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Abstract

The ellipsoidally symmigic extension of Buda—Lund hydrodyméc model is shown here to yield
a natural description of the pseudpidity dependence of the elliptic flow (), as determined re-
cently by the PHOBOS experiment for AuAu collisions at,/syx = 130 and 200 GeV. With the
same set of parameters, the Buda—Lund model describes also the transverse momentum dependence
of v of identified particles at mid-rapidity. The results confirm the indication for quark deconfine-
ment in Awt+Au collisions at RHIC, obtained from successful Buda—Lund hydro model fit to the
single particle spectra and two-particle correlation data, as measured by the BRAHMS, PHOBOS,
PHENIX and STAR Collaborations.
0 2004 Elsevier B.V. All rights reserved.

“Nuclei, as heavy as bulls, through collision, generate new states of matter” (T.D. Lee)

1. Introduction

Ultra-relativistic collisions of almost fully ionized Au atoms are observed in four major
experiments at the RHIC accelerator at the highest currently available colliding energies
of ./syn = 200 GeV to create new forms of matter that existed before in nature only a
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few microseconds after the big bang, the creation of our Universe. At lower bombarding
energies at CERN SPS, collisions of Pb nuclei were studied igy#fagy = 17 GeV energy
domain, with a similar motivation. If experiments are performed near to the production
threshold of a new state of matter, perhaps only the most violent and most central collisions
are sufficient to generate a transition to a new state. However, if the energy is well above
the production threshold, new states of matter may appear already in the mid-central or
even more peripheral collisions. Hence the deviation from axial symmetry of the observed
single particle spectra and two-particle correlation functions can be utilized to characterize
the properties of such new states.

The PHENIX, PHOBOS and STAR experiments at RHIC produced a wealth of infor-
mation on the asymmetry of the particle spectra with respect to the reaction plane [1-6],
characterized by the second harmonic moment of the transverse momentum distribution,
frequently referred to as the “elliptic flow” and denotediby This quantity is determined,
for various centrality selections, as a function of the transverse mass and particle type at
mid-rapidity as well as a function of the pseudo-rapidity O. 5Iog( :+”7) Pseudora-
pidity measures the zenithahgle distribution in momentu space, but for particles with
high momentum|p| ~ E|,|, it approximates the rapidity = 0. 5Iog(E+p~) that charac-
terizes the longitudinal momentum distribution and transforms additively for longitudinal
boosts, hence the rapidity densifyt/dy is invariant for longitudinal boosts. The PHO-
BOS Collaboration found [3], thatx(n) is a strongly decreasing function ¢f|, which
implies that the concept of boost-invariance, suggested by Bjorken in Ref. [7] to character-
ize the physics of very high energy heavy ion collisions, cannot be applied to characterize
the hadronic final state of A Au collisions at RHIC. A similar conclusion can be drawn
from the measurement of the inhomogeneous (pseudo)ragidityn anddn/dy distrib-
utions of charged particle production at RHIC by both the BRAHMS [8] and PHOBOS [9]
Collaborations, proving the lack of boost-invariance in these reactions; /ak # const
at RHIC. Although many models describe successfully the transverse momentum depen-
dence of the elliptic flow at mid-rapidityz(p;, n = 0), see Refs. [10,11] for recent reviews
on this topic, to our best knowledge and an up-to-date scanning of the available high en-
ergy and nuclear physics literature, no model has yet been able to reproduce the measured
pseudo-rapidity dependence of the elliptic flow at RHIC.

