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Why and When of information theory in multiparticle production

New experimental results

Model I
.................

Model II

Model III

Model IV

Model V

... all models are”good”... ...which is the ”correct one”?...



The Truth
is

here !

- to some extend –
..........................

All of them!



(*)  To quantify this problem one uses notion of

information

(*) and resorts to 
information theory

based on  Shannon information entropy

S = - Σ pi ln pi

where {pi} denotes probability distribution of quantity of
interest



This probability distribution must satisfy the following:

(*) to be normalized to unity:                                    Σ pi =1

(*) to reproduce results of experiment:     Σ pi Rk(xi ) =<Rk>

(*) to maximize (under the above constraints) information
entropy

pi = exp[ - ∑λk•Rk(xi)]
with λk uniquely given by the experimental constraint equations



The Truth
is

here !

pi =  exp[ - ∑λk• Rk(xi) ]



pi =  exp[ - ∑λk• Rk(xi )]
This is distribution which:

(*)   tells us ”the truth, the whole truth” about our experiment,
i.e., it reproduces known information

(*)   tells us ”nothing but the truth” about our experiment,
i.e., it conveys the least information (= only those which
is given in this experiment, nothing else) 

it contains maximum missing information

G.Wilk, Z.Włodarczyk, Phys. Rev. 43 (1991) 794



Notice:

If some new data occur and they
turn out to disagree with

pi =  exp[ - ∑λk• Rk(xi )]

it means that there is more information
which must be accounted for :
(a) either by some new λ= λk+1

(b) or by recognizing that system is
nonextensive and needs a new
form of exp(...) → expq(...)

(c) or both ...........



Some examples

(*) Knowledge of only <n> the most probable P(n) is:
and that particles are:

distinguishable geometrical (Bose-Einstein)
nondistinguishable Poissonian
coming from k
independent, equally
strongly emitting sources Negative Binomial

(*) Knowledge of <n> the most probable P(n) is
and <n2> Gaussian

Additional information converts the resultant P(n) from the most broad
to the most narrow :  geometrical (D≈<n>) Poissonian (D≈√<n>)



Example (from Y.-A. Chao, Nucl. Phys. B40 (1972) 475)
Question:  what have in common such successful models as:

(*) multi-Regge model
(*) uncorrelated jet model

(*) thermodynamical model
(*) hydrodynamical model

(*) ..................................
Answer:  they all share common (explicite or implicite) dynamical

assumptions that:
(*) only part of initial energy of reaction is used for production

of particles ↔ existence of inelasticity of reaction, K~0.5
(*) transverse momenta of produced secondaries are cut-off ↔

dominance of the longitudinal phase-space



Suppose we hadronize mass M into N secondaries with
mean transverese mass µT each in longitudinal phase space:
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(*) under conditions:

where



As most probable distribution we get
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Notice: Z and β are not free parameters, therefore this is
not a thermal model!



From: G.Wilk, Z.Włodarczyk, Phys. Rev. 43 (1991) 794

(*)   for  N→2 one has β→- ∞ and f(y)=(1/2)[ δ(y-YM)+δ(y+YM) ]

(*)  for   N=N0=N0(M;N,µT) ≈ 2 ln[M/µT] = 2ln(Nmax) one has β=0 and f(y) = const

(*)  for N>N0    one has β>0 and
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Scaling !

(*)  for   N → Nmax one has β → (3/2µT)[1/(1-N/Nmax)] and   f(y) → δ(y)



β → -∞

β → +∞

β → -∞

β = 0

β = β0

YM-YM 0



β → -∞

β → +∞

β → -∞

β = 0

β = β0

YM-YM 0



Other point of view .........

(*)  Fact: In multiparticle production processes many
observables follow simple exponential form: 

f(X) ≈ exp[  - X/Λ ]
”thermodynamics” (i.e., Λ≈T)? 

