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Abstract

The ellipsoidally symmetric extension of Buda–Lund hydrodynamic model is shown here to yiel
a natural description of the pseudorapidity dependence of the elliptic flowv2(η), as determined re
cently by the PHOBOS experiment for Au+ Au collisions at

√
sNN = 130 and 200 GeV. With the

same set of parameters, the Buda–Lund model describes also the transverse momentum de
of v2 of identified particles at mid-rapidity. The results confirm the indication for quark decon
ment in Au+Au collisions at RHIC, obtained from asuccessful Buda–Lund hydro model fit to t
single particle spectra and two-particle correlation data, as measured by the BRAHMS, PH
PHENIX and STAR Collaborations.
 2004 Elsevier B.V. All rights reserved.

“Nuclei, as heavy as bulls, through collision, generate new states of matter.” (T.D. Lee)

1. Introduction

Ultra-relativistic collisions of almost fully ionized Au atoms are observed in four m
experiments at the RHIC accelerator at the highest currently available colliding en
of

√
sNN = 200 GeV to create new forms of matter that existed before in nature o
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few microseconds after the big bang, the creation of our Universe. At lower bomba
energies at CERN SPS, collisions of Pb nuclei were studied in the

√
sNN = 17 GeV energy

domain, with a similar motivation. If experiments are performed near to the produ
threshold of a new state of matter, perhaps only the most violent and most central co
are sufficient to generate a transition to a new state. However, if the energy is well
the production threshold, new states of matter may appear already in the mid-cen
even more peripheral collisions. Hence the deviation from axial symmetry of the obs
single particle spectra and two-particle correlation functions can be utilized to charac
the properties of such new states.

The PHENIX, PHOBOS and STAR experiments at RHIC produced a wealth of i
mation on the asymmetry of the particle spectra with respect to the reaction plane
characterized by the second harmonic moment of the transverse momentum distr
frequently referred to as the “elliptic flow” and denoted byv2. This quantity is determined
for various centrality selections, as a function of the transverse mass and particle
mid-rapidity as well as a function of the pseudo-rapidityη = 0.5 log( |p|+pz

|p|−pz
). Pseudora

pidity measures the zenithal angle distribution in momentum space, but for particles wit
high momentum,|p| ≈ E|p|, it approximates the rapidityy = 0.5 log(E+pz

E−pz
) that charac-

terizes the longitudinal momentum distribution and transforms additively for longitu
boosts, hence the rapidity densitydn/dy is invariant for longitudinal boosts. The PHO
BOS Collaboration found [3], thatv2(η) is a strongly decreasing function of|η|, which
implies that the concept of boost-invariance, suggested by Bjorken in Ref. [7] to char
ize the physics of very high energy heavy ion collisions, cannot be applied to charac
the hadronic final state of Au+ Au collisions at RHIC. A similar conclusion can be draw
from the measurement of the inhomogeneous (pseudo)rapiditydn/dη anddn/dy distrib-
utions of charged particle production at RHIC by both the BRAHMS [8] and PHOBOS
Collaborations, proving the lack of boost-invariance in these reactions, asdn/dy �= const
at RHIC. Although many models describe successfully the transverse momentum
dence of the elliptic flow at mid-rapidity,v2(pt , η = 0), see Refs. [10,11] for recent review
on this topic, to our best knowledge and an up-to-date scanning of the available hi
ergy and nuclear physics literature, no model has yet been able to reproduce the m
pseudo-rapidity dependence of the elliptic flow at RHIC.

Hence we present here the first successful attempt to describe the pseudo-rapi
pendence of the elliptic flowv2(η) at RHIC. Our tool is the Buda–Lund hydrodynam
model [12,13], which we extend here from axial to ellipsoidal symmetry. The Buda–
hydro model takes into account the finite longitudinal extension of the particle emittin
source, and we show here how the finite longitudinal size of the source leads natur
a v2 that decreases with increasing values of|η|, in agreement with the data. We descr
simultaneously the pseudorapidity and the transverse momentum dependence of
liptic flow, with a parameter set, that reproduces the single-particle transverse mom
and pseudo-rapidity distributions as well as the radius parameters of the two-particle
Einstein correlation functions, or HBT radii, in case when the orientation of the event
is averaged over. All these benefits are achieved with the help of transparent and

analytic formulas, that are natural extensions of our earlier results to the case of ellipsoidal
symmetry.
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2. Buda–Lund hydro for ellipsoidal expansions

