ(p)/Ne(p) (4.26)

Coherence can come from Bose-Einstein condensate-like behavior or the presence of jets, while
incoherence can be caused by a fireball-like expansion of the system.

We know, that the correlation functions have the following simple shape at zero relative
momenta [15]:

Colpr~p2) = [f2I(1—pe)?+2p(1 —pe)] (4.27)
Cs(pr=p2~ps) = 3f2[(1—pe)® +2pc(1—p)] (4.28)
+ 2fc3[(1 - pc)B + 3pc(1 _pc)2]
and
pP1Xp2 <= Q12 ~0 (429)
pr~pr~ps & @Q3=0 (4.30)

If we now measure the correlation functions at nearly zero momenta, we could determine the
value of f. and p.. For example, the result of the NA22 collaboration is shown in figure 4.1 from
ref. [15].



4.3. DETAILS OF THE ANALYSIS 45

0.8

0.6 .
fc
04 .
Ao
o2 _____ 7
A3
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 4.1: Results of the NA22 collaboration from ref [15]

On this figure we see the results from ref. [15]. They determined the (f.,p) range possible from the Cs
analysis and another range from the C5 analysis. Then, their result is, that the value of the (f¢, p.) pair
has to be in the section of the two ranges.

4.3 Details of the analysis

An analysis of Bose-Einstein correlations of charged pion pairs in Au + Au collisions was done
in ref. [16], the method used here is similar to that, as I have to reproduce it’s two particle
correlation function. So I used similar particle identification and cuts, which are described in the
following sections. I used data from RHIC run2 Au+Au collisions, particularly a subset of the
data used in ref. [16].

4.3.1 Particle identification

Particles are identified by their mass and charge. The detectors measure momentum, pathlenght
and time of flight, and from these, we can determine the mass of one particle:

m? = ((;)2 - 1) P> (4.31)

Then, we can make cuts on the mass distribution, and regard particles with mass around the
pion mass as pions, particles with mass around the kaon mass as kaons, etc. Then we have to
decide, where we cut on the mass distribution, at one sigma, two sigma, or so.

The variable is,, isk, etc. is provided, and means, how far the actual measured mass of the
particle from the physical mass is, in sigma units. So the eg. the definition of is, is:

2 2
Mineas — mphys (432)

Am?2

Here sigma is determined from detection efficiencies etc.
I made a cut at two sigma for each particle. This can be formulated on the following way:

isy =

(Jise| < 2.0) A (fisx| > 2.0) A (fis,| > 2.0) (4.33)
(Jise| > 2.0) A (fisx| < 2.0) A (fis,| > 2.0) (4.34)
(lise| > 2.0) A (lisx| > 2.0) A (Jis,| < 2.0) (4.35)

The result of these PID (particle identification) cuts is to see on figure 4.2.
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Figure 4.2: Particle identification

In this figure, mass® versus charge xmomentum was plotted for the selected particles before and after the
PID cuts. In the second figure 10 times more data was processed than in the first, but it is still visible,
how the most “dense regions” were selected. Note also, how the mass distribution width Am? changes
with the momentum.

4.3.2 Cuts

It is necessary to make cuts on the data. This cuts can be classified as one-track cuts or as
two-track cuts. The one-tracks are necessary to get rid of the bad tracks, where for example
the hit in the detectors was caused by cosmic rays or the particle came from the collision, but
it’s momentum was not in the range where the detectors can measure properly. I made several
following one-track cuts.

First, I cut on the vertex position:

Zvertex < 30.0 cm (4.36)

if the collision happened to far from the midpoint of the detectors, the data is not useful for us.
I made a cut on the drift chamber quality, the exact value of the cut was taken here from

previous measurements [16].
quality oy = 31V 63 (4.37)

For particle identification and momentum measurement, the Time Of Flight detector was
used, this can measure in the
0.2 GeV < |p| £ 2.0 GeV (4.38)

momentum interval, so we have to drop particles with momentum outside this interval.
Two-track cuts are needed, because all detectors have a finite momentum and space resolution,
and cannot separate two tracks if they are too close to each other. Although, we have pairs which
are less separated than this resolution, we may not use them.
These two-track cuts were the following:

drEMC Z 12.0 cm (439)
dzpcg > 1.0cm (4.40)
depcyg > 0.02 rad (4.41)

For example drgj;c means the distance of the two tracks in the Electromagnetic Calorimeter,
and the value 12 cm relates to the physical sizes of the EMC modules. The z direction separation
is guaranteed by eq. 4.40, and the angular separation by eq. 4.41.

These cuts ensure, that the two tracks were far enough to distinguish them, and not one track
was detected two times.

I used only those triplets, in which all pairs matched these above two-track criteria.
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- sum | per event
events 6,453,768 -

unlD 223,227,312 35
pions 18,011,527 2.8
protons 1,279,316 0.2
kaons 1,349,631 0.21

Table 4.1: Event statistics

There are 33 unidentified particles in an average event, three are identified as pions, while we have one
identified kaon or proton in four events. This data sample of around 6.5 million events was used only to
generate statistics. For the purpose of calculating correlation functions, due to time limitations, I used
a data sample which is one sixth of the one described here.

- sum | per event
events 29,874 -
unlD 990,077 33
triplets | 510,686,484 17,095
+++ 54,739,236 1,832
— 73,632,060 2,465
pairs 3,998,784 134
++ 907,454 30

- 1,095,550 37

Table 4.2: Statistics for unidentified particles

I had 510 millions of unidentified triplets, and around one tenth of those are of the same charge. Note,
that I used here only a little fraction of all events, not to waste lot of time with this type.

4.3.3 Statistics

T used about 10% of all events, this means 800 data files, a total of around 3 million events. Only
around 3% of the particles in these events are identified, in case of the other particles, mass could
not be measured with the Time Of Flight detector. I call these unidentified particles. The others
have a mass, and can be regarded as pions, kaons or protons.

After making the cuts, the number of particles is to see in table 4.1.

Then, I looked for actual pairs and triplets in these particles. There are

nn—1)(n—-2
Ntriplets — % (442)
nn—1
Npairs = ( 9 ) (443)

triplets and pairs in an event with n particles, this means 5456 triplets and 528 pairs for 33
particles (unID) before any pair cuts, and only one triplet and three pairs for the three pions in
one event. The situation is a bit complicated, as we see on figure 4.3, but still, we have much
more unidentified triplets than pion triplets. Because of this, not to waste time, I used only
every 33rd event for gathering unidentified particles. This way, I had around the same number
of identified pions and unidentified particles. It is a good approximation, that all particles are
pions, so I gave them all pion mass, and made their correlations, too, although among different
type of particles, there should not be any Bose-Einstein correlations.

Statistics for the different particle types are shown in tables 4.2-4.5. Interesting is to see, that
although we had 3 pions per event, we have more than 300 triplets and 30 pairs per event in
average (see table 4.3). This is because although we have only a few events with lots of pions, but
these count with a bigger weight (see equations 4.42 and 4.43). As it can be seen on figure 4.3,
most of the identified pion triplets come from events with 10-20 pions despite of the little number
of these.
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- sum | per event
events 985,848 -
pions 3,284,218 3.3
triplets | 344,907,522 350
+++ 43,076,400 43.7
— 42,905,754 43.5
pairs 33,417,972 33.9
++ 8,380,192 8.5

— 8,320,168 8.4

Table 4.3: Statistics for pions

I had more than 40 million 7+ and 7~ triplets in nearly 1,000,000 events, and more than 8 million pairs
for both types.

- sum | per event
events | 985,848 -
kaons | 261,168 0.26
triplets | 254,490 0.26
+++ 25,662 0.026
— 36,186 0.037
pairs 254,238 0.26
++ 55,548 0.056

- 70,950 0.072

Table 4.4: Statistics for kaons

There are around 260,000 kaons in 1 million events, and we have there 25,662 K™ triplets while 36,186
K triplets, and twice as much pairs.

- sum | per event
events | 985,848 -
protons | 256,600 0.26
triplets | 252,942 0.26
+++ 18,036 0.018
— 48,246 0.049
pairs 262,284 0.27
++ 46,184 0.047

- 87,216 0.088

Table 4.5: Statistics for protons

Statistics for protons. The situation is very similar to that of the kaons.
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Figure 4.3: Particle and triplet distributions in particular events

These figures show the number of events with a given particle number in the first column, the number
of pairs coming from an event with a given particle number in the second column, and the number of
triplets in the last column. It is interesting, that eg. although we had only a few protons per event in
average, we have lots of triplets, and we have eg. 100 pion triplets per event in average, although we
have only 3 pions per event in average. These figures solve this puzzle: there are only a few events with
lots of particles, but they count with a bigger weight.
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’ corr \ 0 1 \ 2 \ 3 ‘
i Cy Cs
j unlD T p K
=+ |+ —=
k or
+++ [+t ——-

Table 4.6: Naming convention for the correlation figures

We see the naming convention for the correlation functions on this table. For example, corr2_20 means
C for a proton pair, while corr3_12 is the three-particle correlation function of 7,7~ 7~ triplets.

My three-particle correlation function analysis software is available in ref. [17].

4.4 Results of the analysis

I calculated the actual and background pair and triplet distributions for unidentified particles,
identified pions, protons and kaons, and for all possible charge combinations. The naming con-
vention of the correlation functions is shown in table 4.6.

4.4.1 Pair distributions

At first, let us look at the pair distributions for unidentified particles. The idea is here, that most
of the particles are pions, so most of the unidentified particle pairs are pion pairs. But for these
particles, we do not have a measured mass — that’s why they are unidentified — so I gave these
particles the mass of pions.

Figure 4.4 shows us the pair distributions. We see, that at higher p; end of the curves there is
a rise in all the distributions, this could be due to the fact, that these relatively high p; particles
have a higher mass, than the pions mass, so the calculation is not valid for them. Another reason
could be, that we see on these plots the sum of two distributions, a narrow one with a maximum
in the plotting range, and a broad one, which could have a maximum in the few GeV region.

On figure 4.5 we see the actual and background pair distributions (7 *,7%), (z*,77), (7 7,77)
pairs. These distributions go to zero at infinity and at zero, too. The maximum is a little shifted
for the +, — case, where we do not expect any Bose-Einstein correlations.

Figures 4.7-4.6 show the pair distributions for (KT,KT), (KT,K~), (K~,K~) pairs, and
(p,p), (p,D), (D,D) pairs, respectively. These distribution are a bit noisy due to the small processed
number of protons and kaons, but have the same general shape as the pair distributions for pions,
just the maximum moved a little toward higher momenta because of the higher mass.