Hence we present here the first successful attempt to describe the pseudo-rapidity de-
pendence of the elliptic flow»(n) at RHIC. Our tool is the Buda—Lund hydrodynamic
model [12,13], which we extend here from axial to ellipsoidal symmetry. The Buda—-Lund
hydro model takes into account the finite longiinal extension of the particle emitting
source, and we show here how the finite longitudinal size of the source leads naturally to
a vy that decreases with éneasing values dfy|, in agreement with the data. We describe
simultaneously the pseudorapidity and the transverse momentum dependence of the el-
liptic flow, with a parameter set, that reproduces the single-particle transverse momentum
and pseudo-rapidity distributions as well as the radius parameters of the two-particle Bose—
Einstein correlation functions, or HBT radii, in case when the orientation of the event plane
is averaged over. All these benefits are achieved with the help of transparent and simple
analytic formulas, that are natural extensions of our earlier results to the case of ellipsoidal
symmetry.
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2. Buda—Lund hydro for ellipsoidal expansions

The Buda—Lund model is defined with the help of its emission funcfion p), where
x = (t,rx,1ry,7;) IS @ point in space—time ang = (E, px, py, p;) stands for the four-
momentum. To take into account the effects of long-lived resonances, we utilize the core—
halo model [14], and characterize the system with a hydrodynamically evolving core and a
halo of the decay products of the long-lived resoees. Within the core—halo picture, the
measured intercept parameter of the two-particle Bose—Einstein correlation function
is related [14] to the strength of the relative contribution of the core to the total particle
production at a given four-momentum

S(x, p) =Sc(x, p) + Su(x, p), (1)
Se(x, p) = vAeS(x, p). )

Based on the success of the Buda—Lund hydro model to describe Aw collisions at
RHIC [15,26], Pbt Pb collisions at CERN SPS [16] andt p reactions at CERN SPS [17,
18], we assume that the core evolves in a hydrodynamical manner

g ptd*T,(x)
(27)3 B(x, p) + 54 ’

whereg is the degeneracy factop & 1 for identified pseudoscalar mesogs= 2 for
identified spin=1/2 baryons), ang* d42# (x) is a generalized Cooper—Frye term, de-
scribing the flux of particles through a distribution of layers of freeze-out hypersurfaces,
B(x, p) is the (inverse) Boltzmann phase-space distribution, and thesteisrdetermined
by quantum statistics, = 0, —1, and+1 for Boltzmann, Bose—Einstein and Fermi—Dirac
distributions, respectively.

For a hydrodynamically expanding system, the (inverse) Boltzmann phase-space distri-
bution is

N R

Sc(x, p) d*x =

®3)

We will utilize some ansatz for the shape of the flow four-veloaityx), chemical po-
tential, u(x), and temperaturd, (x) distributions. Their form is determined with the help
of recently found exact solutions of hydrodynasyiboth in the relativistic [19-21] and
in the non-relativistic casg2-24], with the conditions that #ése distributions are char-
acterized by mean values and variances, aatlttiey lead to (simpgl) analytic formulas
when evaluating particle spectra and two-particle correlations.

The generalized Cooper—Frye prefactor is determined from the assumption that the
freeze-out happens, with probabili/(z) dz, at a hypersurface characterizeddoy const
and that the proper-time measures the time elapsed in a fluid element that moves together
with the fluid, dt = u*(x) dx,. We parameterize this hypersurface with the coordinates
(ry, 1y, 12) and find thatt3 2 # (x|t) = u* (x)d3x /u®(x). Usingd, 7|, = u®(x) we find that
in this case the generalized Cooper—Frye prefactor is

prdA 2, (x) = p*uy (x)H(t) d*x. (5)
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This finding generalizes the result of Ref. [25] from the case of a spherically symmetric
Hubble flow to anisotropic, direction dependent Hubble flow distributions.

From the analysis of CERN SPS and RHIC data [15,16,26], we find that the proper-time
distribution in heavy ion collisions is rather narrow, afdz) can be well approximated
with a Gaussian representation of the Dirac-delta distribution

_ 1 (r — 0)?
H(I)_(znAIZ)l/ZeXF(_ 2A72 ) ©)

with At < 10.

Based on the success of the Buda—Lund hydro model to describe the axially symmetric
collisions, we develop an ellipsoidally symmetric extension of the Buda—Lund model, that
goes back to the successful axially symmetric case [12,13,15,16,26] if axial symmetry is
restored, corresponding to the= Y and X = Y limit of the model described below.