The Buda–Lund model is defined with the help of its emission functionS(x,p), where
x = (t, rx, ry, rz) is a point in space–time andp = (E,px,py,pz) stands for the four
momentum. To take into account the effects of long-lived resonances, we utilize the
halo model [14], and characterize the system with a hydrodynamically evolving core
halo of the decay products of the long-lived resonances. Within the core–halo picture, th
measured intercept parameterλ∗ of the two-particle Bose–Einstein correlation functi
is related [14] to the strength of the relative contribution of the core to the total pa
production at a given four-momentum

S(x,p) = Sc(x,p) + Sh(x,p), (1)

Sc(x,p) = √
λ∗S(x,p). (2)

Based on the success of the Buda–Lund hydro model to describe Au+ Au collisions at
RHIC [15,26], Pb+Pb collisions at CERN SPS [16] andh+p reactions at CERN SPS [1
18], we assume that the core evolves in a hydrodynamical manner

Sc(x,p) d4x = g

(2π)3

pµ d4Σµ(x)

B(x,p) + sq
, (3)

whereg is the degeneracy factor (g = 1 for identified pseudoscalar mesons,g = 2 for
identified spin= 1/2 baryons), andpµ d4Σµ(x) is a generalized Cooper–Frye term, d
scribing the flux of particles through a distribution of layers of freeze-out hypersurf
B(x,p) is the (inverse) Boltzmann phase-space distribution, and the termsq is determined
by quantum statistics,sq = 0,−1, and+1 for Boltzmann, Bose–Einstein and Fermi–Dir
distributions, respectively.

For a hydrodynamically expanding system, the (inverse) Boltzmann phase-space
bution is

B(x,p) = exp

(
pνuν(x)

T (x)
− µ(x)

T (x)

)
. (4)

We will utilize some ansatz for the shape of the flow four-velocity,uν(x), chemical po-
tential,µ(x), and temperature,T (x) distributions. Their form is determined with the he
of recently found exact solutions of hydrodynamics, both in the relativistic [19–21] an
in the non-relativistic cases[22–24], with the conditions that these distributions are cha
acterized by mean values and variances, and that they lead to (simple) analytic formulas
when evaluating particle spectra and two-particle correlations.

The generalized Cooper–Frye prefactor is determined from the assumption th
freeze-out happens, with probabilityH(τ) dτ , at a hypersurface characterized byτ = const
and that the proper-time measures the time elapsed in a fluid element that moves t
with the fluid,dτ = uµ(x) dxµ. We parameterize this hypersurface with the coordin
(rx, ry, rz) and find thatd3Σµ(x|τ ) = uµ(x)d3x/u0(x). Using∂tτ |r = u0(x) we find that
in this case the generalized Cooper–Frye prefactor is
pµ d4Σµ(x) = pµuµ(x)H(τ) d4x. (5)
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This finding generalizes the result of Ref. [25] from the case of a spherically symm
Hubble flow to anisotropic, direction dependent Hubble flow distributions.

From the analysis of CERN SPS and RHIC data [15,16,26], we find that the prope
distribution in heavy ion collisions is rather narrow, andH(τ) can be well approximate
with a Gaussian representation of the Dirac-delta distribution

H(τ) = 1

(2π�τ2)1/2
exp

(
− (τ − τ0)

2

2�τ2

)
, (6)

with �τ � τ0.
Based on the success of the Buda–Lund hydro model to describe the axially sym

collisions, we develop an ellipsoidally symmetric extension of the Buda–Lund mode
goes back to the successful axially symmetric case [12,13,15,16,26] if axial symm
restored, corresponding to theX = Y andẊ = Ẏ limit of the model described below.