4.4.2 Two-particle correlation functions

C5(Q12) is plotted for unidentified particles and for pions on figure 4.8. In the pion case, there
is a clear rise at zero relative momentum for the (+,+) and the (—, —) case, but no one in the
(4, —) case, as for different particles there are no Bose-Einstein correlations. A similar effect is
observed for the unidentified particles, but their case is still a little bit different because we have
there lots of pairs of different particles even in the (4,+) and (—, —) cases. The noise is bigger,
too, as I processed almost 10 times more pion pairs as unidentified pairs.

The correlations for protons and kaons are on figure 4.9. We see the common rise for small
relative momenta, and it seems to be higher here than for pions, but the errors at the lowest bin
are the highest, so this effect is to be investigated in further detail.
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4.4.3 'Triplet distributions

The pion triplet distributions (fig. 4.11) are very clear, as well as those of unidentified particle
triplets (fig. 4.10). We see, that most of the triplets are at higher Q3, which makes us the situation
a little bit more complicated, as we must have higher statistics to get the correlation function
(which is calculated as the ratio of the background and actual distributions) at low Q3. If both
distributions go to zero too early, Cs is then 0/0, for such bins I put 0 in C3, and so these bins
have no physical meaning.

Again, for protons and kaons, the situation is not better. As we have not even less proton
triplets, especially a little number of pure, charge-homogenous triplets, the distributions are very
noisy (fig. 4.12-4.13). Another problem is, that we have no triplets at all at little momenta, at
this will make us hard to track back the C3 value at Q3 = 0.

4.4.4 Three-particle correlation functions

The three-particle correlation functions for pions and unidentified particles are shown in fig-
ure 4.14. In the 7+, 7" 7T case, there is a clear rise at low Q3-s, the C5(Q3 = 0) value could
be around 1.6. For unidentified particles, the gap at low Q3 is higher, but the tail is at one as
expected.

In the proton and kaon case (fig. 4.15) we see, that the tails go to one, but the noise gets high
in the very region where the correlation function is interesting, so much higher statistics has to
be used, i.e. the full data sample available. In

4.5 Future

4.5.1 Improving cuts

If we understand the “funny” behavior of the correlation function, can improve cuts maybe to
get better shapes.

4.5.2 Coulomb-correction

Coulomb correction has to be made, because if we calculate for example the two-particle correla-
tion function for 7™ pairs, because of the Coulomb-interaction they repulse each other, and will
have a larger momentum-difference, than a 7° pair would.

The formula for the Coulomb correction was calculated in reference [14]:

e~ S
K Coutom(Q3) = fnglP(X1)d3X2P(X2)d3X3P(X3)|‘I’§:1r1)<2k3 (x1,x2,%3)[? (4.44)
J @31 p(x1) A p(x2) 5 pl(¢s) [ Tf oy (361, %2, %5) 2

4.5.3 Fitting the correlation function

It was discussed in several papers, how these functions should be handled. This means, the
fitting should happen with a Gaussian (eq. 4.20) or an Edgeworth (eq. 4.21) shape. At the L3
collaboration, this question was investigated (see figure 4.16. They saw, that the fits with an
Edgeworth shape are much better than those with gaussian shape. We will have to look at this,
too.

4.6 Summary

From the PHENIX 200 GeV Au+Au data I collected events useful for measuring a correlation
function. I selected a particle identification method and made the necessary one-track and two-
track cuts. Then I was able to calculate the actual and background triplet and pair distributions
A and B for pions, kaons, protons and unidentified particles, for all possible charge-combinations.
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Figure 4.4: Pair distributions for unidentified particles

The actual pair distributions for unidentified particles are plotted in this figure on the left hand side
while the background pair distributions are on the right hand side. The three rows represent the charge
combinations (+,+), (+,—) and (—,—), respectively. At the higher p; end of the curves we see the tail of
some background distribution, which could be due to long range correlations.



4.6. SUMMARY 53

[ Actual pair distribution ] acorr2_10 [ Mixed pair distribution beorr2_10
X107 Entries 8380192 X107 Entries 7995345

Mean 0.1387 Mean 0.1388
RMS 0.08575 RMS 0.08499
10000

10000

8000 8000

6000 6000

4000 4000

2000 2000

o wllnnng : oo wllnnng -
0 05 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
[ Actual pair distribution ] acorr2_11 [ Mixed pair distribution beorr2_11
o Entries 16717616707 10 Ertries 16633206707
é Mean 0.1635 E Mean 0.1623
2000 — RMS 0.08923 zoooi RMS 0.08819
1800 1800F-
1600/ 1600
1400F- 1400F
1200F- 1200
1000 1000/
800/ 800
600/ 600/
401 400,
200 200}
o oo oo aa fhcnallo oo o onllonoolloannlFome oo o ool aa fhn oo oo o onollo oo ollonrlFoss
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
[ Actual pair distribution ] [ _acorr2 12| [ Mixed pair distribution | [ bcorr2 12 |
10" Entries 8320168 10" Entries 8649952
10000 Mean 0.151 Mean 0.1496
RMS _ 0.09383 RMS _ 0.09241

10000

8000
8000

6000
6000

4000 4000

2000 2000

I P P B
0.5 0O 005 01 015 02 025 03 035 04 045 05

L1
.2 025 03 035 04 04

04
&E

Figure 4.5: Pair distributions for identified pions

In this figure we see the actual (left hand side) and background pair distributions (right hand side) for
identified pions. In the first row the (7 ,7") pair distributions are shown, in the next line the (7,7 7)
and in the last line the same for (7~ ,77) pairs. Note, that the maximum is a little shifted in the 4, —
case. In this latter case we do not expect any Bose-Einstein correlations.
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Figure 4.6: Pair distributions for identified kaons

The three rows in this figure show the actual and background pair distributions for (K ,K1), (KT ,K ™),
(K~,K7) pairs, respectively. These distribution are a bit noisy due to the small processed number of
kaons, but have the same general shape as the pair distributions for pions, just the maximum moved a
little toward higher momenta.
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Figure 4.7: Pair distributions for identified protons

In the three rows lines the actual and background pair distributions for (p,p), (p,p), (P,p) pairs are shown,

respectively.
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Figure 4.8: Two particle correlation function for unID particles and pions

On the right hand side C2(Q12) is plotted for identified pions. We see there he common two-particle
correlation function shape. It is around one at higher momenta, and goes up at zero relative momentum
for the (4, +) and the (—, —) case, and is nearly constant for the (4, —) case. The correlation functions
of unidentified particles are plotted on the left hand side. Similar shapes are to observe in this latter
case.
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Figure 4.9: Two particle correlation function for protons and kaons

On the left hand side there are the two-particle correlation functions for protons, on the right the same
for kaons, in the first row for the (4, +) pairs, then for the (4, —) pairs, and after that for the (—, —)
pairs. We see the rise for low relative momenta, and it seems to be higher here than for pions.
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Figure 4.10: Three particle distributions for unidentified particles

The distributions are very clear, and we see, that most of the triplets are at higher 03, which makes the
situation a little bit more complicated. Here we have four charge combinations which are represented ny
the four rows: we can have all three positive, or one, two or three negative charges, too.
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Figure 4.11: Three particle distributions for identified pions

Here we see the beautiful Q)3 spectra of pion triplets, the four raws represent the four possible charge
combinations: {+,+,+}, {+,+,—} {+,—, -}, {—,—, —}.
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Figure 4.12: Three particle distributions for identified protons

The plots in this figure are arranged on the same way as on figures 4.10 and 4.11. As we have not so
many proton triplets, especially a little number of pure, charge-homogenous triplets, the distributions
are very noisy. Another problem is, that we have almost no triplets at small relative momenta, at this
will make it hard to track back the Cs value at zero Q3.
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The situation is similar to that of the protons (see fig. 4.12): noisy distributions, no triplets at small Qs.

Figure 4.13: Three particle distributions for identified kaons

Plot arrangement is the same as before on figures 4.10-4.12.
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Figure 4.14: Three particle correlation function for unidentified particles and identified pions

Three particle correlation function for unidentified particles (left hand side) and identified pions (right
hand side) are plotted in this figure. The four rows represent the four charge combinations: {+,+,+},
{+,+,—}, {+,—,—} and {—,—,—}. The clear message of these plots is, that as the errors grow at
decreasing momenta, we have to improve a lot on statistics.
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Figure 4.15: Two particle correlation function for identified kaons and protons

Cs is plotted here for identified kaons (right hand side) and protons (left hand side). The only thing to
see here is that the correlation functions are near to one at higher @3, but the errors are too small and
the statistic is too small.
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Figure 4.16: Correraltion function results of L3

In this figure the C3 = RI“™ ™ result of L3 from ref. [18] is plotted. The upper panel shows the fit with
a Gaussian shape, the lower panel the fit with an Edgeworth shape. In the latter case, the fit is much
better, so the value at zero relative momenta can be extrapolated more accurately.
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On these distributions it was already possible to see, that higher statistics is needed, because
too few particles are present in the interesting small relative momentum range for all possible
particle-combinations. Then I calculated the raw two- and three-particle correlation functions.
Raw means here, that I made no corrections on detector efficiencies or a Coulomb-correction.
These correlation functions tend at high relative momenta as desired, and for the pion case it is
clearly to see that there is a rise at the low relative momentum end of the histograms. Here the
corrections have to be made and then the shape to be fitted.



Chapter 5

Model building

Science . ..never solves a problem without creating ten more.

G. B. SHAW
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5.1 The Buda-Lund hydro model

5.1.1 Introduction

The Buda-Lund hydro model [3] 1is successful in describing the BRAHMS,
PHENIX, PHOBOS and STAR data on identified single particle spectra and the transverse
mass dependent Bose-Einstein or HBT radii as well as the pseudorapidity distribution of charged
particles in Au + Au collisions both at \/syy = 130 GeV [19] and at /syy = 200 GeV [20] and in
p+p collisions at y/syx = 200 GeV [21]. Recently, Fodor and Katz calculated the phase diagram
of lattice QCD at finite net baryon density [22]. Their results, obtained with light quark masses
four times heavier than the physical value, indicated that in the 0 < pup < 300 MeV region
the transition from confined to deconfined matter is not a first or second order phase-transition,
but a cross-over with a nearly constant critical temperature, T, = 172 + 3 MeV. This value was
recently calculated more precisely, using the physical quark masses, to be T, = 162 +2 MeV [23],
even lower than thought before. The result of the Buda-Lund fits to Au+Au data, both at
V/3nun = 130 and 200 GeV, indicate the existence of a very hot region. The temperature distribu-
tion T'(x) of this region is characterized with a central temperature Ty, found to be greater than
the critical value calculated from lattice QCD: Ty > T, [24]. The Buda-Lund fits thus indicate
quark deconfinement in Au + Au collisions at RHIC. The observation of a superheated center
in Au+Au collisions at RHIC is confirmed by the analysis of p; and 1 dependence of the elliptic
flow [24], measured by the PHENIX [25] and PHOBOS collaborations [26, 27]. A similar analysis
of Pb+Pb collisions at CERN SPS energies yields central temperatures lower than the critical
value, Ty < T, [28, 29].