We specify a fully scale invariant, relativistic form, which reproduces known non-
relativistic hydrodynamic solutions too, in the limit when the expansion is non-relativistic.
Both in the relativistic and the non-relativistic cases, the ellipsoidally symmetric, self-
similarly expanding hydrodynamical solutions can be formulated in a simple manner, using
a scaling variable and a corresponding four-velocity distributiofi, that satisfy

utd,s =0, (7)
which means that is a good scaling variable if its co-moving derivative vanishes [19,
20]. This equation couples the scaling variablend the flow velocity distribution. It

is convenient to introduce the dimensiosde generalized space—time rapidity variables
(nx, 1y, n7), defined by the identification of

. . . X Y Z
(sinhny, sinhny, sinhn;) = (rxg, Yy rZE)’ (8)
Here(X, Y, Z) are the characteristic sizes (for example, the lengths of the major axis) of
the expanding ellipsoid, that depend on proper-tingand their derivatives with respect to
proper-time are denoted X, Y, Z). The distributions will be given in this; variables,

but the integral-form is the standaitx = dr dr drydr;, so we have to take a Jacobi-
determinant into account. Eq. (7) is satisfied by the choice of

_ coshy, —1 ~coshyy, —1 coshy, —1

S = o) ) o) ) (9)
X5 Yy Zy
ut = (y, sinhny, sinhn,, sinhn;), (10)

and from here onX s, Y¢, Z¢) = (X(10), Y (10), Z(10)) = (X1, X2, X3), assuming that
the rate of expansion is constant in the narrow proper-time interval of the freeze-out
process. The above form has the desired non-relativistic limit

2 2 2

rx I‘y rZ
5 — N 11
2X2f 2Y§ 2Z§. (11)

where again(X ¢, Yy, Zr) = (X(10), Y (70), Z(10)) = (X1, X2, X3). From now on, we
drop subscrip}. From the normalization condition @f* (x)u, (x) = 1 we obtain that

y=\/1+sin}"?nx-|-sinhzny-|-sinr?nz. (12)
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For the fugacity distribution we assume a shape, that leads to Gaussian profile in the non-
relativistic limit

M(X)_@_?
Tx) To

corresponding to the solution discussed in Refs. [22,23,27]. We assume that the temper-
ature may depend on the position as well as on proper-time. We characterize the inverse
temperature distribution similarly to the shape used in the axially symmetric model of
Refs. [12,13], and discussed in the exact hydro solutions of Refs. [22,23]

1 1 To— T, To— T, (t — 10)?
- (1 s)(1 A 14
() To< M ?>( "L oA -

whereTy, T, andT, are the temperatures of the cemtnd the surface at the mean freeze-
out timetgp, while T, corresponds to the temperature of the center after most of the particle
emission is over (cooling due to evaporatend expansion). Sudden emission corresponds
to T, = To, and theAtr — 0 limit. It is convenient to itroduce the following quantities:

(13)

To — T, AT
a?=2" =<_> (15)
T T |,
To—T, |AT
a?="0 =<—> (16)
T, T |,

In the above approach we assume the validity of the concept of local thermalization and
the concept of ellipsoidal symmetry at the time of particle production. We do not know,
what freeze-out condition is realized exadtiyNature. Our above formulas can be also
considered as a general, second order Tagipansion of the inverse temperature and
logarithmic fugacity distributions, which maintains ellipsoidal symmetry. We attempt to
determine the coefficients of this Taylor expansion from the data in the subsequent parts.
As the saddle-point calculation presented below is sensitive only to second order Tay-
lor coefficients, any model that has similar second order expansion leads to similar results.
A more theoretical approach is to solveatlistic hydrodynamics for ellipsoidally expand-
ing fireballs and to apply the presently mosvadced freeze-out criteria, for example the
method of escaping probabilities developed by Akkelin, Hama and Sinyukov in Ref. [28].