We specify a fully scale invariant, relativistic form, which reproduces known n
relativistic hydrodynamic solutions too, in the limit when the expansion is non-relativ
Both in the relativistic and the non-relativistic cases, the ellipsoidally symmetric,
similarly expanding hydrodynamical solutions can be formulated in a simple manner,
a scaling variables and a corresponding four-velocity distributionuµ, that satisfy

uµ∂µs = 0, (7)

which means thats is a good scaling variable if its co-moving derivative vanishes
20]. This equation couples the scaling variables and the flow velocity distribution. I
is convenient to introduce the dimensionless, generalized space–time rapidity variab
(ηx, ηy, ηz), defined by the identification of

(sinhηx,sinhηy,sinhηz) =
(

rx
Ẋ

X
, ry

Ẏ

Y
, rz

Ż

Z

)
. (8)

Here(X,Y,Z) are the characteristic sizes (for example, the lengths of the major ax
the expanding ellipsoid, that depend on proper-timeτ and their derivatives with respect
proper-time are denoted by(Ẋ, Ẏ , Ż). The distributions will be given in thisηi variables,
but the integral-form is the standardd4x = dt drx dry drz, so we have to take a Jacob
determinant into account. Eq. (7) is satisfied by the choice of

s = coshηx − 1

Ẋ2
f

+ coshηy − 1

Ẏ 2
f

+ coshηz − 1

Ż2
f

, (9)

uµ = (γ,sinhηx,sinhηy,sinhηz), (10)

and from here on(Ẋf , Ẏf , Żf ) = (Ẋ(τ0), Ẏ (τ0), Ż(τ0)) = (Ẋ1, Ẋ2, Ẋ3), assuming tha
the rate of expansion is constant in the narrow proper-time interval of the freez
process. The above form has the desired non-relativistic limit

s → r2
x

2X2
f

+ r2
y

2Y 2
f

+ r2
z

2Z2
f

, (11)

where again(Xf ,Yf ,Zf ) = (X(τ0), Y (τ0),Z(τ0)) = (X1,X2,X3). From now on, we
drop subscriptf . From the normalization condition ofuµ(x)uµ(x) = 1 we obtain that
γ =
√

1+ sinh2 ηx + sinh2 ηy + sinh2 ηz. (12)
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For the fugacity distribution we assume a shape, that leads to Gaussian profile in th
relativistic limit

µ(x)

T (x)
= µ0

T0
− s, (13)

corresponding to the solution discussed in Refs. [22,23,27]. We assume that the t
ature may depend on the position as well as on proper-time. We characterize the
temperature distribution similarly to the shape used in the axially symmetric mod
Refs. [12,13], and discussed in the exact hydro solutions of Refs. [22,23]

1

T (x)
= 1

T0

(
1+ T0 − Ts

Ts

s

)(
1+ T0 − Te

Te

(τ − τ0)
2

2�τ2

)
(14)

whereT0, Ts andTe are the temperatures of the center, and the surface at the mean free
out timeτ0, while Te corresponds to the temperature of the center after most of the pa
emission is over (cooling due to evaporation and expansion). Sudden emission correspo
to Te = T0, and the�τ → 0 limit. It is convenient to introduce the following quantities:

a2 = T0 − Ts

Ts

=
〈
�T

T

〉
r

, (15)

d2 = T0 − Te

Te

=
〈
�T

T

〉
t

. (16)

In the above approach we assume the validity of the concept of local thermalizatio
the concept of ellipsoidal symmetry at the time of particle production. We do not k
what freeze-out condition is realized exactlyin Nature. Our above formulas can be a
considered as a general, second order Taylor expansion of the inverse temperature a
logarithmic fugacity distributions, which maintains ellipsoidal symmetry. We attem
determine the coefficients of this Taylor expansion from the data in the subsequen
As the saddle-point calculation presented below is sensitive only to second orde
lor coefficients, any model that has similar second order expansion leads to similar r
A more theoretical approach is to solve relativistic hydrodynamics for ellipsoidally expan
ing fireballs and to apply the presently most advanced freeze-out criteria, for example t
method of escaping probabilities developed by Akkelin, Hama and Sinyukov in Ref.