5.1.2 General Buda-Lund hydrodynamics

Hydrodynamics is describing the local conservation of matter, momentum and energy. Due to
this nature, hydrodynamical solutions are applied to a tremendous range of physical phenomena
ranging from the stellar dynamics to the description of high energy collision of heavy ions as well
as collisions of elementary particles. Some of the most famous hydrodynamical solutions, like
the Hubble flow of our Universe or the Bjorken flow in ultra-relativistic heavy ion physics have
the properties of self similarity and scale-invariance. Heavy ion collisions are known to create
three dimensionally expanding systems. In case of non-central collisions, cylindrical symmetry is
violated, but an ellipsoidal symmetry can be well assumed to characterize the final state. The
data motivated, spherically or cylindrically symmetric hydrodynamical parameterizations and/or
solutions of refs. [30, 31] are generalized in the Buda-Lund model, providing new families of exact
analytic hydrodynamical solutions.

Hydrodynamics is used to calculate the phase-space distribution, because if we had the phase-
space distribution, we could use the collisionless Boltzmann-equation after the freeze-out:

(gt + vv) f =S, p, t), (5.1)

and so, we would have the emission function. In order to calculate the phase-space distribution,
we have to solve the equations of hydrodynamics. There were Buda-Lund solutions for both
relativistic and nonrelativistic cases. For example, a general group of solutions for nonrelativistic
hydro presented in ref [31, 32, 33] is

n(t,r) = noﬁy(s), (5.2)
v
X v z

v(t,r) (er,yrwz,zz) and (5.3)
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if the scales X, Y and Z fulfill

.. . . T (Vo\©
XX=YY=ZZ=—|+] . :
(%) (5:5)

Here c; is the speed of sound, defined as

2 _ dp

s de (56)

C

s/n

Furthermore, the scaling functions v(s) and 7 (s) are not independent, but can be calculated

from each other: ) T s g
i Codu
0 =g (ot [ 7)) (57

and they depend on a scaling variable s, which can be chosen as

2 7’2 2

Tz Yy "
+ 5+ . (5.8)
2 2 2
2Xf 2Yf 2Zf

Then, the Buda-Lund type of solution is a special case, with the choice of

1
T = d .
(s) o5 0 (5.9)
T; 9
v(is) = (1+bs)exp|—=—=1(s+bs°/2) ). (5.10)
2Ty
From this solution, the phase-space distribution is
r2 r2 r2 (p — mv(r,t))?
t)y=C_ - - y__ £ — ’ 5.11
f(r,p,t) exp < 2X ()2 2Y(t)2  2Z(t)? 2mT (r,t) ’ ( )
with the constant N
C=————. 5.12
Vo(4m2mTy)3/2 ( )

If we now assume a sudden freeze-out and take the simplest, spherically symmetric case with
X =Y = Z, we can calculate the emission function:

r? p— mr)’
S(r,p,t) = Cexp <_2R% - (2m%0) 5(t —to). (5.13)

In ref [34, 35] a group of relativistic solutions was calculated:

uu(z) = %" (5.14)
n(z) = no (770)31/(5), (5.15)
p(z) = po (;O)HB/K, (5.16)
T(x) = Tp (TTO)S/RV(Z). (5.17)

In the following sections, we will assume a source function, which is similar to the case of these
solutions, but the exact solution, which would lead to that particular source function, was not
found yet. The next section will describe the axially symmetric case, and in the section after that
the model is generalized to the case of ellipsoidal symmetry. Detailed calculations are presented
in this latter case only, because the former case would be the same, just with more symmetry.
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5.2 Axially symmetric Buda-Lund hydro model

5.2.1 The emission function

The Buda-Lund hydro model was introduced in refs. [3, 36]. This model was defined in terms of
its emission function S(z, k), for axial symmetry, corresponding to central collisions of symmetric
nuclei. The observables are calculated analytically, see refs. [29, 19] for details and key features.
Here we summarize the Buda-Lund emission function in terms of its fit parameters. The presented
form is equivalent to the original shape proposed in refs. [3, 36], however, it is easier to fit and
interpret it.

The single particle invariant momentum distribution, Ny (kq), is obtained as

Ni (k) = / d*z S(z, k). (5.18)

For chaotic (thermalized) sources, in case of the validity of the plane-wave approximation, the
two-particle invariant momentum distribution Na(kq, k2) is also determined by S(z, k), the sin-
gle particle emission function, if non-Bose-Einstein correlations play negligible role or can be
corrected for, see ref. [29] for a more detailed discussion. Then the two-particle Bose-Einstein
correlation function, Cs(k1,ke) = Na(ki,k2)/ [N1(k1)Ni(ks2)] can be evaluated in a core-halo
picture [37], where the emission function is a sum of emission functions characterizing a hydro-
dynamically evolving core and a surrounding halo of decay products of long-lived resonances,
S(z, k) = Sc(x, k) + Sp(x, k). Consequently, the single particle spectra can also be given as a
suim, Nl(k) = lec(k) + Nl,h(k).

SRR
50, K)P2

[Se(q, K)I?

C k ,k :1+ s ———
2k, k2) 5.0, )7

A (K) (5.19)

where the relative and the momenta are ¢ = k1 —ko, K = 0.5(k1+k2), and the Fourier-transformed
emission function is defined as

S(q, K) = /d4$S(CE,K) exp(iqz). (5.20)

The measured A\, parameter of the correlation function is utilized to correct the core spectrum
for long-lived resonance decays [37]. This parameter can be calculated from the equation

Ni(k) = Ny o(k)/ v/ Au(k) (5.21)

as )
Ny (k)

~ N (R) + Niw(R)

The emission function of the core is assumed to have a hydrodynamical form,

Ao (k) (5.22)

S (.’,E k’)d4117 _ g kud42v(‘r)

(27)3 B(x, k) + 54’ (5:23)

where ¢ is the degeneracy factor (¢ = 1 for pseudoscalar mesons, g = 2 for spin=1/2 barions).
The particle flux over the freeze-out layers is given by a generalized Cooper—Frye factor: the
freeze-out hypersurface depends parametrically on the freeze-out time 7 and the probability to
freeze-out at a certain value is proportional to H(7),

k" d*S, (x) = my cosh(n — y)H(1)dr Todn dry dr,,. (5.24)

Here the coordinates are « = (t,74,7y,7.), the components of the momenta k = (E, ky, ky, k),
while n = 0.5log[(t + r.)/(t — r.)], T = /t? =72, y = 0.5log[(E + k.)/(F — k)] and m; =

VEZ — 2.
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The freeze-out time distribution H(7) is approximated by a Gaussian,

N2
exp |— (r = 7o) :
(2mAT2)3/2 2A72

where 7( is the mean freeze-out time, and the A7 is the duration of particle emission, satisfying
AT < 79. The (inverse) Boltzmann phase-space distribution, B(z, k) is given by
kuy(z)  p(x)
B =ew (St - 75).

and the term s, is 0, —1, and +1 for Boltzmann, Bose-Einstein and Fermi-Dirac statistics, re-
spectively. The flow four-velocity, u”(z), the chemical potential, y(z), and the temperature, T'(x)
distributions for axially symmetric collisions were determined from the principles of simplicity,
analyticity and correspondence to hydrodynamical solutions in the limits when such solutions
were known [3, 36]. Recently, the Buda-Lund hydro model lead to the discovery of a number
of new, exact analytic solutions of hydrodynamics, both in the relativistic [34, 35] and in the
non-relativistic domain [31, 32, 33].

The expanding matter is assumed to follow a three-dimensional, relativistic flow, characterized
by transverse and longitudinal Hubble constants,

UV(‘T) = (’YthTzaHtTy;Hsz)a (527)

H(r) =

(5.25)

(5.26)

where 7 is given by the normalization condition u”(x)u,(z) = 1. In the original form, this
four-velocity distribution u”(x) was written as a linear transverse flow, superposed on a scaling
longitudinal Bjorken flow . The strength of the transverse flow was characterized by its value
(u) at the “geometrical” radius Rg, see refs. [3, 38, 39]:

sinh[my] = (w)ri/Ra, (5.28)

with r; = (r2 + rf})l/ 2. Such a flow profile, with a time-dependent radius parameter Rg, was
recently shown to be an exact solution of the equations of relativistic hydrodynamics of a perfect
fluid at a vanishing speed of sound, see refs. [40, 41].

The Buda-Lund hydro model characterizes the inverse temperature 1/7(z), and fugacity,
exp [p(z) /T (x)] distributions of an axially symmetric, finite hydrodynamically expanding system
with the mean and the variance of these distributions, in particular

u’(x) = (cosh[n] cosh[n;], sinh[n;] =, sinh[nt]%, sinh[n)] cosh[nt]) ,

T(x) To 2RZ, 2002 '
1 1 r? (1 —10)2
= — (14t 14+ . .
i = o (o) () (530

Here Rg and An characterize the spatial scales of variation of the fugacity distribution,
exp [u(x)/T(x)]. These variables control particle densities. Hence these scales are referred to
as geometrical lengths. These are distinguished from the scales on which the inverse temperature
distribution changes, the temperature drops to half if r, =r, = R; or if 7 = 79 + V2A7,. These
parameters can be considered as second order Taylor expansion coefficients of these profile func-
tions, restricted only by the symmetry properties of the source, and can be trivially expressed
by re-scaling the earlier fit parameters. The above is the most direct form of the Buda-Lund
model. However, different combinations may also be used to measure the flow, temperature and
fugacity profiles [3, 29]: H; = b/ = (u)/Rc = (u})/Rs, H = v¢/70, where v, = /1 + HZ?r?
is evaluated at the point of maximal emittivity, and

S

1 a? AT 1 To—Ts 1
1 d? AT, 1 To—T. 1
Arz TT? = T >SA72 - T, Ar?’ (5-32)
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’ Buda-Lund parameter \ Au+Au 200 GeV \ Au+Au 130 GeV ‘

To [MeV] 196 =+ 13 214 +7

Te [MeV] 117 £+ 12 102 £ 11
up [MeV] 61 £ 52 77 +£38
R¢ [fm] 135 +1.7 28.0 =£5.5
R [fm] 124 +1.6 86 +04
(uy) 1.6 =+ 0.2 1.0 +£0.1
7o [fm/c] 5.8 £0.3 6.0 +0.2
AT [fm/c] 09 +12 03 +12
An 31 +0.1 24 +0.1
x?/NDF 114 /208 158.2 /180

Table 5.1: Fit results from RHIC /sy = 130 and 200 GeV data

The first column shows the source parameters from simultaneous fits of final BRAHMS and PHENIX
data for 0 - 30 % most central Au + Au collisions at /sxn = 200 GeV, as shown in Figs. 1 and 2,
as obtained with the Buda-Lund hydro model, version 1.5. The errors on these parameters are still
preliminary. The second column is the result of an identical analysis of BRAHMS, PHENIX, PHOBOS
and STAR data for 0 - 5 % most central Au+Au collisions at /sxy = 130 GeV, ref. [19].

