
August 10, 1998 Brian A. Cole Slide P1

 TAC Review 1998

The PHENIX Event Builder
Brian A. Cole

Columbia University

Outline
1) Sub-system Overview
2) Performance Requirements
3) System Design
4) Implementation:

a) Data flow
b) Component architecture
c) ATP/Level-2
d) Control
e) General issues

5) ATM Transfer tests
6) Status, schedule

PHENIX TAC Review
August 10, 1998

August 10, 1998 Brian A. Cole Slide P2

 TAC Review 1998

Event Builder - Overview

Responsibilities
• Collect data from all DCM’s -- In Sub-Event Buffers (SEB’s)
• Collect event fragments -- In Assembly/Trigger Processors (ATP’s)
• Assemble fragments into complete events -- In ATP’s
• Perform Level-2 trigger calculations/rejection. -- In ATP’s
• Transmit selected events to ONCS.

ONCS
(Archiving)

Data & Control
Fast Control

Slow Control

Level-1
DCM's

Detector
B DCM's

Detector
A DCM's

Detector
C DCM's

Level-1 Sub-
event

Buffer(SEB)

ATM Switch

Detector
D DCM's

Detector
SEB's

Event
Builder

Controller

ONCS (Control)Assembly/Trigger
Processors

 (ATP's)

Assembly/Trigger
Processors

 (ATP's)

August 10, 1998 Brian A. Cole Slide L1

 TAC Review 1998

Event Builder - People/Responsibilities
Institution Name Position Responsibilities
Columbia B. Cole Faculty DC Member, overall administration of sub-system

Event builder design/documentation

Core C++ class development

ATM Evaluation/implementation

P. Steinberg Post-doc Event builder design/documentation

SEB, ATP, Controller software implementation

ONCS, Pamette integration

Debugging/testing

S. Markacs Ph.D. student Controller data structure implementation

Debugging/testing

Brookhaven S. Durrant Staff Pamette I/O and control software

Pamette (DCM-SEB PCI interface) FPGA coding

S. Lin Engineer Pamette daughter-card design, construction, testing

E. Desmond Staff ONCS-Event builder integration

Georgia State X. He Faculty Level-2 trigger support software

• Expect to add additional post-docs @ Columbia (fall/winter ‘98), Georgia
State (spring ‘99).

• Expect 2-3 additional Ph.D. students @ Columbia starting summer 1999.

August 10, 1998 Brian A. Cole Slide P4

 TAC Review 1998

Event Builder - History
• PHENIX CDR

– Custom cross-bar switch + DSP’s.
– High level design, no details.

• PHENIX UCDR
– Same as above, slightly more detailed.

• PHENIX TAC ??
– Partitioning rears its head.
– Reality intrudes, custom solution deprecated.

• November 1996
– Event builder re-design commences.
– Meetings with RD-31 group ⇒ switch-based solution

• PHENIX TAC 1997
– Complete high-level design presented.
– ATM switch-based event builder, PC’s for SEB/ATP.
– Lack of manpower clearly evident.

• Winter 1998
– P. Steinberg & S. Durrant join effort.
– Subsequently observe tremendous progress on all

fronts.

August 10, 1998 Brian A. Cole Slide P5

 TAC Review 1998

RD31/Atlas Demonstrator-C
• Our design relies heavily on results of studies by

– CERN RD31 (Dufey et al)
– Atlas Level-2 Demonstrator-C (LeDu et al).

• Demonstrator-C architecture very compatible with
PHENIX DAQ
– Digitization and (partial) event building after Level-1
– Highly parallel processor-based Level-2 trigger

• We have adopted many of the features of the
demonstrator-C design
– It has been evaluated in a working system.
– It has been shown to be scalable (at least to 64x64).

– Design choices consistent with our requirements.
• We have communicated/collaborated with the Saclay

group in Atlas over the last 1.5 years
– We started by “porting” their code
– We are now specializing it to our purposes

⇒ Avoid using “custom” NIC + driver
⇒ Use C++

• + there are significant differences in the details
– We will likely end up using little of the Atlas code directly.