We also note that the applied distribution of freeze-out temperatures goes back to
dynamical calculation of Ref. [29]. This calculation starts from an initial condition a
τ = 3.5 fm/c, which was given by a parton cascade model (PCM) calculation for Au+ Au
collisions at

√
sNN = 200 GeV. This initial condition is followed by a three-dimensiona

Hubble flow. In addition, this dynamical calculation determined the thermodynamic
constraints of entropy and local energy–momentum conservation for a sudden tim
deflagration from a supercooled quark–gluon plasma (QGP) phase to a pion gas
Such a transition may start at a constant proper-time, at some (position independen
of the local temperature, that corresponds to the supercooled quark–gluon plasma
phase. Such sudden hadronization from a supercooled QGP phase can be realize
the large characteristic nucleation times of hadronic bubbles inside a supercooled Q

Ref. [29] for details. The strong three-dimensional expansion leads to negative pressures,
mechanical instabilities and the resulting timelike deflagration may produce hadronic final
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states in the hatched area of Fig. 1 of Ref. [29]. Half of this area corresponds to super
hadron gas, withhadronic temperatures in the range of 1.0–1.4Tc, while half of available
final states are hadron gas states below the critical temperature, with hadronic temperatu
of 0.8–1.0Tc. Thus it is reasonable to assume, that in a realistic situation, the hadro
nal states correspond to a range of temperatures even if the transition starts from th
temperature everywhere on a constant proper-time hypersurface. The variation can only
increased if the temperature of the prehadronic state happened to be inhomogeneou
a constant proper-time hypersurface. This is why we have assumed in the presen
that the hadronic temperatures may be position dependent on a constant proper-t
persurface. Instead of using a priori assumptions, we determine the parameter values of
hadronic local temperature distribution a posteriori, from recent data on Au+Au collisions
at RHIC.

3. Integration and saddlepoint approximation

The observables are calculated analytically from the Buda–Lund hydro model,
a saddle-point approximation in the integration. This approximation is exact both in th
Gaussian and the non-relativistic limit, and ifpνuν/T � 1 at the point of maximal emit
tivity. In this approximation, the emission function looks like

S(x, k) d4x = g

(2π)3

pµuµ(xs)H(τs)

B(xs,p) + sq
exp

(−R−2
µν (x − xs)

µ(x − xs)
ν
)
d4x, (17)

where

R−2
µν = ∂µ∂ν

(− ln(S0)
)
s
, (18)

andxν stands here for(τ, rx, ry, rz). In the integration, a Jacobianτ/t has to be introduce
when changing the integration measure fromd4x to dτ d3x.

The position of the saddle-point can be calculated from the equation

∂µ

(− ln(S0)
)
(xs,p) = 0. (19)

Here we introducedS0, as the “narrow” part of the emission function:

S0(x,p) = H(τ)

B(x,p) + sq
. (20)

In general, we get the following for the saddle-point in(τ, ηx, ηy, ηz) coordinates:

τs = τ0, (21)

sinhηi,s = piẊ
2
i coshηi,s

T (xs)
(
1+ a2 pµuµ(xs)

T0

) + p0
coshηi,s

γ (xs)
Ẋ2

i

. (22)

The system of equations (22) can be solved efficiently for the saddle-point positionηs,i

using a successive approximation. This method was implemented in our data analy

the widths of the distributions, we obtained exact analytic results, given in terms ofηs,i

that we determined from the successive approximations. We have used the full expressions,
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obtained simply with the help of derivations at the saddle-point, for the evaluation o
observables and for the comparison with the data. However, we summarize here o
leading order approximative result, due to reasons of clarity and transparency.

In the simplest case, where all threeηi,s are small:

ri,s

Xi

=
pi

T0
Ẋi

1+ X2
i

R2
T ,i

, for i = x, y, z, (23)

1

R2
i,i

= B(xs,p)

B(xs,p) + sq

(
1

X2
i

+ 1

R2
T ,i

)
, (24)

1

R2
0,0

= 1

�τ2∗
= 1

�τ2 + B(xs,p)

B(xs,p) + s

1

�τ2
T

. (25)

Eqs. (24), (25) imply, that the HBT radii are dominated by the smaller of the the
and the geometrical length scales in all directions, as found in Refs. [12,13]. Not
the geometrical scales stem from the density distribution, governed by the fugacit
exp[µ(x)/T (x)], while the thermal lengths originate from the local thermal momen
distribution exp[−pµuµ(x)/T (x)], and in the above limit they are