(*)  Reason: because:

in an event many particles are produced
but only a part of them is registered
out of which usually only one is analysed
(inclusive distributions of many sorts...)

the rest acts therefore as a kind of heat bath



h

Heat bath

T

N-particle system ⇒

N-1 particle ”heath bath”

and 1 observed particle

T

L.Van Hove, Z.Phys. C21 (1985) 93,
Z.Phys. C27 (1985) 135.



(*) Nonextensivity – what it is and why to bother about it
...more...

However, in real life:

(*)   in ”thermodynamical” approach :

one has to remember tacit assumptions of infinity and
homogenity concerning introduction of the ”heath bath” 
concept, otherwise it will not be characterised by only
one parameter - the ”temperature” T

(*)   in information theory approach :

one has to remember that there are other measures of
information (other entropy functionals) possible

(*)   in both cases it means departure from the simple
exponential form as given above



(*) Nonextensivity – its possible origins .... 
”thermodynamics”

T6

T4
T2

T3T1

T5

T7

Tk

h

T   varies ⇔

fluctuations...

T0=<T>, q

q  - measure of fluctuations

Heat bath
⇒T0, q

T0=<T>



(*) Nonextensivity – its possible origins .... information theory
approach

... Other measures of information possible in addition to 
Shannon entropy accounting for some features of the physical
systems, like:
(*) existence of long range correlations
(*) memory effect
(*) fractality of the available phase space
(*) intrinsic fluctuations existing in the system
(*)..... others ....
In particular one can use Tsallis entropy

Sq = - Σ(1-pi
q)/(1-q) 

=> - Σ pi ln pi (for q 1)



(*) This leads to:          Non Extensive Statistics
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Historical example:

(*) observation of deviation from the
expected exponential behaviour
(*) successfully intrepreted (*) in terms of
cross-section fluctuation:

(*) can be also fitted by:

(*) immediate conjecture:
q fluctuations present in the system

Depth distributions of starting points
of cascades in Pamir lead chamber
Cosmic ray experiment (WW, NPB 
(Proc.Suppl.)  A75 (1999) 191

(*) WW, PRD50 (1994) 2318
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Summarizing: ‘extensive’ ⇔ ‘nonextensive’
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where q measures amound of  
fluctuations
and
<….> denotes averaging over 
(Gamma) distribution in (1/λ)



(*) Possible origin of q: fluctuations present in the
system...final

(*) Where gamma function comes from?
WW, PRL 84 (2000) 2770; Chaos,Solitons and Fractals 13/3 (2001) 581

(*) In general: Superstatistics (with other forms of function f)
C.Beck, E.G.D. Cohen, Physica A322 (2003) 267

(*) Fluctuations of temperature:     λ=T  ⇔ if we allow for  energy dependent
T=T(E) =T0+a(E-E0 )

with a=1/CV, then the equation on probability P(E) that a system A  interacting
with the heat bath A’ with temperature T has energy E changes in the following
way (q=1+a):
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Some comments on T-fluctuations:

(*) Common expectation: slopes of pT
distributions ⇒ information on T

(*) Only true for q=1 case, otherwise it is
<T>, |q-1| provides us additional
information

(*) Example: |q-1|=0.015 ⇒ ∆T/T ≈ 0.12

(*) Important: these are fluctuations existing
in small parts of the hadronic system with
respect to the whole system rather than of
the event-by-event type for which
∆T/T =0.06/√N →0 for large N

Utyuzh et al.. JP G26 (2000)L39

Such fluctuations are potentially very interesting
because they provide a direct measure of the total
heat capacity of the system
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Prediction: C ∼ volume of reaction V, therefore q(hadronic)>>q(nuclear)



Rapidity distributions:
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510;  PRD32 (1985) 1692

Features:
(*) two parameters: βq=1/Tq and q 

⇒ shape and height are strongly
correlated

(*) in usual application only β=1/T 
- but in reality ( ) 1/Zq=1 is always
used as another independent
parameter ⇒ height and shape
are fitted independently