August 10, 1998 Brian A. Cole Slide P3

 TAC Review 1998

Trigger/Data rates @ RHIC Design

•Large dynamic range in
–Collision rate: 25 kHz (p-p) → 100 Hz (Au+Au central)
–Event Size: 5 kbyte/event → 350 kbyte/event

•BUT ! Approximately constant data rate for all species
•PHENIX Online Performance specs

– Baseline: 12.5 KHz Lvl-1 rate, 500 Mbyte/s EvB bandwidth

–Upgrade: 25 KHz Lvl-1 rate, 2 Gbyte/s EvB bandwidth.

0.1

1

10

100

1000

p -p
(M

B)
p -S

i
p -I

O -O
(M

B)

Cu -C
u (M

B)

Au -A
u (M

B)

S i-I
(M

B)

p -p
(C

n)

S i-S
i(C

n)

I-I
(C

n)

L v l1 T ri gg e r R ate (k Hz)
T ra c k s /ev e n t
K T ra c k s /s e c
D a ta R a te (M b y te /s)

August 10, 1998 Brian A. Cole Slide L2

 TAC Review 1998

Event Builder - Day 1 Requirements
Assumptions
• “Day-1” luminosity ≈ 1% of blue book

– Au-Au interaction rates: min-bias 10 Hz, central 1 Hz.
– Expect < 1/2 of PHENIX channels read out
– But also little or no zero supression.

⇒ Estimate initial data-rate of 5 Mbyte/s.
• End year-1 run luminosity, ≈ 10% of blue book.

– Au-Au interaction rates: min-bias 100 Hz, central 10 Hz.
– Assume modest zero-supression.

⇒ ~ 10 Mbyte/s data rate (20 Mbytes/s w/ x2 safety).

Implications
• Modest year-1 performance requirements for event builder.
• But, year-2 requirements will be aggressive (~ 100 Mbyte/s).
⇒ For year-1 preparation, focus on robustness, integration.

August 10, 1998 Brian A. Cole Slide P6

 TAC Review 1998

Event Builder Design
Primary considerations/guidelines
• Satisfy PHENIX’s performance requirements.
• Make it as commercial as possible (manpower/cost).
• Allow easy upgrade of components.
• Make it scalable to follow luminosity/PHENIX growth.

These result in:
• Switch-based event builder (commercial, scalable).
• Over ATM (performance, commercial, scalable, upgradeable).

– Switches, NIC’s now available for PHENIX’s ultimate needs.
– Provides required flow control in hardware.

• Using PCI-based processors (commercial, upgradeable).
– Highest performance bus with significant market share.
– 64 bit, 66 Mhz will soon be a reality.

• Running Windows-NT (commercial, upgradeable).
– All ATM hardware guaranteed to work on NT
– Rational synchronization, asynchronous I/O support.

• Using Threads (performance)

• Using object-oriented code (commercial, scalable,upgradeable)
– Control structures, I/O, memory management greatly simplified

August 10, 1998 Brian A. Cole Slide L3

 TAC Review 1998

Event Builder - Data Flow (High-level)
•Up to SEB’s, DAQ is data-

driven and parallel by channel.
– Data pushes into SEB’s.
– “Hold’s” propagate back to DCM

Event Builder
Controller

Level-1
SEB

SEB

Event Builder
Switch

ATP

Send Data

Request Data
New Event

"Acknowledge"
Drop Data

• ATP’s processing is
parallelized by event.

⇒ Switch to “pull” architecture
– Level-1 SEB notifies controller of

new events.
– Controller allocates ATP(s).

⇒ Use dynamic load leveling
⇒ Events assembled by partition.

– ATP’s pull data from SEB’s,
assemble events, perform L2 trigger
calculations.

⇒ Assembled events sent to
ONCS via ethernet.

– Events dropped from SEB under
direction of controller.

– All operations are “pipelined”.