1

�τ2
T

= mt

T0

d2

τ2
0

, (26)

1

R2
T ,i

= mt

T0

(
a2

X2
i

+ Ẋ2
i

X2
i

)
. (27)

4. The invariant momentum distribution

The invariant momentum distribution can be calculated as

N1(p) =
∫

d4x S(x,p) = 1√
λ∗

∫
d4x Sc(p, x). (28)

The result is a simple expression:

N1(p) = g

(2π)3 ĒV̄ C̄
1

exp
(pµuµ(xs)−µ(xs)

T (xs)

) + sq

, (29)

where

Ē = pµuµ(xs), (30)

V̄ = (2π)3/2�τ∗
�τ

[
detR2

ij

]1/2
, (31)
C̄ = 1√
λ∗

τs

ts
. (32)
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Let us investigate the structure of this invariant momentum distribution, in particula
exponent of the spectrum. Let us introduce

b(xs,p) = logB(xs,p), (33)

and evaluate this exponent in the limit, where the saddle-point coordinates are all sm

b(xs,p) = p2
x

2m̄tT∗,x

+ p2
y

2m̄tT∗,y

+ p2
z

2m̄tT∗,z

+ m̄t

T0
− p2

t

2m̄tT0
− µ0

T0
, (34)

where the direction dependent slope parameters are

T∗,x = T0 + m̄t Ẋ
2 T0

T0 + m̄ta2 , (35)

T∗,y = T0 + m̄t Ẏ
2 T0

T0 + m̄t a2
, (36)

T∗,z = T0 + m̄t Ż
2 T0

T0 + m̄ta2
, (37)

and

m̄t = mt cosh(ηz,s − y). (38)

In the limit when we neglect the possibility of a temperature inhomogeneity on the free
out hypersurface,a = 0, and using a non-relativistic approximation ofm̄t ≈ m, we recover
the recent result of Ref. [27] for the mass dependence of the slope parameters of the single
particle spectra:

T∗,x = T0 + mẊ2, (39)

T∗,y = T0 + mẎ 2, (40)

T∗,z = T0 + mŻ2. (41)

5. The elliptic flow

Note, thatb(xs,p) is the only part of the IMD, that is explicitly angle dependent, so

N1(p) ∼ exp

(
− p2

x

2m̄tT∗,x
− p2

y

2m̄tT∗,y

)

= exp

(
− p2

t

2m̄tTeff
+

(
p2

t

2m̄tT∗,x

− p2
t

2m̄tT∗,y

)
cos(2ϕ)

2

)
, (42)

where

Teff = 1

2

(
1

T∗,x

+ 1

T∗,y

)
. (43)

So, we can easily extract the angular dependencies. Let us computev2 by integrating on
the angle:
v2 = I1(w)

I0(w)
, (44)
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where

w = p2
t

4m̄t

(
1

T∗,y

− 1

T∗,x

)
. (45)

Generally, we get from the definition

N1 = d3n

dpz pt dptdϕ
= d2n

2π dpzpt dpt

[
1+ 2

∞∑
n=1

vn cos(nϕ)

]
(46)

the following equations:

v2n = In(w)

I0(w)
, (47)

v2n+1 = 0. (48)

As first and the third flow coefficients vanish in this case, a tilt angleϑ has to be introduce
to get results compatible with observations, as discussed in the subsequent parts.

For large rapidities,|ηs − y| becomes also large, and̄mt = mt cosh(ηs − y) diverges,
hencew → 0. Thus we find a natural mechanism for the decrease ofv2 for increasing
values of|y|, as in this limit,v2 → I1(0)/I0(0) = 0.

6. Elliptic flow for tilted ellipsoidal expansion

Now, let us compute the elliptic flow for tilted, ellipsoidally expanding sources,
because we can get a non-vanishingv1 andv3 only this way, in case ofϑ �= 0, similarly
to the non-relativistic case discussed in Ref. [27]. The observables are determined
center of mass frame of the collision (CMS), where therx axis points to the direction o
the impact parameter and therz axis points to the direction of the beam. In this fram
the ellipsoidally expanding fireball, described in the previous sections, may be rotat
let us assume, that we relabel all thex andp coordinates in the previous parts with t
superscript′, e.g.,x → x ′ andp → p′, to indicate that these calculations were perform
in the system of ellipsoidal expansion (SEE), where the principal axis of the expa
ellipsoid coincide with the principal axis of SEE. In the following, we use the unprim
variables to denote quantities defined in the CMS, the frame of observation.