5.2.2 Buda-Lund fit results to central Au+Au data

In this section, we present new fit results to 0-5(6) % central Au+Au data at \/syn = 130
GeV from refs. [42, 43, 44, 45, 46], to BRAHMS data on charged particle pseudorapidity dis-
tributions [47], and PHENIX data on identified particle momentum distributions and Bose-
Einstein (HBT) radii [48, 49] in Au+4Au collisions at /sxy = 200 GeV. The fits are shown
in figures 5.1 and 5.2, the fit parameters in table 5.1.

Let us clarify first the meaning of the parameters shown in table 5.1. The temperature at
the center of the fireball at the mean freeze-out time is denoted by Ty = T'(r, = ry, = 0,7 = 7).
The “surface temperature” Ty = T(ry, =, = Rs, 7 = 79) = Tp/2 is also a characteristic value.
This relationship defines the “surface” radius R, which is in fact the FWHM (full-width at
half-maximum) of the temperature distribution. During the particle emission, the system may
cool due to evaporation and expansion, this is measured by the “post-evaporation temperature”
Te=T(ry =ry=0,7=1+ \@AT). In the presented cases, the strength of the transverse flow
is measured by (u}), it’s value at the “surface radius” Rs. The “mean freeze-out time” parameter
is denoted by 79 and the “duration” of particle emission, or the width of the freeze-out time
distribution is measured by A7. The fugacity distribution varies on the characteristic transverse
scale given by the “geometrical radius” Rg. If Rg — oo, then p(x)/T(z) is constant. Finally, the
width of the space-time rapidity distribution, or the longitudinal variation scale of the fugacity
distribution is measured by the parameter An.

Perhaps it could be more appropriate to directly fit the transverse Hubble constant, H; =
(u})/Rs to the data, as this value is not sensitive to the length-scale chosen to evaluate the
“average” transverse flow (u}). In the case of parameters shown in Table 1, the density drop in
the transverse direction is dominated by the cooling of the local temperature distribution in the
transverse direction, and not so much by the change of the fugacity distribution. That is why we
fitted here (u}) at the “surface radius” Rs. Note also that 79 could more properly be interpreted
as the inverse of the longitudinal Hubble constant H;, which is only an order of magnitude
estimate of the mean freeze-out time, similarly to how the inverse of the present value of the
Hubble constant in astrophysics provides only an order of magnitude estimate of the life-time of
our Universe. The feasibility of directly fitting the transverse and longitudinal Hubble constants
to data will be investigated in a subsequent publication.

Let us also note, that we have fitted the absolute normalized spectra for identified particles,
and the normalization conditions were given by central chemical potentials py that were taken as
free normalization parameters for each particle species. All these directly fitted parameters are
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Figure 5.1: Fits to RHIC ,/syx = 130 and 200 GeV data

The upper four panels show a simultaneous Buda-Lund fit to 0-5(6) % central Au+Au data at \/syy =
130 GeV, refs. [42, 43, 44, 45, 46]. The lower four panels show similar fits to 0-30 % central Au+Au data
at /sxy = 200 GeV, refs. [47, 48, 49]. Note that the identified particle spectra are published in more
detailed centrality classes, but we recombined the 0-30% most central collisions so that the fitted spectra
and radii be obtained in the same centrality class. The fit parameters are summarized in table 5.1.
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Budalund v1.5 fits to 200 AGeV Au+Au
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Figure 5.2: Various quantities calculated from the HBT radii

Top row shows the transverse mass dependence of the side, out and longitudinal HBT radii, the central
line shows their pairwise ratio (usually only Rgyt/Rgide is shown) together with the Buda-Lund fits,
vers. 1.5. The bottom line shows the inverse of the squared radii. The intercept of the curves in this row
is within errors zero for the two transverse components, so the fugacity is within errors independent of
the transverse coordinates. However, the intercept is nonzero in the longitudinal direction, which makes
the fugacity (hence particle ratios) rapidity dependent. See also ref. [19] for a similar plot at /sy~ = 130
GeV.
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made public at [50]. From these values, we have determined the net bariochemical potential as
1B = [p — pp. Although this parameter is not directly fitted but calculated, we have included
wp in Table 1, so that our results could be compared with other successful models of two-particle
Bose-Einstein correlations at RHIC, namely the AMPT cascade [51], Tom Humanic’s cascade [52],
the blast-wave model [53, 54], the Hirano-Tsuda numerical hydro [55] and the Cracow “single
freeze-out thermal model” [56, 57, 58].

Now, we are ready for the discussion of the results in table 5.1. In case of more central collisions
at the lower RHIC energies, a well defined minimum was found, with accurate error matrix and
a statistically acceptable fit quality, y?/NDF= 158/180, that corresponds to a confidence level
of 88 %. In the case of the less central but more energetic Au+Au collisions, the obtained
x?/NDF fit is too small. Note that in these fits we added the systematic and statistical errors in
quadrature, and this procedure is preliminary and has to be revisited before we can report on the
final values of the fit parameters and determine their error bars. It could also be advantageous to
analyze a more central data sample, or the centrality dependence of the radius parameters and
the pseudorapidity distributions, or to fit additional data of STAR and PHOBOS too, so that
the parameters of the Buda-Lund hydro model could be determined with smaller error bars.

At present, we find that Ty > T, = 172+ 3 MeV [22] by 3 ¢ in case of the 0-30 % mostcentral
Au+Au data at (/syy = 200 GeV, while Ty > T, by more than 5 ¢ in case of the 0-5(6) %
most central Au+Au data at /syy = 130 GeV. Thus this signal of a cross-over transition to
quark deconfinement is not yet significant in the more energetic but less central Au+Au data
sample, while it is significant at the more central, but less energetic sample. In this latter case of
130 GeV Au+Au data, Rg obviously became an irrelevant parameter, with 1/Rg &~ 0 . This is
explicitly visible in Fig. 2 of ref. [19], where the last row indicates that the correlation radii are in
the scaling limit and the fugacity distribution, exp [u(x)/T'(z)] is independent of the transverse
coordinates.

The Buda-Lund model predicted, see eqs. (53-58) in ref. [3] and also egs. (26-28) in [33],
that the linearity of the inverse radii as a function of m; can be connected to the Hubble flow
and the temperature gradients. The slopes are the same for side, out and longitudinal radii
if the Hubble flow (and the temperature inhomogeneities) become direction independent. The
intercepts of the linearly extrapolated m; dependent inverse squared radii at m; = 0 determine
1/R%, or the magnitude of corrections from the finite geometrical source sizes, that stem from
the explu(x)/T (x)] terms. We can see on Fig. 2, that these corrections within errors vanish also
in /syn = 200 Au+Au collisions at RHIC. This result is important, because it explains, why
thermal and statistical models are successful at RHIC: if exp[u(z)/T(x)] = exp(po/To), then this
factor becomes an overall normalization factor, proportional to the particle abundances. Indeed,
we found that when the finite size in the transverse direction is generated by the T'(x) distribution,
the quality of the fit increased and we had no degenerate parameters in the fit any more. This is
also the reason, why we interpret R, given by the condition that T'(r, =r, = R,) = Ty/2, as a
“surface” radius: this is the scale where particle density drops.

Note that we have obtained similarly good description of these data if we require that the
four-velocity field is a fully developed, three-dimensional Hubble flow, with «” = ¥ /7 as shown
in section 5.4.

5.2.3 Conclusions

Table 5.1, figures 5.1 and 5.2 indicate that the Buda-Lund hydro model works well both at the
lower and the higher RHIC energies, and gives a good quality description of the transverse mass
dependence of the HBT radii. For the dynamical reason, see refs. [33] and [3]. In fact, even
the time evolution of the entrophy density can be solved from the fit results, s(7) = so(70/7)3,
which is the consequence of the Hubble flow, ¥ = z¥ /7, a well known solution of relativistic
hydrodynamics, see also ref. [35]. This is can be considered as the resolution of the RHIC HBT
“puzzle”, although a careful search of the literature indicates that this “puzzle” was only present
in models that were not tuned to CERN SPS data [59].

We also observe that the central temperature is Tg = 214+7 MeV in the most central Au+Au
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collisions at /syy = 130 GeV, and we find here a net bariochemical potential of up = 77 & 38
MeV. Recent lattice QCD results indicate [22], that the critical temperature is within errors a
constant of T, = 172 £ 3 MeV in the 0 < pup < 300 MeV interval. Our results clearly indicate
(T, up) values above this critical line, which is a significant, more than 5 o effect. The present
level of precision and the currently fitted PHENIX and BRAHMS data set does not yet allow
a firm conclusion about such an effect at /sy = 200 GeV, however, a similar behavior is seen
on a 3 standard deviation level. This can be interpreted as a hint at quark deconfinement at
V/8uw = 200 GeV at RHIC.

Finding similar parameters from the analysis of the pseudorapidity dependence of the el-
liptic flow, it was estimated in ref. [24] that 1/8th of the total volume is above the critical
temperature in Au+Au collisions at \/syy = 130 GeV, at the time when pions are emitted from
the source. We interpret this result as an indication for quark deconfinement and a cross-over
transition in Au+Au collisions at \/syy = 130 GeV at RHIC. This result was signaled first in
ref. [59] in a Buda-Lund analysis of the final PHENIX and STAR data on midrapidity spectra
and Bose-Einstein correlations, but only at a three standard deviation level. By including the
pseudorapidity distributions of BRAHMS and PHOBOS, the Ty > T, effect became significant
in most central Au4Au collisions at /syy = 130 GeV. We are looking forward to observe, what
happens with the present signal in Au+Au collisions at \/syy = 200 GeV, if we include STAR
and PHOBOS data to the fitted sample.