August 10, 1998 Brian A. Cole Slide L4

 TAC Review 1998

Virtual Circuits (VC’s)
• ATM is connection-oriented.
• VC connects source & destination.
• We will use permanent VC’s
• One PVC needed between each pair

of nodes communicating.
• Multi-cast VC’s will connect

controller to all ATP’s and SEB’s.

Event-Builder - Data Flow (low-level)
Congestion Avoidance
• Event collapses to single output

port on switch.
• Without flow control this

overloads output port bandwidth.
⇒Use VC multiplexing.

− Interleave ATM cells from
multiple events.

⇒ “Build” multiple events
simultaneously

A T PS E B

A T P

A T P

A T P

S E B

S E B

August 10, 1998 Brian A. Cole Slide L5

 TAC Review 1998

Event Builder - Component Architecture
Common architecture
• Two processes per “component”

– multi-threaded real-time process
– control process w/ CORBA

interface

• Inter-process communication
through shared memory + signals
– Configuration/state changes
– monitoring (“counters” +

histograms)

• In “real-time” process:
– configuration and control

performed by “main” thread
– actual processing performed by

“worker” threads.
– Configuration/state information

maintained in component (SEB,
ATP, controller) objects.

Event Table

Timeout
Thread

Processing
Thread

Control
Thread

Monitor
Thread

ATM Interface

C
O

R
B

A
 I

nt
er

fa
ce

Control
Process

Event Data

Fast Control

Slow control

"Slow" Data

Input MSG
Queue

Output
MSG Queue

Input
Thread

Output
Thread

ATP Status Table

Control ler Realt ime
Process

August 10, 1998 Brian A. Cole Slide L6

 TAC Review 1998

Event Builder - Control (fast)
• All fast control resides in controller.

– Except for “extra” Level-1 SEB code to notify controller of new event.

• Controller makes all decisions regarding the fate of an event
– Who tells SEB’s to drop event -- still undecided.

• Why all the handshaking ?
Control ler A T P

Assign Event

Event Comple te

SEND Even t

Event Sent

⇒ Robustness !
• If ATP “times out”, event

can be reallocated.
• If first ATP later revives we

can prevent duplication.
– Above made possible by not

dropping data in SEB’s when
fetched.

– Data only dropped in SEB
when event is successfully
sent to ONCS.

August 10, 1998 Brian A. Cole Slide P7

 TAC Review 1998

Event Builder Control - Fast (2)
Controller data structures & partitioning
• Allow for different partitions in an “event” to be

handled by separate ATP’s.
• So there may be multiple ATP assignments per “event”

(actually crossing)
• Algorithm for “allocating” ATP’s not yet specified.

Assign T ime ATP ID

Assignment a

Assignment c

Assignment b

ATP Assignment l ist

....

Event Part . Vector Creat. t ime

Event a

Event c

Event b

Event List

....

Status

Compl . t ime

Event ptr

Assign 1 pt r

Evt Assign Idx

assign

Assign 2 pt r

Assign 3 pt r

Status

Compl T ime

act ive assign

Assign Part . Vector

August 10, 1998 Brian A. Cole Slide L7

 TAC Review 1998

Event Builder - Control (Slow)
Component control
• “slow” control of components through control processes.
• Each component implemented as finite-state machine

– Manipulated through CORBA

• e.g. Controller
• Mainly for

– configuration
– initialization
– error recovery

Overall Event Builder control
• Controller provides all explicit control of the entire event

builder (e.g. start/stop/pause)

• Mainly through handling/lack thereof of new event messages.
– When stopping a run all events in progress will complete before

controller acknowledges state change

BootedConf igured

Initialized

Runn ing Suspended

Hal ted

Free Run

???

August 10, 1998 Brian A. Cole Slide L8

 TAC Review 1998

Event Builder Control - Error handling
Frame losses
• We plan to use AAL5 transport over ATM

– But w/ Winsock2 this decision is easily changed if desired later..

• AAL5 provides unreliable transport -- delivery not guaranteed.
– In principle, cell loss is possible ⇒ frames may be “lost”.