We assume, that the initial conditions of the hydrodynamic evolution correspon
rotated ellipsoid in CMS [27]. The tilt angleϑ represents the rotation of the major (lo
gitudinal) direction of expansion,r ′

z, from the direction of the beam,rz. Hence the even
plane is the(r ′

x, r ′
z) plane, which is the same, as the(rx, rz) plane. The (zenithal) angl

between directionsrz andr ′
z is the tilt angleϑ , while (azimuthal) angleϕ is between the

event plane and the direction of the transverse momentumpt .
From the invariant momentum distribution,vm can be calculated as follows:

vm =
2π∫ dn

dpz pt dptdϕ

dn
dpzpt dpt 2π

cos(mϕ)dϕ. (49)
0

We have made the coordinate transformation
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p′
x = px cosϑ − pz sinϑ, (50)

p′
y = py, (51)

p′
z = pz cosϑ + px sinϑ, (52)

and in addition:

px = pt cosϕ, (53)

py = pt sinϕ, (54)

and calculated the transverse momentum and the pseudorapidity dependence ofv2, for
a parameter set determined from fitting the axially symmetric version of the Buda–
hydro model to single particle pseudo-rapidity distribution of BRAHMS [8] and PH
BOS [9], the mid-rapidity transverse momentum spectra of identified particles as me
by PHENIX [30,31] and the two-particle Bose–Einstein correlation functions or HBT
as measured by the PHENIX [32] and STAR [33] Collaborations.

We determined the harmonic moment of Eq. (49) numerically, for the case ofm = 2,
but using the analytic expression of Eq. (29) for the invariant momentum distribution,
puting the coordinates of the saddle point with a successive approximation. The suc
approximation means a loop here instead of solving the non-analytic saddle-point
tions. We have chosen a loop long enough and have checked that an even long
will not modify the results. This was the same with the width of the integration-step
integratedN1(p) over pt , as the data were taken this way, too. Finally, we were ab
describev2(η = 0,pt ) andv2(η) with the same set of parameters.

The results are summarized both in Figs. 1 and 2. We find that a small asymmetry
expansion gives a natural description of the transverse momentum dependence ofv2. The
parameters are taken from the previous Buda–Lund hydro model fits to the two-p
Bose–Einstein correlation data (HBT radii) and the single particle spectra of Au+ Au
collisions at

√
sNN = 130 GeV, Refs. [15,26], where the axially symmetric version of

model was utilized. Here we have introduced parameters that control the asymmetry of t
expansion in theX andY directions such a way that the angular averaged, effective so
is unchanged. For example, we required that the effective temperature,Teff of Eq. (43)
is unchanged. We see on Figs. 1 and 2 that this method was successful in repro
the data on elliptic flow, with a small asymmetry between the two transverse expa
rates.

The identified particle elliptic flow measurement of PHENIX used a method of d
mining the reaction plane from the particles at large rapidities, hence its results a
significantly affected by non-flow correlations, see Ref. [1]. Fig. 1. illustrates the quality
agreement between our Buda–Lund model calculation and this PHENIX data set. Fr
parameter values corresponding to Fig. 1, we calculate the value of thev2(η = 0) and find
that this value is below the published PHOBOS data point at mid-rapidity by 0.02.

that in order to computev2(η), one has to integrateN1(η,pt , φ) overpt first, and deter-
mine the elliptic flow from thept integrated,η andφ dependent spectra, as the PHOBOS
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Fig. 1. Buda–Lund model calculation and thev2(pt , η = 0) data. Ellipsoidally symmetric Buda–Lund calculatio
compared to the PHENIXv2(pt ) data of identified particles [1]. The parameter set is:T0 = 210 MeV,Ẋ = 0.57,
Ẏ = 0.45, Ż = 2.4, a = 1, τ0 = 7 fm/c, ϑ = 0.09,Xf = 8.6 fm, Yf = 10.5 fm, Zf = 17.5 fm, µ0,π = 70 MeV,
µ0,K = 210 MeV andµ0,p = 315 MeV, and the masses are taken as their physical value.