We also note that the applied distributiof freeze-out temperatures goes back to the
dynamical calculation of Ref. [29]. This calletion starts from an initial condition at
= 3.5 fm/c, which was given by a parton cascade model (PCM) calculation for Au
collisions at,/syy = 200 GeV. This initial condition is filowed by a three-dimensional
Hubble flow. In addition, this dynamical caletion determined the thermodynamical
constraints of entropy and local energy—momentum conservation for a sudden time-like
deflagration from a supercooled quark—gluon plasma (QGP) phase to a pion gas phase.
Such a transition may start at a constant proper-time, at some (position independent) value
of the local temperature, that corresponds to the supercooled quark—gluon plasma (QGP)
phase. Such sudden hadronization from a supercooled QGP phase can be realized due to
the large characteristic nucleation times of hadronic bubbles inside a supercooled QGP, see
Ref. [29] for details. The strong three-dimensional expansion leads to negative pressures,
mechanical instabilities andehresulting timelike deflagtimn may produce hadronic final
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states in the hatched area of Fig. 1 of Ref. [29]. Half of this area corresponds to superheated
hadron gas, witthadronic temperatures in the range of 1.0-T,4 while half of available

final states are hadron gas states below thecatitemperature, with hadronic temperatures

of 0.8-1.07,. Thus it is reasonable to assume, that in a realistic situation, the hadronic fi-
nal states correspond to a range of temperatures even if the transition starts from the same
temperature everywhere on a constant prdimee hypersurface. The variation can only be
increased if the temperature of the pretanic state happened to be inhomogeneous on

a constant proper-time hypersurface. This is why we have assumed in the present paper,
that the hadronic temperatures may be position dependent on a constant proper-time hy-
persurface. Instead of using a priori assumipsi, we determine the parameter values of the
hadronic local temperature distritoon a posteriori, from recent data on AuAu collisions

at RHIC.

3. Integration and saddlepoint approximation

The observables are calculated analytically from the Buda—Lund hydro model, using
a saddle-point approximation in the intejoa. This approximation is exact both in the
Gaussian and the non-relativistic limit, andpifu, /T > 1 at the point of maximal emit-
tivity. In this approximation, the emission function looks like
8 pﬂuu(xs)H(Ts

4. _ ) _ p—2. _ v\ 4
S(x’k)dx_(Zn)S B(xs, p) + 34 exp( Ry (6 =) e =) )dx, )

where
R;2 =8,y (—In(S0)),. (18)

andx, stands here fofz, ry, ry, ;). In the integration, a Jacobiatis has to be introduced
when changing the integration measure fréfw to dr d°x.
The position of the saddle-point can be calculated from the equation

3, (—IN(S0)) (x5, p) =0. (19)
Here we introducedp, as the “narrow” part of the emission function:
H(1)
So(x, p)= —————. 20
o(x, p) Bl p) + 5, (20)
In general, we get the following for the saddle-poirtiyy,, 1y, n;) coordinates:
Ty = 10, (21)
i X2 coshy;
Sinhﬂi’s = Z’pu;“(xs) h’]m ] (22)
T(XS)(l-}-Cl To ) + po ]/(Xs)’ Xi

The system of equations (22) can be solved efficiently for the saddle-point posjtions
using a successive approximation. This method was implemented in our data analysis. For
the widths of the distributions, we obtained exact analytic results, given in terms; of
that we determined from the successive approximations. We have used the full expressions,
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obtained simply with the help of derivations at the saddle-point, for the evaluation of the
observables and for the comparison with the data. However, we summarize here only the
leading order approximative result, due to reasons of clarity and transparency.

In the simplest case, where all thrgg are small:

Tis %Xi
7: ¢, fori=x,y,z, @3)
L
R ;
1 B(xs, p) 1 1
RS B(xs, p)+5¢ \ X7  Rf,
111 Bxs,p) 1 (25)
Rg,o Ar*z At2 " B(xy, p)+s ATYZ" '

Egs. (24), (25) imply, that the HBT radii are dominated by the smaller of the thermal
and the geometrical length scales in all directions, as found in Refs. [12,13]. Note that
the geometrical scales stem from the density distribution, governed by the fugacity term
expu(x)/T(x)], while the thermal lengths originate from the local thermal momentum
distribution exp—p*u,(x)/ T (x)], and in the above limit they are