(*) in q-approch they are correlated



q=1 q>1

NUWW   PRD67
(2003) 114002



(*) Input: √s, µT, <Ncharged>
(*) Fitted parameter: q, q-inelasticity κq

NUWW   PRD67
(2003) 114002
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(*) Inelasticity K:= fraction of the total energy √s, which goes into
observed secondaries produced in the central region of reaction

⇒very important quantity in cosmic ray research and statistical
models



NUWW   PRD67
(2003) 114002



NUWW   PRD67
(2003) 114002



NUWW   PRD67
(2003) 114002



(5)

Navarra et al.., NC 24C (2001)
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NUWW   PRD67 
(2003) 114002



Possible meaning of parameter q in rapidity
distributions

NUWW   PRD67
(2003) 114002

(*) From fits to rapidity distribution data
one gets systematically q>1 with some
energy dependence

(*) What is now behind this q?
(*) y-distributions ⇔ ‘partition temperature’

T≈K ·√s/N
(*) q ⇔ fluctuating T fluctuating N 

(*) Conjecture: q-1 should measure amount
of fluctuation in P(N)

(*) It does so, indeed, see Fig. where data
on q obtained from fits are superimposed
with fit to data on parameter k in
Negative Binomial Distribution!



Parameter q as measure of dynamical fluctuations
in P(N)

(*) Experiment: P(N) is adequately described by NBD 
depending on <N> and k (k≥1) affecting its width:

(*) If 1/k is understood as measure of fluctuations of <N> then

with

(*)               one expects: q=1+1/k    what indeed is observed
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(P.Carruthers,C.C.Shih,
Int.J.Phys. A4 (1989)5587)



Multiplicity Distributions: (UA5, DELPHI, NA35)

Kodama et al..
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<n> =                            21.1;       21.2;        20.8
D2 = <n2>-<n>2 =       112.7;      41.4;         25.7

Deviation from Poisson:  1/k

1/k = [D2-<n>]/<n2> = 0.21;     0.045;       0.011



Recent example from AA -(1) (RWW, APP B35 (2004) 819)

With increasing centrality
fluctuations of the multiplicity
become weaker and the
respective multiplicity
distributions approach
Poissonian form.

???
Perhaps: smaller NW⇒ smaller
volume of interaction V⇒
smaller total heat capacity C⇒
greater q=1+1/C ⇒ greater
1/k = q-1

Dependence of the NBD parameter 1/k on
the number of participants for NA49 and
PHENIX data



Recent example from AA – (2) (RWW, APP B35 (2004) 819)

In this case it can be shown that:
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(← for p/e=1/3)

⇒q≈1.59  which apparently
(over)saturates the limit 
imposed by Tsallis statistics:  
q≤1.5 . For q=1.5 one has:  

0.33 → 0.28 (in WL)
or

1/3 → 0.23  (in EoS)
Dependence of the NBD parameter 1/k
on the number of participants for NA49
and PHENIX data
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Example of use of MaxEnt method
applied  to some NA49 data for π –

production in PbPb collisions
(centrality 0-7%)   - (I) :

(*) the values of parameters used:
q=1.164
K=0.3
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Example of use of MaxEnt method
applied  to some NA49 data for π –

production in PbPb collisions (centrality
0-7%)   - (I) :

(*) the values of parameters used (red line)
q=1.2
K=0.33  

(*) q=1, two sources of mass M=6.34 GeV
located at |y|=0.83

this is example of adding new
dynamical assumption



NUWW, Physica A340 (2004) 467

Transverse momentu
spectra from UA1 with
TT=1/βT  and qT equal to:
(0.134;1.095 ) for E=200 GeV
(0.135;1.105)             540
(0.14; 1.11)                900
Notice: qT < qL

q≈qL
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M.Gaździcki et al.., Phys. Lett. B517 (2001) 250 : Power law in hadron
production (I)

(a) (b)

(a) Mean multiplicity of neutral mesons (full dots) scaled to ρ(m)=C·m –P and µT spectra of π0

mesons (full triangles) scaled to ρ(mT)=C·mT
–P produced in pp interactions at √s=30 GeV;

different quarkonia spectra at √s=1800GeV.
(b) The ρ(mT)=C·mT

–P  spectra for pp at √s=540 GeV (solid line, dashed line show the
corresponding fits to the results at 30 GeV and 1800 GeV). 
P=7.7 (for quarkonia at 1800 GeV)  to  10.1 (for neutral mesons at 30 GeV). In all cases
considered the values of the constant C were the same (important!).