The above observation of temperatures, that are higher than the critical one, is only an in-
dication, with other words, an indirect proof for the production of a new phase, as the critical
temperature is not extracted directly from the data, but taken from recent lattice QCD calcula-
tions.

More data are needed to clarify the picture of quark deconfinement at the maximal RHIC
energies, for example the centrality dependence of the Bose-Einstein (HBT) radius parameters
could provide very important insights.

5.3 Ellipsoidal Buda-Lund hydro model

5.3.1 Introduction

Ultra-relativistic collisions of almost fully ionized Au atoms are observed in four major experi-
ments at the RHIC accelerator at the highest currently available colliding energies of \/syy = 200
GeV to create new forms of matter that existed before in Nature only a few microseconds after the
Big Bang, the creation of our Universe. At lower bombarding energies at CERN SPS, collisions
of Pb nuclei were studied in the \/syny = 17 GeV energy domain, with a similar motivation. If
experiments are performed near to the production threshold of a new state of matter, perhaps
only the most violent and most central collisions are sufficient to generate a transition to a new
state. However, if the energy is well above the production threshold, new states of matter may
appear already in the mid-central or even more peripheral collisions. Hence the deviation from
axial symmetry of the observed single particle spectra and two-particle correlation functions can
be utilized to characterize the properties of such new states.

The PHENIX, PHOBOS and STAR experiments at RHIC produced a wealth of information on
the asymmetry of the particle spectra with respect to the reaction plane [25, 26, 27, 60, 61, 62],
characterized by the second harmonic moment of the transverse momentum distribution, fre-
quently referred to as the “elliptic flow” and denoted by wve. This quantity is determined, for
various centrality selections, as a function of the transverse mass and particle type at mid-
rapidity as well as a function of the pseudo-rapidity n = 0.5log( |‘p |‘+p 2). Pseudorapidity measures
the zenithal angle distribution in momentum space, but for particles with high momentum,
Ip| = Ejp|, it approximates the rapidity y = 0.5 log(E e ) that characterizes the longitudinal mo-
mentum distribution and transforms additively for 1ong1tud1nal boosts, hence the rapidity density
dn/dy is invariant for longitudinal boosts. The PHOBOS collaboration found [26], that v2(n) is a
strongly decreasing function of ||, which implies that the concept of boost-invariance, suggested
by Bjorken in ref. [63] to characterize the physics of very high energy heavy ion collisions, cannot
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be applied to characterize the hadronic final state of Au+Au collisions at RHIC. A similar con-
clusion can be drawn from the measurement of the inhomogeneous (pseudo)rapidity dn/dn and
dn/dy distributions of charged particle production at RHIC by both the BRAHMS [64] and PHO-
BOS [45] collaborations, proving the lack of boost-invariance in these reactions, as dn/dy # const
at RHIC. Although many models describe successfully the transverse momentum dependence of
the elliptic flow at mid-rapidity, va(ps, 7 = 0), see ref. [65] for a recent review on this topic, to
our best knowledge and an up-to-date scanning of the available high energy and nuclear physics
literature, no model has yet been able to reproduce the measured pseudo-rapidity dependence of
the elliptic flow at RHIC.

Hence we present here the first successful attempt to describe the pseudo-rapidity dependence
of the elliptic flow v3(n) at RHIC. Our tool is the Buda-Lund hydrodynamic model [3, 36], which
we extend here from axial to ellipsoidal symmetry. The Buda-Lund hydro model takes into ac-
count the finite longitudinal extension of the particle emitting source, and we show here how the
finite longitudinal size of the source leads naturally to a vy that decreases with increasing values
of |n|, in agreement with the data. We tuned the parameters by hand to describe simultane-
ously the pseudorapidity and the transverse momentum dependence of the elliptic flow, with a
parameter set, that reproduces [19] the single-particle transverse momentum and pseudo-rapidity
distributions as well as the radius parameters of the two-particle Bose-Einstein correlation func-
tions, or HBT radii, in case when the orientation of the event plane is averaged over. All these
benefits are achieved with the help of transparent and simple analytic formulas, that are natural
extensions of our earlier results to the case of ellipsoidal symmetry.

5.3.2 Buda-Lund hydro for ellipsoidal expansions

The Buda-Lund model is defined with the help of its emission function S(z,p), where z =
(t,rz,7y,7>) is a point in space-time and p = (E, py, Dy, p-) stands for the four-momentum. To
take into account the effects of long-lived resonances, we utilize the core-halo model [37], and
characterize the system with a hydrodynamically evolving core and a halo of the decay products
of the long-lived resonances. Within the core-halo picture, the measured intercept parameter A,
of the two-particle Bose-Einstein correlation function is related [37] to the strength of the relative
contribution of the core to the total particle production at a given four-momentum,

S(J?,p) = Sc('rap) + Sh(-f,p), and (533)
Se(z,p) = VAS(x,p). (5.34)

Based on the success of the Buda-Lund hydro model to describe Au+ Au collisions at RHIC [19,
66], Pb+ Pb collisions at CERN SPS [67] and & + p reactions at CERN SPS [29, 68], we assume
that the core evolves in a hydrodynamical manner,

g prd'S,(xz)
(2m)3 B(z,p) + 54’

S.(z,p)d*z = (5.35)

where g is the degeneracy factor (g = 1 for identified pseudoscalar mesons, g = 2 for identified
spin=1/2 baryons), and p*d*Y,(x) is a generalized Cooper-Frye term, describing the flux of
particles through a distribution of layers of freeze-out hypersurfaces, B(x,p) is the (inverse)
Boltzmann phase-space distribution, and the term s, is determined by quantum statistics, s, = 0,
—1, and +1 for Boltzmann, Bose-Einstein and Fermi-Dirac distributions, respectively.

For a hydrodynamically expanding system, the (inverse) Boltzmann phase-space distribution

Pluy(z)  p(x)
B(z,p) = Puis) KT

(2,p) = exp ( T@  T()
We will utilize some ansatz for the shape of the flow four-velocity, u, (x), chemical potential, (),
and temperature, T'(z) distributions. Their form is determined with the help of recently found
exact solutions of hydrodynamics, both in the relativistic [34, 35, 69] and in the non-relativistic

cases [31, 32, 33|, with the conditions that these distributions are characterized by mean values

is

(5.36)
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and variances, and that they lead to (simple) analytic formulas when evaluating particle spectra
and two-particle correlations.

The generalized Cooper-Frye prefactor is determined from the assumption that the freeze-out
happens, with probability H(7)dr, at a hypersurface characterized by 7 = const and that the
proper-time measures the time elapsed in a fluid element that moves together with the fluid,
dr = u*(z)dx,. We parameterize this hypersurface with the coordinates (r,7y,7.) and find
that d®>3H(x|7) = u”(z)d3z/u’(x). Using 9;7|, = u®(z) we find that in this case the generalized
Cooper-Frye prefactor is

PV, (@) = pu (@) H(7)d'a, (5.37)

This finding generalizes the result of ref. [58] from the case of a spherically symmetric Hubble
flow to anisotropic, direction dependent Hubble flow distributions.

From the analysis of CERN SPS and RHIC data [19, 66, 67], we find that the proper-time
distribution in heavy ion collisions is rather narrow, and H(7) can be well approximated with a
Gaussian representation of the Dirac-delta distribution,

1

T —1T0 2
H(r) = WGXP <_(2AT2)> ) (5.38)
with AT < 79.

Based on the success of the Buda-Lund hydro model to describe the axially symmetric colli-
sions, we develop an ellipsoidally symmetric extension of the Buda-Lund model, that goes back
to the successful axially symmetric case [3, 19, 36, 66, 67] if axial symmetry is restored, corre-
sponding to the X =Y and X =Y limit.

We specify a fully scale invariant, relativistic form, which reproduces known non-relativistic
hydrodynamic solutions too, in the limit when the expansion is non-relativistic. Both in the
relativistic and the non-relativistic cases, the ellipsoidally symmetric, self-similarly expanding
hydrodynamical solutions can be formulated in a simple manner, using a scaling variable s and
a corresponding four-velocity distribution u*, that satisfy

ut0,s =0, (5.39)

which means that s is a good scaling variable if it’s co-moving derivative vanishes [34, 35]. This
equation couples the scaling variable s and the flow velocity distribution. It is convenient to
introduce the dimensionless, generalized space-time rapidity variables (7, 7,,7), defined by the
identification of

X Y z
X vy i)
Here (X,Y,Z) are the characteristic sizes (for example, the lengths of the major axis) of the
expanding ellipsoid, that depend on proper-time 7 and their derivatives with respect to proper-
time are denoted by (X Y, Z) The distributions will be given in this n; variables, but the
integral-form is the standard d*z = dtdrdrydr,, so we have to take a Jacobi-determinant into
account. Eq. (5.39) is satisfied by the choice of

(sinhn,, sinhn,, sinhn,) = (1, (5.40)

shipe — 1 shp, — 1 hy, — 1
_ COS ’I7 + COS 7’]y + COS 'f] 7 (541)
X7 Y7 z3

u* = (v, sinhn,, sinhn,, sinhn,), (5.42)

and from here on (X, Y, Zs) = (X(70),Y(70), Z(10)) = (X1, X2, X3), assuming that the rate
of expansion is constant in the narrow proper-time interval of the freeze-out process. The above
form has the desired non-relativistic limit,

2 ri 7,2
e 4 v o4 e 5.43
- 2X7 + 2Y7 * 277 (5-43)

S
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where again (Xy,Yy, Z¢) = (X(79),Y (70), Z(10)) = (X1, X2, X3). From now on, we drop sub-
script ¢. From the normalization condition of u*(z)u,(x) =1 we obtain that:

v= \/1 + sinh? 3, + sinh® 1, 4 sinh? 7., (5.44)

For the fugacity distribution we assume a shape, that leads to Gaussian profile in the non-
relativistic limit,
w(x) Ho
= — — s, 5.45
corresponding to the solution discussed in refs. [31, 32, 70]. We assume that the temperature
may depend on the position as well as on proper-time. We characterize the inverse temperature
distribution similarly to the shape used in the axially symmetric model of ref. [3, 36], and discussed
in the exact hydro solutions of refs [31, 32],

1 1 TO 7T9 TO *Te (T*T0)2
— =11 1 5.46
T(x) T ( T 8) ( T A ) (5.46)
where Ty, Ts and T, are the temperatures of the center, and the surface at the mean freeze-out
time 7y, while T, corresponds to the temperature of the center after most of the particle emission

is over (cooling due to evaporation and expansion). Sudden emission corresponds to T, = Ty,
and the A7 — 0 limit. It’s convenient to introduce the following quantities:

_ AT

a: = TOTSTS = <T > , (547)
_ AT

# = mn o (A7) (5.4

5.3.3 Integration and saddlepoint approximation

The observables can be calculated analytically from the Buda-Lund hydro model, using a saddle-
point approximation in the integration. This approximation is exact both in the Gaussian and
the non-relativistic limit, and if p”u, /T > 1 at the point of maximal emittivity. In this approx-
imation, the emission function looks like:

g p“uu(ms) H(TS)

4.,
S(x7k)d T = (277)3 B(xﬁvp) + Sq

exp (—R;f(x —z)"(z — z,)") d'z, (5.49)
where
R;uz = 8}1«81/(7 111(50))5, (550)

and z,, stands here for (7,7;,7,,7.). In the integration, a Jacobian 7 has to be introduced when
changing the integration measure from d*z to drd>z.
The position of the saddle-point can be calculated from the equation

Ou(=In(S0))(ws, p) = 0. (5.51)

Here we introduced Sy, as the 'narrow’ part of the emission function:

So(z,p) = B(xf,l;[f;l-sq' (5.52)

In general, we get the following saddle-point equations in (7, 7,,7y,7,) coordinates:
Ts = To, (5.53)
sinhn; s piXiQ cosh ;s (5.54)

Tloa) (1 a2 ) e K3
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The system of equations (5.54) can be solved efficiently for the saddle-point positions s ; using
a successive approximation. This method was implemented in our data fitting procedure.

For the distribution widths, the exact result is:

Bz, X X; 1 9%b
R = (25, P) L) , (5.55)
J B(xs,p) + 54 \ X;X; coshn; scoshn;s | Onidn; |,
_ ty 1 1 Bzs,p) 0%
RZ2 = = = ’ — 5.56
0,0 s A2 AT?2 0 B(zg,p)+ 54 072, (5:56)
R;§ = 0,  with, (5.57)
9%b coshm; s  coshn; sa®
_— = b — 4 — ut(x 5.58
anLSan . J [ XE XZ-2T0 pH ( ) ( )
1 E
+ cosh(2n; s) — p; sinhnm)} +
T(l’s) (’Y(xs) ( )
a?sinhn; , ( E )
+ — sinh(2n; s) — p; coshn; s | +
X2 \ () (2mis) —p i,
a® sinh 7 ( E >
+ 1 sinh(2n; ) — p;coshn; s | —
2T0XJ2 () (2nj,s) — p; nj,
- Lsinh@ i.s) sinh(27; 5) and (5.59)
AT (zs)y(zs)? e s, .
9%b prut(x) 2
— = —(1 . 5.60
87'2 s TO ( ta S) ( )
We introduced here the exponent
b(zs,p) = log B(ws,p). (5.61)

For clarity, we give the resulting analytic expressions only in the case, where r, /X < 1,
rys/Y < 1, and 0y —y < An = Z. In this case, we expand the parts of the emission function
into a Taylor series of second order. First:

u(x)py _ cosh(n, —y) "
T(ZL’) T()
r2 r2 r2 (1 —70)? X2 y?
1+a? | % 4+ 2 z d? 2 pp— 5.62
x < +a <2X2+22+2Z2 S g Ty ) (662
X Y
ToX' " Ty
This way, we get:
h(n. —
bap) = M)
To
r2 r2 r2 (1 —10)2 X2 Y2
1 2 x Y z d2 0 2 2 5.63
% ( T <2X2+2Y2+2Z2>+ 27 Tregxz Trugyz )| (069)

X Y 72 r2 2
X nY e T Ty T
ToX ToY To ' 2Xx2 " 2v2 ' 27
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In this case, we get the following for the saddle-point and the distribution widths:

2t sinh y
New =Y = L - (5.64)
o (1 + £ ) coshy + =5
_ ﬂX.
Tz,s g .
% = 13107)(12 for i = 12, (565)
R%;
1 B(zs,p) 1 1
—_— = | = 5.66
An2 B(zs,p) +s \ 22 + Anz )’ (5.66)
1 B(xzg,p) 1 1
o : 1 5.67
R, Bloop) +s \X2 7, ) (567
1 1 B(zs,p) 1
— = . 5.68
AT2 Azt B(xs,p) + s AT (568)

Equations (5.66)—(5.68) imply, that the HBT radii are dominated by the smaller of the thermal
and the geometrical length scales in all directions. Note that the geometrical scales stem from the
density distribution, governed by the fugacity term exp(u(z)/T(z)), while the thermal lengths
stem from the local thermal momentum distribution exp(—p*u, (x)/T(x)), and in this limit they

are defined as

2
Ry,

m

m
1o

In the simplest case, where all three 7; ; are small:

—t cosh(n,,s —

t
— cosh(n,,s —

d

2

)

o
(5 3)

In the above limit the thermal lengths are

o o md
AT% Ty Tg
Lt
R2T,i Tp

Pi
Toixi,,fori:x,y,z,
1+ RQ

Blwp) (1, 1
B(xzs,p) +sq \X? R%;)’
1 B(zs,p) 1
Ar2  A72 " B(xs,p)+s AT

)

a® X2
Xz x?)

5.4 Results from the ellipsoidal model

5.4.1 The invariant momentum distribution

The invariant momentum distribution can be calculated as

M@:/#wmm

1
= \/X/d4l'sc(p7$)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)
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Then the invariant momentum distribution is

1 g AT, 9 11/2 1
N = ——“—=put(zs)— |det R} ; -
l(p) \/X(zﬂ_):;p#u (LL’ )AT [ e Z,j] B(xmp)"’Sq
It can be expressed on a more simple way:
Np) = L EVe— L (5.78)
TR epbleap) +s, |
where
E = par) (5.79)
= AT* 1/2
V o= (2r)3? ~ [det RY;] ', (5.80)
_ 1 s
_ T (5.81)

V A* ts ’
Let us investigate the structure of this invariant momentum distribution. If we evaluate the

exponent b(xs, p) in the limit, where the saddle-point coordinates are all small, (except 7., which
is written from here as 1 simply):

2 2
Te.s Tys ns [ my a 1
b(xs, = = b —|—S<cosh s — .—|—.>—|—
(@s,p) ore, ame, T2\ TV T
my Ho
—cosh(ns —y) — —=. .82
+ T cosh(ns — y) T, (5.82)

Or, in an other form

2 2 2 2 S 2 —
P Py P N (M a 1 my o
bs,p) = 2 - e E =y 5.83
@) = o, Y amr, " T T2 (TO 72 Zz) T T T (5.83)

where m; = my cosh(ns — y) and the direction dependent slope parameters are

; T
_ — 32 0
. T
_ = 2 0

It is useful to show the low-rapidity limit, where 7 is small, because it helps to understand the
behavior of our formulas, although in data fitting we used the exact, more complicated formulas.
The Boltzmann-exponent b is in this low-rapidity limit the following:

2 2 2 2
p? v, P my P} o
b(zs,p) = me_ P Mo 5.86
(25,7) o T, | 2mT.,  2mT.. T 2mTy To (5.86)
where T
T..=T vz 0 5.87
’ 0+ My To + mia? ( )

In the limit when the possibility of a temperature inhomogeneity on the freeze-out hypersur-
face is neglected, we can substitute a = 0. Using a non-relativistic approximation of m; ~ m,
we recover the recent result of ref. [70] for the mass dependence of the slope parameters of the
single-particle spectra:

T.. = To+mX? (5.88)
Ty = To+mY? (5.89)
T.. = To+mZ> (5.90)



82 CHAPTER 5. MODEL BUILDING

5.4.2 The elliptic flow

The elliptic flow is defined as the second harmonic momentum of the invariant momentum dis-
tribution, or the second Fourier-coefficient of Ny (¢):

d®n >n

 dp.pidpide  2mdp.pidp,

Ny

1+2 i Un cos(ngp)] (5.91)
n=1

Note, that b(zs, p) is the only part of the IMD, that is explicitly angle dependent, so

2 2
o p
Ni(p) ~ exp<— P : )—

omyT., 2miTe,

2 2 2
i Y2 Y2 cos(2¢)
= — — 5.92

eXp( 2my Tepy + <2mtT*7x 2mtT*$y) 2 ’ ( )

where

1 1 1
Tegp = = . .
5 (Tm; + T*y> (5.93)

So, we can easily extract the angular dependencies. Let us compute vs by integrating on the
angle:

I (w)
= 5.94
27 To(w) (5.94)
where ) )
by 1
_ _ _ 5.95
YT i, (T*,y TW) (5.95)
Generally, we get from the definition (eq. 5.91) the following equations:
In(w)
n = ) d 5.96
) To(w) an (5.96)
vopty1 = 0. (5.97)

As first and the third flow coefficients vanish in this case, a tilt angle ¢ has to be introduced to
get results compatible with observations, as discussed in the subsequent parts.
Note that for large rapidities, |ns — y| becomes also large, so m; = m; cosh(ns — y) diverges

and ) )
1 1 1
- —>< < a.), (5.98)
Ty Tio To\a®+Y2?2 a2+ X2
hence
w—— 0. (5.99)
n—00

Thus we find a natural mechanism for the decrease of vy for increasing values of |y|, as in this
hmlt, Vg — 11(0)/10(0) =0.