1 d2
=0 (26)
A‘L’T To ‘L'O
1 m; [ a® X[2>
RENSeL Y [ N 27
RZ, To (X,? X2 @)
4. The invariant momentum distribution
The invariant momentum distribution can be calculated as
Nl(p)=/d4x S(x, p) = 1 /d4xS (p, x). (28)
) \/H C k)
The result is a simple expression:
g =--= 1
Ni(p) = 3Evc . (29)
(xs) —p(xg
(2m) ql’ MM;(X )# X )—}—sq
where
E= puu*‘(xs) (30)
— 2m)¥22n o “[detr?]"?, (31)
_ 1 7.
=5 (32)

N/
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Let us investigate the structure of this invariant momentum distribution, in particular, the
exponent of the spectrum. Let us introduce

b(xs, p) =log B(xs, p), (33)
and evaluate this exponent in the limit, where the saddle-point coordinates are all small,

2 2 2 =
p m
P D P ™ P KO (34)
2m Ty x  2m;Tyy  2mTe; To 2m;To To

where the direction dependent slope parameters are

b(xs, p) =

i To

Ty x =T n X277 35

*,X 0+ m; To—}—r?l;az ( )
o To

Ty =To+ Yzi_, 36

*,Y 0 mg To—i—mtaz ( )
I To

Ti,=To+ 227_, 37

*,2 0 mg To—i—m,az ( )

and
my =m; Coshng s — y). (38)

In the limit when we neglect thpossibility of a temperature inhomogeneity on the freeze-
out hypersurface; = 0, and using a non-relativistic approximationef ~ m, we recover
the recent result of Ref. [27] for the mass degence of the slope pareeters of the single-
particle spectra:

Ty =To+mX2, (39)
Tyy=To+mY? (40)
T,.=To+mZ> (41)

5. The elliptic flow

Note, thatb (x5, p) is the only part of the IMD, that is explicitly angle dependent, so

2 2
Dy Py
N1(p) ~ exp| — -
l(p) Xp( 2’7—’1[T*,x 2’7_1[T*,y>
2 2 2
P’ Py D; co92p)
—exp — _ , 42
Xp( Zrﬁ,Teﬁ+<277_1tT*,x Zf’ﬁtT*,y> 2 42
where
1/ 1 1
T — = ) 43
ef 2<T*,X+T*,y) “

So, we can easily extract the angular dependencies. Let us compbyeintegrating on
the angle:
_ h(w)

2= To(w) (“44)
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where
271 1
A ESE) )
4, T*,y T*,x
Generally, we get from the definition
d3n d?n >
N1 = = 1+2 v, cogne) 46
dp: prdpide 2 dp:pidp, [ ; ! (46)
the following equations:
I, (w)
= , 47
U2n To(w) ( )
v2n+1=0. (48)

As first and the third flow coefficients vanish in this case, a tilt arighas to be introduced
to get results compatible with observations, as discussed in the subsequent parts.

For large rapidities|n; — y| becomes also large, amgl = m; cosh(n, — y) diverges,
hencew — 0. Thus we find a natural mechanism for the decrease dér increasing
values of|y|, as in this limit,up — I1(0)/Io(0) = 0.

6. Elliptic flow for tilted ellipsoidal expansion

Now, let us compute the elliptic flow for tilted, ellipsoidally expanding sources, too,
because we can get a non-vanishingand vz only this way, in case oft # 0, similarly
to the non-relativistic case discussed in Ref. [27]. The observables are determined in the
center of mass frame of the collision (CMS), where thexis points to the direction of
the impact parameter and the axis points to the direction of the beam. In this frame,
the ellipsoidally expanding fireball, described in the previous sections, may be rotated. So
let us assume, that we relabel all theand p coordinates in the previous parts with the
superscript, e.g.,.x — x’ andp — p’, to indicate that these calculations were performed
in the system of ellipsoidal expansion (SEE), where the principal axis of the expanding
ellipsoid coincide with the pncipal axis of SEE. In the following, we use the unprimed
variables to denote quantities defined in the CMS, the frame of observation.