Fig. 2. Buda–Lund model calculation and thev2(η) data. This image compares the ellipsoidally symme
Buda–Lund model to the 130 GeV Au+ Au and 200 GeV Au+ Au v2(η) data of PHOBOS [3,4]. Here w
used the same parameter set as in Fig. 1, with pion mass and chemical potential, and indicated a system

corresponding to a non-flow parameter of 0.01, on the PHOBOS data. The parameters of the Buda–Lund model
are determined here from other observables, they will be optimized tov2(η) data in a subsequent publication.
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Table 1
The table shows the parameter set used to describe
the data. Note, thata2 = (T0 − Ts)/Ts , see Eq. (15)

Parameter Value

T0 210 MeV
Ẋ 0.57
Ẏ 0.45
Ż 2.4
a 1
τ0 7 fm/c

�τ 0 fm/c

ϑ 0.09
Xf 8.6 fm
Yf 10.5 fm
Zf 17.5 fm
µ0,π 70 MeV
µ0,K 210 MeV
µ0,p 315 MeV

data were taken this way, too. Because of this, there is no simple mathematical connect
betweenv2(pt , η = 0), andv2(η) as they do not stem from a commonv2(pt , η) function.

The PHOBOS Collaboration pointed out the possible existence of a non-flow con
tion in theirv2 data, see Ref. [3], as they did not utilize the fourth order cumulant meth
determinev2. We attribute the 0.02 difference between the present Buda–Lund mode
culation and the PHOBOS data point at mid-rapidity to such a non-flow contribution
The magnitude of the non-flow contribution hasbeen explicitly studied (but in a differen
acceptance, at mid-rapidity) by the STAR Collaboration. STAR found that its value is o
the order of 0.01 for mid-rapidity minimum bias data in the STAR acceptance, Ref. [5]

The good description of thedn/dη distribution by the Buda–Lund hydro model [15,2
is well reflected in the good description of shape of the pseudo-rapidity dependence of
elliptic flow. Thus the finiteness of the expanding fireball in the longitudinal direction an
the scaling three-dimensional expansion is found to be responsible for the experimenta
observed violations of the boost invariance of both the rapidity distribution and that
collective flowv2.

Table 1 summarizes the parameter values corresponding to Figs. 1 and 2. These
a high,T0 > Tc = 170 MeV central temperature, witha cold surface temperature ofTs ≈
105 MeV. The success of this description suggests that a small fraction of pions m
escaping from the fireball from a superheatedhadron gas, which can be considered as
indication, that part of the source of Au+ Au collisions at RHIC may be a deconfine
matter withT > Tc.

Let us determine the size of the volume that is above the critical temperature. With
picture, one can find the critical value ofs = sc from the relation thatT0/(1 + asc) = Tc.
Using T0 = 210 MeV,Tc = 170 MeV, anda = 1 we findsc = 0.235. The surface of th
ellipsoid withT � Tc is given by
r2
x

X2
c

+ r2
y

Y 2
c

+ r2
z

Z2
c

= 1. (55)
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The principal axes of the “critical” ellipsoid are given byXc = Xf
√

sc � 4.2 fm, Yc =
Yf

√
sc � 5.1 fm, Zc = Zf

√
sc � 8.5 fm, hence the volume of the ellipsoid withT > Tc is

Vc = 4π
3 XcYcZc ≈ 753 fm3.

Note, however, that the characteristic average or surface temperature of the fireb
within this model isTs = T0/(1 + a) ≈ 105 MeV. So the picture is similar to a snow-b
which has a melted core inside.

Our study shows that this picture is consistent with the pseudorapidity and tran
mass dependence ofv2 at RHIC in the softpt < 2 GeV domain, however, it is not yet
direct proof of the existence of a new phase. Among others, we have to determine pr
the errors on the best fit parameters and to determine the confidence levels of the fits
will be a subject of further research.