M.Gaździcki et al.., Phys. Lett. B517 (2001) 250 : Power law in hadron
production (II)

(*) Authors: ‘...The Boltzmann function exp(-E /T) appearing
in the standard statistical mechanics has to be substituted by a 
power-law function (-E /T)-P.’

(*) What does it mean? Our proposition: look at the nonextensive
statistics where P≈1/(q-1) (or q≈1+1/P = 1.1 – 1.13) and treat
this result as a new, strong imprint of nonextensivity present
in multiparticle production processes. 

(*) Can this result be explained in some dynamical way?
Our answer: yes, provided we are willing to accept novel
view of the hadron production process and treat it as
formation of specific stochastic network (WW APPB 35(2004) 2141)



Summary (I)

(*)  In many places one observes simple “exponential” or 
“exponential-like” behaviour of some selected distributions 

(*)  Usually regarded to signal some “thermal” behaviour they
can also be considered as arising because insufficient information
which given experiment is providing us with

(*)  When treated by means of information theory methods (MaxEnt
approach) the resultant formula are formally identical with those 
obtained  by thermodynamical approach but their interpretation
is different and they are valid even for systems which cannot
be considered to be in thermal equilibrium.

(*)  It means that statistical models based on this approach have
more general applicability then naively expected.



Summary (II)

(*) Therefore: Statistical models of all kinds are widely used as source of
some quick reference distributions. However, one must be aware of the
fact that, because of such (interrelated) factors as:
- fluctuations of intensive thermodynamic parameters
- finite sizes of relevant regions of interaction/hadronization
- some special features of the „heath bath” involved in a given process
the use of only one parameter T in formulas of the type

exp[ - x/T]

is not enough and, instead, one should use two (... at least...) 
parameter formula

expq[ - x/T0] =[1-(1-q) x/T0]1/(1-q)

with q accounting summarily for all factors mentioned above.
(*) In general, for small systems, microcanonical approach would be 

preferred (because in it one effectively accounts for all
nonconventional features of the heat bath...) (D.H.E.Gross, LNP 602)



The end



Possible connection with networks ...(I) 
(WW, APP B35(2004) 2141)

(*) Prompted by the observation of the power-like behaviour of the mT spectra
we have considered a possibility that :
they can be a reflection not so much of any special kind of equilibrium
(resulting in some specific statistics) but rather of the formation process
resembling the free network formation pattern discussed widely in the
literature (Barabasi et al.. RMP 74 (2002) 47; WW, APP B35 (2004) 871)
(*) The power-law behaviour of spectra emerges naturally when:

- hadrons are formed in process of⎯qq linking themselves by gluons
- one identifies vertices in such network as (⎯qq) pairs and gluons as links
- one assumes that the observed mT of hadrons reflects somehow the number

of links k (i.e., gluons) in such network (α - diffusion parameter): 
mT ≈ kα

The distribution of number of links in the network has form:
P(k) ≈ k -γ (with γ≤ 5)

As result one gets:
P(mT) ≈ mT

-β ;    β = 1+(γ-1)/α
where γ =1+δ and δ is parameter defining the rate of growth of our network.