We assume, that the initial conditions of the hydrodynamic evolution correspond to a
rotated ellipsoid in CMS [27]. The tilt anglé represents the rotation of the major (lon-
gitudinal) direction of expansiom,, from the direction of the beam,. Hence the event
plane is the(r;, 7)) plane, which is the same, as the,r;) plane. The (zenithal) angle
between directions; andr, is the tilt angled, while (azimuthal) angle is between the
event plane and the direction of the transverse momemptum

From the invariant momentum distribution, can be calculated as follows:

2r dn

U = Ap: prdpidy p;:p’dw cogme)de. (49)

0 dp;p: dp: 21

We have made the coordinate transformation
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P\ = px COSY — p, siny, (50)
Py =Dy (51)
p. = p.COSY + p, sin, (52)

and in addition:

Px = P COSp, (53)
py = p: Sing, (54)

and calculated the transverse momentum and the pseudorapidity dependepcéoof

a parameter set determined from fitting the axially symmetric version of the Buda—Lund
hydro model to single particle pseudo-rapidity distribution of BRAHMS [8] and PHO-
BOS [9], the mid-rapidity transverse momentum spectra of identified particles as measured
by PHENIX [30,31] and the two-particle Bose—Einstein correlation functions or HBT radii
as measured by the PHENIX [32] and STAR [33] Collaborations.

We determined the harmonic moment of Eq. (49) numerically, for the case-oP,
but using the analytic expression of Eq. (29) for the invariant momentum distribution, com-
puting the coordinates of the saddle point with a successive approximation. The successive
approximation means a loop here instead of solving the non-analytic saddle-point equa-
tions. We have chosen a loop long enough and have checked that an even longer loop
will not modify the results. This was the same with the width of the integration-step. We
integratedN1(p) over p;, as the data were taken this way, too. Finally, we were able to
describevz(n =0, p;) andv2(n) with the same set of parameters.

The results are summarized both in Figs. 1 and 2. We find that a small asymmetry in the
expansion gives a natural description of the transverse momentum dependesceha
parameters are taken from the previous Buda—Lund hydro model fits to the two-particle
Bose—Einstein correlation data (HBT radii) and the single particle spectra of Au
collisions at,/syn = 130 GeV, Refs. [15,26], where the axially symmetric version of the
model was utilized. Here we have introducedgraeters that control the asymmetry of the
expansion in th& andY directions such a way that the angular averaged, effective source
is unchanged. For example, we reqdithat the effective temperaturéss of Eq. (43)
is unchanged. We see on Figs. 1 and 2 that this method was successful in reproducing
the data on elliptic flow, with a small asymmetry between the two transverse expansion
rates.

The identified particle elliptic flow measurement of PHENIX used a method of deter-
mining the reaction plane from the particles at large rapidities, hence its results are not
significantly affected by non-flow correlatiorsee Ref. [1]. Fig. 1. illustrates the quality of
agreement between our Buda—Lund model calculation and this PHENIX data set. From the
parameter values corresponding to Fig. 1, we calculate the value of{he- 0) and find
that this value is below the published PHOBOS data point at mid-rapidity by 0.02. Note,
that in order to compute,(n), one has to integrat®¥1(n, p;, ¢) over p; first, and deter-
mine the elliptic flow from thep, integratedy; and¢ dependent spectra, as the PHOBOS
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Fig. 1. Buda—Lund model calculation and the p;, n = 0) data. Ellipsoidally symmetric Buda—Lund calculation
compared to the PHENIX,(p;) data of identified particles [1]. The parameter sefifg:= 210 MeV, X = 0.57,
Y=0452=24,a=11=7fm/c,» =0.09,X; =86 fm, Y, =105fm, Z; = 17.5 fm, ug = 70 MeV,
uo,x =210 MeV andug , = 315 MeV, and the masses are taken as their physical value.