5.4.3 The correlation function

Now, let us calculate the correlation function! This has the form

2 2

_ L |s@p)| _ S:(Q,p)
C@,p)=1+ 50.0) =1+ S| (5.100)
where
S’(Q,p) = /S(x,p)eind4I, and (5.101)

S5.(Q,p) = /Sc(m,p)eiQ$d4x. (5.102)
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From here on, we don’t write out the p dependence. The result for the correlation function is,
with this notation: ,
C(Q) =1+ N @@ (5.103)

In the physically interesting case, the expansion is predominantly longitudinal. So, let us con-
sider the case, when the emission function is characterized in terms of the variables (7,n,74,7y),
similarly to the axially symmetric case of the Buda-Lund model. If we solve the saddle-point
equations in the r, /X < 1, ry /Y < 1, and n, —y < An = Z limit, then the correlation

function has the following diagonal form:

C(Q) = 1+ A\ e QrATI-QIRL . —QURY , ——Qyri An] (5.104)
Then, we use the usual formalism:
QT = QO cosh Ns — Qz sinh Nss (5105)
Qn, = —Qosinhn, + Q. coshn;. (5.106)
From the mass-shell constraint, p? = p2 = m?, one finds that
So, if we write the correlation function in the usual
CQ) =1+Xexp|— Y R},QQ; (5.108)
1,]=2,Y,2
form, then the radii are:
R? = R?_ 4+ B2(At?coshn? 4 73 An?sinhn?), (5.109)
RZ = Rf’y + 5; (A2 coshn? + 78 An? sinh n?), (5.110)
R? = Ar?(sinhn, — 3. coshn,)? + 18 An?(coshn, — B, sinhn,)?, (5.111)
2Ri . = —(AT2+72An%)B, coshn, sinhn, +
+  BeB.(AT2coshn? + 72 An? sinhn?), (5.112)
QR; = —(A72 + 13 An?)B, coshng sinh s +
+  ByB.(ATZ coshn? + 75 AnZ sinh 7?2, (5.113)
2Ri,y = ﬁajﬁy(ATf coshn? 4 72 An? sinh n?). (5.114)
Then we make the coordinate-transformation (see Fig. 5.3):
Q: = Q) cosd— Q. sind = Qfcospcost — Q' sinpcost — Q;sind, (5.115)
Qy =Q, = Q' cosp + Qf sinp, (5.116)
Q. =Q.LcosV+Q,sind = Qjcos+ Qfcospsing — Q' sin @ sin V. (5.117)
After that, we get the following radii:
R? = RPcos’p+ Rz sin? ¢ + Rf,y sin(2¢p), (5.118)
R? = RPsin®p+ R.cos’ ¢ — R, sin(2p), (5.119)
R? = R%sin®9 + R?cos? 0 — Ri,z sin(299), (5.120)
ZR’OZS = —RZsin(2p) + Rz sin(2¢) — 2R;27y cos(2¢), (5.121)
2R?, = (RZsin(29) — RZsin(20) — 2R, ; cos(20)) sinp — (5.122)
— (2R2 sing — 2R2 cos 19) sin ¢, |
2R, = (RZsin(20) — R2sin(29) + 2R, . cos(20)) cosp — (5.123)
— (2R2 sind — 2R2 cos 19) sin ¢,
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Figure 5.3: The coordinate transformation

The old coordinate system (z,vy, z) is shown with thin lines, the new (x’,y’,z’) with thick lines. The
axes of the new coordinate system are the main axes of the ellipsoid. The ellipsoid is drawn with thick
lines. It’s sections with the xy, yz and zx coordinate planes are drawn with thin lines. The ratio of the
three main axes are in this case 3 : 4 : 5, while ¥ = 7/5 and ¢ = 7 /4.

if we introduce

R? = RZcos®¥+ RZsin®0 + 2R, cosdsin, and (5.124)
R?, = R, cos?+ R _sind (5.125)
In the LCMS frame, where 3, = 3, = 0:

R? = RPZcos®p+ Rz sin? @, (5.126)
R? = RPsin’¢+ R cos’p, (5.127)
R? = R%sin®9 + R?cos® 0 — ZR?W sin ¢ cos ¢, (5.128)

2 2 2\ .
2R;, = (R, — R)sin2yp (5.129)
2RZ, = —(RZsin20 — R2sin29 + 2R, . cos 20) sin g, (5.130)
2R}, = +(RZsin20 — R2sin20 + 2R, . cos20) cos p. (5.131)

I computed also the azimuthal sensitivity of the HBT radii in this latter simple case (see
equations 5.126-5.131), for the parameter set obtained in section 5.5 and summarized in table 5.2.
The plots are shown in figure 5.4.
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Figure 5.4: Azimuthal sensitivity of the HBT radii

On these figures, we see the transverse mass (m:) and azimuthal angle (¢) dependence of the HBT radii.
The period in R,, Rs and R, s is 7, in Rs; and R;, it is 27, and R; does not depend on ¢, as it is shown
in equations 5.126-5.131.
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5.5 Comparing the ellipsoidal model to the data

5.5.1 Elliptic flow for tilted ellipsoidal expansion

Now, let us compute the elliptic flow for tilted, ellipsoidally expanding sources, too, because we
can get a non-vanishing v; and v3 only this way, in case of ¥ # 0, similarly to the non-relativistic
case discussed in ref. [70]. The observables are determined in the center of mass frame of the
collision (CMS or LAB frame), where the r, axis points to the direction of the impact parameter
and the r, axis points to the direction of the beam. In this frame, the ellipsoidally expanding
fireball, described in the previous subsections, may be rotated. So let us assume, that we re-label
all the z and p coordinates in the previous parts with the superscript ’, e.g. * — 2’ and p — p/,
to indicate that these calculations were performed in the system of ellipsoidal expansion (SEE),
where the principal axis of the expanding ellipsoid coincide with the principal axis of SEE. In
the following, we use the unprimed variables to denote quantities defined in the CMS, the frame
of observation.

We assume, that the initial conditions of the hydrodynamic evolution correspond to a rotated
ellipsoid in CMS [70]. The tilt angle ¥ represents the rotation of the major (longitudinal) direction
of expansion, r/,, from the direction of the beam, r,. Hence the event plane is the (r.,r,) plane,
which is the same, as the (r,7.) plane. The (zenithal) angle between directions r, and r/, is
the tilt angle ¥, while (azimuthal) angle ¢ is between the event plane and the direction of the
transverse momentum p;.

The definition of v, is:

dn dn
N = = 1423 o, 5.132
L dplpdpde dp;pédm%( i zn:v COS(W)) (5132)

where the ’ means, that we have the IMD in the system of ellipsoidal expansion. From this

equation follows:
dn

W - <1 +2 Z Up, cos(ngp)) (5.133)
n

dp’p,dp,2m

From the invariant momentum distribution, v,, can be calculated as follows:

27 dn
Vi = / 7@2”;?”@ cos(mep)dep (5.134)
0 dp.pedp2m
We have made the coordinate transformation
Py = prcost —p,sind, (5.135)
Py = Py (5.136)
p; = poOSﬂ +’PzSh1ﬁ, (5.137)
and in addition:
Pz = DtCOSp, (5.138)
py = pesing, (5.139)

The changes in the coordinates are taken in first order in 4.

Ny(my,pz,py,y) —  Ni(my,pi, 0,y) (5.140)

pe(my, y' vy, ) p; cosp — (mysinhy’)Y (5.141)

py(mi, ', ) = pising (5.142)
/

y(my, v, pi ) = y’+($,coshy'cosso)19 (5.143)
t

my(my, Y, pj, ) = my — (p;sinhy’ cosp)d (5.144)



5.5. COMPARING THE ELLIPSOIDAL MODEL TO THE DATA 87

Now, with second order calculations in p/T, and first order in ¢, we get for b(xs,p’) = In B(z5,p'):

/2 0082 /2 Sin2 2
bagp) = P LS, Py (5.145)
om,TL, 2Tl ' 2mT)

Py, 11 1/ PP
+ mtﬁCOSQD(TLZ T +T0 Lo mt+mt

Here for i = z,y, 2

R2
and
1 cos?y  sin?d 1
= = T + T ~ i (5.147)
1 cos?9  sin?9 1
= = + =~ (5.148)
T, . T, T

From the experiments, we now, that

AT, To\“
my cosh(ns — y) AZ 2T Ry R 0/ 27T A2 = (m(l> (5.149)

T [e3%
= <mz> (14 Craccos pv) (5.150)
so finally, we get:
N1 (), p) ,y) = Co (1 + Crad cos ) e eos2eeard con o Cod cos(a) (5.151)

where C; may depend on all variables, except ¢. So we get for the IMD, with a first order
calculation in ¢:

Ni (i, b}, 0, ) ~ (1+ (B cos ¢ + Bz cos(3p)) ) e °0*2¢ (5.152)
Now, we can calculate v,,. For this, the following rule is very useful:
1
cos(nip) cos(nayp) = 5(005((711 + n2)p) + cos((n1 — n2)p) (5.153)
Finally,we get:
I, (w")
v = T (5.154)
0 L,(w) + I, ! ) Tp—1 (W) + Ly (w
vamys = 200 (D) & D () | 98 (T (@) + Fra(w) (5.155)
2 2 2 2
Here, the argument w is the same, as before, only, that it depends on the transformed coordinates:
/2
’ Py 1 1
_ _ 1
o= T;,) (2150)
In our case:
5 _pisinhy 31+ % +11+§ 1
b om? \2 T2, 2 T2 T
1 1 /
—  psinhy/ (T#{,z - Ti@) + %a sinh ' cos ¢ (5.157)
Bsinhy/ 1 (1425 145
P = B Sln/Q Lo /2a2 - /2a2 (5.158)
2m? 2 T2, Tz,



88 CHAPTER 5. MODEL BUILDING

Specially:
o = B W)Jffl(“’)>+52<fl@’>+f2<1“)> (5.159)
2 2 2 2 '
vy = ?EZ:? (5.160)
= B(BETRWY (bl b)) 5161

These are the easy-to-understand-formulas, but it is a better way to fit the data, if we use a
numeric integration over phi, and so, we get a more exact vy function.

5.5.2 Comparing v, to the data

At first, let’s look at vy at mid-rapidity, vo(y = 0,p¢)! ¥ = 0 means p, = 0, and as we saw, the
IMD looks like:

1 g AT, 1/2 1
Ny (p) = —Zpu” detR?,]"/" ——— 5.162
1(p) VoW (277)3p, ut () Ar [ € z,J} B(zs,p) + 54 ( )
In this special case, and in the n; << 1 for ¢ = x, y limit:
2 x2 2y 2
B(zs,p) = exp | — Pa Py e (5.163)

: - : + -t
272 (1 + (a® + X2)my/To)  2T3(1+ (a2 +Y2)my/Ty) 1o

Here, we can make the transformation and calculate vo, and so we get a more exact result. But it
is impossible to find the exact form of v, (y), we have to make some extrapolations, so we decided
to compare the elliptic flow to the data with the exact starting formulas, but we do integrate
numerically, and compute the saddle point with a successive approximation. The successive
approximation means a loop here instead of solving the non-analitic equations. We have chosen
a loop enough long, that means, that a longer loop won’t modify the results. This was the same
with the width of the integration-step. We integrated Ni(p) over p¢, as the data were taken this
way, too.

Finally, we calculated the transverse momentum and the pseudorapidity dependence of vs for
a parameter set determined from fitting the axially symmetric version of the Buda-Lund hydro
model to single particle pseudo-rapidity distribution of BRAHMS [64] and PHOBOS [45], the
mid-rapidity transverse momentum spectra of identified particles as measured by PHENIX [48,
71] and the two-particle Bose-Einstein correlation functions or HBT radii as measured by the
PHENIX [44] and STAR [46] collaborations. The only difference is, that in the present calcula-
tions X ¢ and Yf were splitted and a tilt angle 9 was introduced.