Possible connection with networks ...(II)

(*) The power-like distribution P(k) ≈ k -γ corresponds to large excitations
where probability of connecting a new quark to the one already existing in the
system depends on the number of the actual connections realised so far ⇒ large
number of connections results in large excitations ⇒ large emission of gluons
⇒ enhances chances of connection to such a quark.
(*) If one assumes instead that the new quark attaches itself to the already
existing one with equal probability (a case of small excitations, i.e., small pT)
then one gets instead exponential distribution of links:

P(k) ≈ exp[ - k/<k> ]
which results in P(mT) ranging from:

P(mT) ≈ exp[ - mT
2/ <mT

2> ]    for   α=1/2
when the full fledged diffusion is allowed, to

P(mT) ≈ exp[ - mT/ <mT> ]       for   α=1
where there is no diffusion (this would be the case of quarks located on the
periphery of the hadronization region in which case they could interact only
with interior quarks ⇒ mT≈ k).



Insertion on networks - beginning



Erdös-Rényi model
(1960)

- Democratic

- Random

PálPál ErdösErdös
(1913-1996)

Connect with 
probability p

p=1/6
N=10 

〈k〉 ~ 1.5 Poisson distribution



〈k〉 ~ 6

P(k=500) ~ 10-99

NWWW ~ 109

⇒ N(k=500)~10-90

What did we expect?

We find:

Pout(k)  ~ k-γout

P(k=500) ~ 10-6

γout= 2.45 γ in  = 2.1

Pin(k)  ~ k- γin

NWWW ~ 109

⇒ N(k=500) ~ 103



What does it mean?
Poisson distribution

Exponential Network

Power-law distribution

Scale-free Network





Most real world networks have 
the same internal structure:

Scale-free networks

Why?

What does it mean?



Scale-free model
(1) GROWTH :
At every timestep we add a new node with m edges 
(connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT :
The probability Π that a new node will be connected to 
node i depends on the connectivity ki of that node jj

i
i k

kk
Σ

=Π )(

P(k) ~k-3

A.-L.Barabási, R. Albert, Science 286, 509 (1999)



Mean Field Theory
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A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)



Networks from the Tsallis’ point of view...(WW, APP B35 (2004) 871)

The probability distribution of connections in the WWW network
fitted by Tsallis formula with q=1.65 and λ0 =1.91. It reproduces
the observed mean <k>= λ0 /(2-q)=5.45 and leads to the asymptotic
power-like distribution ∝ k -γ with γ =q/(q-1) =2.54(dotted line).



Insertion on networks - end
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Other posible interpretation of q-parameter (Kodama et 
al..)

(*) Proposition of yet another dynamical origin of power-laws (Kodama et al.., 
cond-mat/0406732 and 36):                supercorrelated systems ⇒ q-clusters
(*) Motivated by observation (Berges et al.., hep-ph/0403234) that dynamics of
quantum scalar fields exhibits a prethermalization behaviour : thermodynamical
relations become valid long before the real thermal equilibrium is attained.
(*) Possible realisation: strong correlations among some variables (leading to
clustration):

Example: system composed of N particles
with strong correlation among any q of
them and with dynamical evolution such
that, for a given number of q-clusters, the
configuration of the system tries to
minimize the energy of the correlated
subsystem (i.e., the system first generates
correlations among particles minimizing
the energy in the clusters) ⇒ power law  
distribution discussed before with the same
q-parameter .                                                      



(Kodama et al.. cond-mat/046732)

Example how the existence of dynamical correlations leads to a preequilibrium state
of the system:

(a) (b)

Energy spectrum after a given number of collisions per particle, starting
from a distribution peaked at E=125 GeV:
(a) correlated system ⇒ non-Boltzmann distribution fitted by Tsallis

distribution with β =0.39 GeV –1 and q=1.42
(b) uncorrelated system ⇒ Boltzmann distribution (equilibration needs

10 times more steps now!)