0.06

= EHOBOS MinBiasi
0.05[

g Statistical error

[ [ Systematic error
0.04 [ |—Buda-Lund

= 0.03[-
0.02—
0.01
0 -

Fig. 2. Buda—Lund model calculation and thg(n) data. This image compares the ellipsoidally symmetric
Buda—Lund model to the 130 GeV Ad Au and 200 GeV Aut Au vy(n) data of PHOBOS [3,4]. Here we

used the same parameter set as in Fig. 1, with pion mass and chemical potential, and indicated a systematic error,
corresponding to a non-flow parameter of 0.01, on tHOBOS data. The parameseof the Buda—Lund model

are determined here from other observables, they will be optimizegl(tg data in a subsequent publication.
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Table 1
The table shows the parameter set used to describe
the data. Note, that? = (Tp — Ty)/ Ty, see Eq. (15)

Parameter Value
To 210 MeV
X 0.57

Y 0.45

z 2.4

a 1

70 7fm/c
At 0fm/c

s 0.09

Xf 8.6 fm
Yf 10.5 fm
Zs 17.5 fm
. 70 MeV
10, K 210 MeV
1o,p 315 MeV

data were taken this way, too. Because of thisr¢ is no simple mathematical connection
betweerva(p;, n = 0), andv2(n) as they do not stem from a commes(p;, n) function.

The PHOBOS Collaboration pointed out the possible existence of a non-flow contribu-
tion in theirv, data, see Ref. [3], as they did not utilize the fourth order cumulant method to
determinev;. We attribute the 0.02 difference between the present Buda—Lund model cal-
culation and the PHOBOS data point at mid-rapidity to such a non-flow contribution [34].
The magnitude of the non-flow contribution Hasen explicitly studied (but in a different
acceptance, at mid-rapidity) by the STARI2boration. STAR found that its value is of
the order of 0.01 for mid-rapidity mininm bias data in the STAR acceptance, Ref. [5].

The good description of thén /dn distribution by the Buda—Lund hydro model [15,26]
is well reflected in the good description dfape of the pseudo-rapidity dependence of the
elliptic flow. Thus the finiteness of the expandifireball in the longitudinal direction and
the scaling three-dimensional expansionasrid to be responsible for the experimentally
observed violations of the boost invariance of both the rapidity distribution and that of the
collective flowws.

Table 1 summarizes the parameter values corresponding to Figs. 1 and 2. These indicate
a high,Tp > T, = 170 MeV central temperature, withcold surface temperature 6f ~
105 MeV. The success of this description suggests that a small fraction of pions may be
escaping from the fireball from a superheatedron gas, which can be considered as an
indication, that part of the source of AHAu collisions at RHIC may be a deconfined
matter withT > T..

Let us determine the size of the volume that is above the critical temperature. Within this
picture, one can find the critical value of s. from the relation thatp/(1 + as;) = T,.

Using Tp = 210 MeV, T, = 170 MeV, anda = 1 we finds. = 0.235. The surface of the
ellipsoid withT > T, is given by

22 2,2

X Yy Z
LES T S 55
X2 T y2 T2 (55)
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The principal axes of the “critical” ellipsoid are given B = X r/sc ~ 4.2 fm, Y. =
Yy /sc=51fm, Z. =Zs,/sc ~ 85 fm, hence the volume of the ellipsoid with> T is
Ve=%2X.Y:Z ~ 753 f?.

Note, however, that the characteristic aage or surface temperature of the fireball
within this model isT; = Tp/(1 + a) ~ 105 MeV. So the picture is similar to a snow-ball
which has a melted core inside.

Our study shows that this picture is consistent with the pseudorapidity and transverse
mass dependence of at RHIC in the softp; < 2 GeV domain, however, it is not yet a
direct proof of the existence of a new phase. Among others, we have to determine precisely
the errors on the best fit parameters and to determine the confidence levels of the fits, which
will be a subject of further research.

In discussing the significance of the results, it is useful to compare it to other calcula-
tions to find similarities and differences as well as to map out directions for possible further
research. For us the key point is not the good agreement between the model and the data,
but the analytic insight and the functional relationships between the model parameters and
the observables. We checked the model against the data only to demonstrate that we are on
a good track to understand the rapidity depemgeof the elliptic and higher order flows,
but the fine-tuning of the model parameters is a subject of further investigations.