We determined the harmonic moment of eq. (5.134) numerically, for the case of m = 2, but
using the analytic expression of eq. (5.78) for the invariant momentum distribution, computing the
coordinates of the saddle point with a successive approximation. The successive approximation
means a loop here instead of solving the non-analytic saddle-point equations. We have chosen a
loop long enough and have checked that an even longer loop will not modify the results. This
was the same with the width of the integration-step. We integrated Ny (p) over p¢, as the data
were taken this way, too. Finally, we were able to fit vo(n = 0,p;) and vo(n) with the same set of
parameters.

The results are summarized both in figures 5.5 and 5.6. We find that a small asymmetry in
the expansion gives a natural description of the transverse momentum dependence of vs. The
parameters are taken from the results Buda-Lund hydro model fits to the two-particle Bose-
Einstein correlation data (HBT radii) and the single particle spectra of Au 4+ Au collisions at
VNN = 130 GeV, ref. [19, 66], where the axially symmetric version of the model was utilized.
Here we have introduced parameters that control the asymmetry of the expansion in the X and
Y directions such a way that the angular averaged, effective source is unchanged. For example,
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Figure 5.5: Buda-Lund results compared to the vy (p;) data

Here we see the fit to the PHENIX wvy(p;) data of identified particles [25]. The parameter set is: To =
210 MeV, X = 0.57, Y =045, Z =24, a =1, 710 = 7 fm/c, ¥ = 0.09, X; = 8.6 fm, Y; = 10.5 fm,
Zy =17.5 fm, po,x = 70 MeV, po,x = 210 MeV and po,p, = 315 MeV, and the masses are taken as their
physical value.

we required that the effective temperature, Teg of eq. (5.93) is unchanged. We see on 5.5 and 5.6
that this method was successful in reproducing the data on elliptic flow, with a small asymmetry
between the two transverse expansion rates.

From the fit given on figure 5.5, we calculate the value of the transverse momentum integrated
va(n = 0) and find that this value is below the published PHOBOS data point at mid-rapidity.
We attribute this difference of 0.02 to a non-flow contribution [72]. The PHOBOS collaboration
pointed out the possible existence of such a term in their data in ref. [26], as they did not utilize
the fourth order cumulant method to determine vy. The magnitude of the non-flow contribution
has been explicitly studied at mid-rapidity by the STAR collaboration and indeed STAR found
that its value is of the order of 0.01 for mid-rapidity minimum bias data, ref. [61].

The good description of the dn/dn distribution by the Buda-Lund hydro model [19, 66] is well
reflected in the good description of the pseudo-rapidity dependence of the elliptic flow. Thus the
finiteness of the expanding fireball in the longitudinal direction and the scaling three dimensional
expansion is found to be responsible for the experimentally observed violations of the boost
invariance of both the rapidity distribution and that of the collective flow vs.

Furthermore, we note that our best fits correspond to a high, Ty > T, = 170 MeV central
temperature, with a cold surface temperature of T &~ 105 MeV. The success of this description
suggests that a small fraction of pions may be escaping from the fireball from a superheated
hadron gas, which can be considered as an indication, that part of the source of Au + Au
collisions at RHIC may be a deconfined matter with 7" > T.. The results are summarized on Fig.
1 and Fig. 2.

Let us determine the size of the volume that is above the critical temperature. Within this
picture, one can find the critical value of s = s, from the relation that Ty /(1 + as.) = T.. Using
Ty =210 MeV, T, = 170 MeV, and a = 1 we find s, = 0.235.

The equation for the surface of the ellipsoid with T > T, is given by

r2 12 g2

ﬁ+ﬁ+ﬁ =1, (5.164)

(&
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Figure 5.6: Buda-Lund results compared to the vs(n) data

This image shows the fit to the 130 GeV Au+Au and 200 GeV Au+Au v2(n) data of PHOBOS [26, 27],
with the ellipsoidal generalization of the Buda-Lund hydro model. Here we used the same parameter set
as at Fig. 5.5, with pion mass and chemical potential, and a constant non-flow parameter of 0.02.

where the principal axes of the “critical” ellipsoid are given by

X, = X5, ~4.2 fm, (5.165)
Y, = Yp/5.~5.1 fm, (5.166)
Ze = Zp\/s.~8.5 fm, (5.167)

hence the volume of the ellipsoid with T" > T, is V. = 4%XCYI:ZC ~ 753 fm?3.

Note, however, that the characteristic average or surface temperature of the fireball within
this model is Ts = Tp/(1 4 a) ~ 105 MeV. This temperature is relatively small compared to the
Landau estimation of Ty ~ m, ~ 140 MeV. So the picture is similar to a snow-ball which has a
melted core inside.

Our study shows that this picture is consistent with the pseudorapidity and transverse mass
dependence of vy at RHIC in the soft p; < 2 GeV domain. However, it is not yet a direct proof of
the existence of a new phase. Among others, we have to determine the best fit parameters with
Minuit and also to get their errors, which will be a subject of further research.

5.6 Predictions

From the definition in eq. 5.134 all harmonic momenta v, can be calculated. If we calculate it
using the parameters obtained from the fits to other data (figures 5.2-5.6) we get a prediction for
these momenta. This is plotted on figure 5.7. It is clear in our calculations, that all odd momenta
at midrapidity are near zero,

Vznt1(pe, 1 = 0) =0, (5.168)

so only the even harmonics are calculated. One can notice, that vy is around 1/10 smaller than
vg, and vg is even smaller by another factor of 1/10, but they have approximately the same shape.

The situation is similar in case of the v, (n) functions. Here vs and vs have the same shape,
just the latter is smaller by a factor of around 1/25, while vs is smaller than v, by a factor of 1/29.
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Figure 5.7: Buda-Lund prediction

I calculated higher harmonic momenta with the given set of parameters from figure 5.5. This gives a
prediction, which can be later compared to the measured data. On this figure in the above panel the
transverse momentum dependence of v, for n = 1..6 is plotted, while below the the pseudorapidity
dependence of these harmonics is to see.

The higher harmonics v5 and vg are very small, and the numeric errors in the calculation package
are getting even higher than the calculated value especially at high rapidities.

5.7 Summary and conclusions

We have generalized the Buda-Lund hydro model to the case of ellipsoidally symmetric expanding
fireballs. We kept the parameters determined from fits to the single particle spectra and the two-
particle Bose-Einstein correlation functions (HBT radii) [19, 66], and interpreted them as angular
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averages for the direction of the reaction plane. Then we found that a small splitting between the
expansion rates parallel and transverse to the direction of the impact parameter. This is due to
the fact that the expanding fireball is more compressed in the = direction than in the y direction
(see figure 5.8). We also found a small zenithal tilt of the particle emitting source is sufficient to
describe simultaneously the transverse momentum dependence of the collective flow of identified
particles [25] at RHIC as well as the pseudorapidity dependence of the collective flow [26, 27].

The results in figures 5.5 and 5.6 and in table 5.2 confirm the indication for quark decon-
finement at RHIC found in refs. [19, 66], based on the observation, that some of the particles
are emitted from a region with higher than the critical temperature, T > T, = 170 MeV. We
estimated that the size of this volume is about 1/8-th of the total volume measured on the 7 = 7
main freeze-out hypersurface, totalling of about 753 fm?.

However, the analysis indicates that the average or surface temperature is rather cold, Ts =
105 MeV, so approximately 7/8 of the particles are emitted from a rather cold hadron gas, as it
is illustrated on figure 5.8.

Cold hadron gas

Figure 5.8: The expanding fireball

The expanding ellipsoid has a hot center with T > T¢ at the freeze-out, while this central region of 753
fm? is surrounded by a rather cold hadron gas. Note, that the expansion rate is higher in that direction
where the ellipsoid is more compressed.

BL par. ‘ value BL par. ‘ value

To 210 MeV || Xy 0.57

T, 105 MeV || Y 0.45

X 8.6 fm Z; 2.4

Yy 10.5 fm ¥ 0.09

Zf 17.5 fm Mo, 70 MeV
To 7 fm/c 1o, K 210 MeV
AT 0 fm/c Ho,p 315 MeV

Table 5.2: A set of parameters of the ellipsoidal model used on figures 5.5-5.7

In this table I summarized model parameters used to describe the transverse momentum dependence of
the collective flow of identified particles [25] at RHIC as well as the pseudorapidity dependence of the
collective flow [26, 27]



Chapter 6

Summary

Gray, my dear friend, is every theory,
And green alone life’s golden tree

FausT, GOETHE
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In my present thesis, I showed three main steps of researching the secrets of Nature: data
taking, data analysis and model building, each step through one example. Now I would like to
summarize my tasks.

After the hungarian overview and the introduction, in Chapter 3 I wrote about the Relativistic
Heavy Ion Collider, about the Pioneering High Energy Nuclear Interaction eXperiment, and about
it’s Zero Degree Calorimeter.

Here, I have got through with the following tasks:

e Taking shifts at PHENIX
e Developing and maintaining the online monitoring software for ZDC (section 3.6)
e Minor tasks at ZDC

— Vernier scan and it’s analysis(section 3.7)

— Being a subsystem specialist (section 3.4)

Going forward, in Chapter 4 I summarized my work on the field of data analysis. The present
status of this work are first, intermediate plots of the two- and three-particle correlation functions
for pions, kaons and protons from the 200 GeV Au+Au data of PHENIX.

The steps of the work were the following:

e Event selection, particle identification, making cuts (section 4.3)

e Computing pair and triplet distributions (subsections 4.4.1 and 4.4.3)

e Computing raw two- and three-particle correlation functions (subsections 4.4.2 and 4.4.4)
e Analysis of the results, determining future tasks (4.5. és 4.6)

In Chapter 5, I showed the last task, model building, through the Buda-Lund hydrodynamical
model which I was working on. I made fits to RHIC data with the original, non-relativistic and
axially symmetric model, and generalized the model to the relativistic and ellipsoidal symmetric
case. Going in details, I did the following:

e Going through the original model (section 5.1)

Taking part in the study of central collisions (section 5.2)

— Searching for more exact saddle-points

— Re-calculating the results of the model

Developing a generalized, relativistic model with ellipsoidal symmetry(section 5.3)

Calculating observables from the generalized model (section 5.4)

Comparing it’s results to RHIC data (sections 5.4.3 and 5.5)

e Predictions for new observables (sections 5.6 and 5.4.3)
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