Explanations of results from NUWW, hep-ph/0312136 
(Physica A344(2004)568)

(a) Fit to pp data as before: q=1.05 – 1.33 going from E=20 GeV to E=1800GeV 
whereas ‘partition temperature’ Tq =1.76 GeV – 62.57 GeV

(b) PHOBOS most central data (on pseudorapidity distributions η) fitted with
Kq=1 and (q;E)=(1.29; 19.6 GeV), (1.26; 130 GeV), (1.27; 200 GeV). The
structure visible at the centre can be fitted only with more sophisticated
approaches discussed before (cf. NA49 data)

(c) ALEPH data for e+e – annihilations at 91.2 GeV. Here:                                   
- by definition Kq=1 only
- only q<1 (here: q=0.6) gives reasonably fit
- minimum at y=0 cannot be fitted in simplest approach

Possible explanation of q<1:                                                           
In this case temperature T does not reach an equilibrium state because now
T=T0-(1-q)E, instead of remaining constant: T=T0, as is the case for q>1.     
We have a kind of dissipative transfer of energy from the region where T is
higher (here: from q-jets to gluons and qq pairs) to observed hadrons.



NUWW, hep-ph/0312136 (Physica A344(2004))568)



Examples of some special y-distributions

(*) Nonextensive spectra obtained for different parameter q practically coincide
with extensive spectra produced by masses M*=M/(3-2q)⇔ Fig. (a)

(*) Extensive spectra obtained for composition of smaller masses producing, 
respectively, smaller number of secondaries practically coincide if M/N=const ⇔
Fig. (b); otherwise differ drastically ⇔ Fig. (c)

(*) The pT growing towards the centre of rapidity phse space (‘minijets’?) has
dramatic effect on spectra⇔ Fig. (d) (q=1)

(*) The effect of momentum-dependent residual interactions (q=1):

⇔Fig. (e)   (Schenke, Greiner, J.Phys. G30 (2004) 597)

(*) Example of effect of two superimposed sources separated in rapidity by 2∆y 
with combined energies and masses equal M ⇔ Fig. (f)

[ ]|sinh|coshexp1)( yy
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NUWW, Physica A340 (2004) 467



Explanations of results from NUWW, hep-ph/0312166 
(Nukleonika 49 (2004) S19)

Scheme of the CAS model: it visualizes the
possible fractal structure of hadronization
process (hadronizing source) and
encompasses a large variety of <N(s)>.

(UWW, PRD61 (1999) 034007

Confrontation of e+e – annihilation
data with two different general
schemes:

(*) general statistical approach:
gives only distribution in the
phase space once initial
energy M and multiplicity N 
are given

(*) general cascade model:
once initial energy M is given
it provides both:
- the multiplicity N and
- distribution in the phase space



CAS

MaxEnt

Kq=1
q=0.6

(UWW, PRD61 (1999) 034007



Potentially very important result from AA collisions concerning
fluctuations (MRW, nucl-th/0407012)

for  AA collisions the
usual superposition
model does not work
when applied to 
fluctuations (signal
for the phase transition
to Quark-Gluon-Plasma
phase of matter?...)



Examples of some special y-distributions

(*) Nonextensive spectra obtained for different parameter q practically coincide
with extensive spectra produced by masses M*=M/(3-2q)⇔ Fig. (a)

(*) Extensive spectra obtained for composition of smaller masses producing, 
respectively, smaller number of secondaries practically coincide if M/N=const ⇔
Fig. (b); otherwise differ drastically ⇔ Fig. (c)

(*) The pT growing towards the centre of rapidity phse space (‘minijets’?) has
dramatic effect on spectra⇔ Fig. (d) (q=1)

(*) The effect of momentum-dependent residual interactions (q=1):

⇔Fig. (e)   (Schenke, Greiner, J.Phys. G30 (2004) 597)

(*) Example of effect of two superimposed sources separated in rapidity by 2∆y 
with combined energies and masses equal M ⇔ Fig. (f)
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yp TT λµβµ −−=
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NUWW, Physica A340 (2004) 467



NUWW, Physica A340 (2004) 467 M=200 GeV; N=60;  <pT>=0.4 GeV/c
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