In discussing the significance of the results, it is useful to compare it to other ca
tions to find similarities and differences as well as to map out directions for possible f
research. For us the key point is not the good agreement between the model and t
but the analytic insight and the functional relationships between the model paramete
the observables. We checked the model against the data only to demonstrate that w
a good track to understand the rapidity dependence of the elliptic and higher order flow
but the fine-tuning of the model parameters is a subject of further investigations.

It seems, that our most important result are Eqs. (38), (45), (47), (48), that explai
lytically why all higher order flows vanish at very forward or backward rapidities. Du
the finite longitudinal size of the source, the point of maximal emittivity moves to the
mit of the expanding ellipsoid as the rapidityis increased to high values. Due to the Hub
flow, the transverse momentum distribution has negligible transverse flow contributi
this point, the local temperature plays the dominant role. However, the local tempe
contributes equally in both transverse directions, hence all second and higher orde
vanish at very forward rapidities. Similar observations hold in the very backward dire
due to symmetry reasons.

When comparing to earlier calculations, weobserve that the two key features, the fin
longitudinal size and the three-dimensional Hubble flow were not present simultane
in other works as far as we know. Also, the temperature variations, the cooling on th
face were not considered by other attempts to understand elliptic flow. For example, H
and Tsuda considered a three-dimensional numerical solution of relativistic hydrod
ics in Ref. [35]. Their model is not too far from the considerations presented here
have a finite longitudinal extension of the source and a well developed transverse
mid-rapidity. Their Fig. 9 indicates that they obtained a vanishing elliptic flow at very
ward and backward rapidities. However, theyutilized a Bjorken type initial condition, an
the concept of a constant freeze-out temperature. As a result, their elliptic flow is ap
imately rapidity independent near mid-rapidity, which is not surprising, given the b
invariant initial condition for the flow velocity distribution. Hirano studied in Ref. [36] th
effects of short lived resonance decays on the rapidity dependence of the elliptic fl
SPS energies. His result is that resonance decays yield a negative non-flow contr
ranging from−0.15 at mid-rapidity to about−0.05 at forward and backward rapidities. W
did not explore the consequences of such an effect here, however, its magnitude i

the size of the error bars on the PHOBOS data. This is one of the interesting directions that
can be explored in further studies, and the importance of this effect will increase at RHIC
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as more and more high statistics, precision measurements will be available on the
flow.

7. Summary and conclusions

We have generalized the Buda–Lund hydro model to the case of ellipsoidally symm
expanding fireballs. As we derived simple formulas for the rapidity and transverse mo
tum dependence of the elliptic flow, we gave qualitative as well as analytic insight
rapidity dependence of the elliptic flow.

When comparing to data, we kept the parameters determined from earlier fits to th
single particle spectra and the two-particle Bose–Einstein correlation functions
radii) [15,26], and interpreted them as angularaverages for the direction of the reacti
plane. Then we found that a small splitting between the expansion rates parallel and tra
verse to the direction of the impact parameter, as well as a small zenithal tilt of the p
emitting source is sufficient to describe simultaneously the transverse momentum
dence of the elliptic flow of identified particles [1] at mid-rapidity in Au+ Au collisions at√

sNN = 200 GeV. Already with this simple method, we describe qualitatively the pse
rapidity dependence of the collective flow as measured in Refs. [3,4], taking into ac
an overall 0.01 systematic error on these data points, as estimated in Ref. [5]. As Fig
dicates, for the given parameter set the Buda–Lund model systematically under-es
the pseudo-rapidity dependent elliptic flow, within 2–3 standard deviations at each
but the shape is well reproduced. The best fit parameters tov2(pt , η) will be determined
from an automatized fit parameter optimization in a subsequent publication.

The results support the indication for quark deconfinement at RHIC found in
[15,26], based on the observation, that some of the particles are emitted from a regio
higher than the critical temperature,T > Tc = 170 MeV. We estimated that the size
this volume is about (1/8)th of the total volume measured on theτ = τ0 main freeze-ou
hypersurface, totaling of about 753 fm3. However, the analysis indicates that the aver
or surface temperature is rather cold,Ts ≈ 105 MeV, so approximately 7/8 of the particles
are emitted from a rather cold hadron gas.
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