It seems, that our most important result are Eqgs. (38), (45), (47), (48), that explain ana-
lytically why all higher order flows vanish at very forward or backward rapidities. Due to
the finite longitudinal size of the source, the point of maximal emittivity moves to the sum-
mit of the expanding ellipsoid as the rapidisyjincreased to high values. Due to the Hubble
flow, the transverse momentum distribution has negligible transverse flow contributions at
this point, the local temperature plays the dominant role. However, the local temperature
contributes equally in both transverse directions, hence all second and higher order flows
vanish at very forward rapidities. Similar observations hold in the very backward direction,
due to symmetry reasons.

When comparing to earlier calculations, wleserve that the two key features, the finite
longitudinal size and the three-dimensional Hubble flow were not present simultaneously
in other works as far as we know. Also, the temperature variations, the cooling on the sur-
face were not considered by other attempts to understand elliptic flow. For example, Hirano
and Tsuda considered a three-dimensional numerical solution of relativistic hydrodynam-
ics in Ref. [35]. Their model is not too far from the considerations presented here, they
have a finite longitudinal extension of the source and a well developed transverse flow at
mid-rapidity. Their Fig. 9 indicates that they obtained a vanishing elliptic flow at very for-
ward and backward rapidities. However, theifized a Bjorken type initial condition, and
the concept of a constant freeze-out temperature. As a result, their elliptic flow is approx-
imately rapidity independent near mid-rapidity, which is not surprising, given the boost
invariant initial condition for tle flow velocity distribution. Hirano studied in Ref. [36] the
effects of short lived resonance decays on the rapidity dependence of the elliptic flow at
SPS energies. His result is that resonance decays yield a negative non-flow contribution,
ranging from—0.15 at mid-rapidity to about 0.05 at forward and backward rapidities. We
did not explore the consequences of such an effect here, however, its magnitude is about
the size of the error bars on the PHOBOS data. This is one of the interesting directions that
can be explored in further studies, and the importance of this effect will increase at RHIC



M. Csanad et al. / Nuclear Physics A 742 (2004) 80-94 93

as more and more high statistics, precision measurements will be available on the elliptic
flow.

7. Summary and conclusions

We have generalized the Buda—Lund hydro model to the case of ellipsoidally symmetric
expanding fireballs. As we derived simple formulas for the rapidity and transverse momen-
tum dependence of the elliptic flow, we gave qualitative as well as analytic insight to the
rapidity dependence of the elliptic flow.

When comparing to data, we kept the paedens determined from earlier fits to the
single particle spectra and the two-particle Bose—Einstein correlation functions (HBT
radii) [15,26], and interpreted them as angudaerages for the direction of the reaction
plane. Then we found that a small splitting beem the expansion rates parallel and trans-
verse to the direction of the impact parameter, as well as a small zenithal tilt of the particle
emitting source is sufficient to describe simultaneously the transverse momentum depen-
dence of the elliptic flow of identified particles [1] at mid-rapidity in AUAu collisions at
J/snn = 200 GeV. Already with this simple method, we describe qualitatively the pseudo-
rapidity dependence of the collective flow as measured in Refs. [3,4], taking into account
an overall 0.01 systematic error on these data points, as estimated in Ref. [5]. As Fig. 2 in-
dicates, for the given parameter set the Buda—Lund model systematically under-estimates
the pseudo-rapidity dependent elliptic flow, within 2—3 standard deviations at each point,
but the shape is well reproduced. The best fit parameters(i9, n) will be determined
from an automatized fit parameter opthation in a subsequent publication.

The results support the indication for quark deconfinement at RHIC found in Refs.
[15,26], based on the observation, that some of the particles are emitted from a region with
higher than the critical temperaturg,> T, = 170 MeV. We estimated that the size of
this volume is about (48)th of the total volume measured on the= g main freeze-out
hypersurface, totaling of about 753 $However, the analysis indicates that the average
or surface temperature is rather cdlgl~ 105 MeV, so approximately/B of the particles
are emitted from a rather cold hadron gas.
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