• Our design explicitly accounts for this possibility
– BUT, error handling is under our control.

• Where required, have explicit checking for time-outs
– e.g. if ATP times out in returning trigger status on an assignment, the

controller can reassign the analysis on that (crossing, partition).
– e.g. if data frame from SEB is dropped, the ATP will re-try

⇒ we always require a frame even if there’s no data so we can
distinguish between dropped frame and empty frame.

⇒ If frame is dropped on a given VC (i.e. from given SEB) then the
re-tries will be performed serially -- slows down ATP but prevents
congestion at output or ATP buffer overflow.

August 10, 1998 Brian A. Cole Slide L9

 TAC Review 1998

Event Builder Control - Error Handling (2)
Component Failures
• Failures in SEB, Controller are necessarily “fatal”
• Failure in ATP can, in principle be detected and “handled”

⇒ ATP is simply “removed” from from controller tables
⇒ This can be done in controller if an ATP continues to time out.

• What is “failure” ? -- termination of process/thread.
• How to detect failures ?

– Control process failure will be detected through lack of monitoring data.
– Control processes will detect termination of real-time processes.
– Real-time process main thread will detect termination of worker threads.
– Worker threads will terminate on fatal exceptions.

Errors
• Serious exceptions will be reported to control thread through asynchronous

messages in shared memory.
• Normal exceptions are handled using C++ structured exception handling.
• Data errors will be recorded in data stream, counted & in some instances

reported to ONCS.

August 10, 1998 Brian A. Cole Slide L12

 TAC Review 1998

Event Builder - ATP
Design Considerations
• Provide event parallelism

– Process/write events while
“reading” others from SEB

– Trivially take advantage of
multi-cpu platform.

• But, handle events in separate
processes.
– Prohibits possible cross-event

corruption from L2 algorithms.
• Use shared Winsock2 sockets for

– reading from SEB
– writing to ONCS

• With synchronization for exclusive
use of read/write sockets.

• Use semaphore to control # of
events running L2 simultaneously.

• Algorithm “timeouts” handled
within event process.

ONCS Control
Process

ATM Interface

Fast Ethernet

M
ul

tic
as

t
V

C

to
 S

E
B

s

T
C

P
 S

ocket
w

ith O
N

C
S

WINSOCK

Read
Mutex

Write
Mutex

Processing
Semaphore

T
o/

F
ro

m
 E

B
C

CORBA Interface

ATP
Control
Process

D
at

a
F

ro
m

S
E

B
S

ATP
Real-time
Process

WINSOCK

Fast Ethernet

ATP
Real-time
Process

ATP
Real-time
Process

Event Data

Fast Control

Slow control

Monitor ing Data

August 10, 1998 Brian A. Cole Slide L10

 TAC Review 1998

ATM on Windows-NT
Winsock2
• Socket-based API extended

from BSD sockets.
• Transport independent API for

network I/O
– Provides flexibility in ATM

implementation.

• High-level interface to
– ATM quality-of-service control
– ATM “raw” AAL1/ 5 transports
– ATM signalling

• Explicit support for
– scatter-gather transfers
– asynchronous I/O
– “pre-declaration” of receive buffers

• Uniform interface to NIC’s from
different vendors.
– Facilitates upgrades/migration.

The primary concern:
• does Winsock provided

the required performance ?
• Since it implements a

layered interface it may
have substantial overheads

August 10, 1998 Brian A. Cole Slide P11

 TAC Review 1998

Performance tests of Winsock/NT
• Measure send/receive rates on two

different NIC’s (Fore, Efficient)
• Using 200 Mhz Pentium PC’s.
• Use Saclay timer routines

– Use CPU clock counter
– checked using NIC monitors

• Use asynchronous I/O.
• Measure vs block size:

– I/O call time
– time to completion routine
– average time to execute loop

1

10

100

1000

10000

0 10 20 30 40 50 60
Block Size

T
im

e
(u

se
c)

0

5

10

15

20

D
at

a
R

at
e

(M
by

te
/s

)

Call Time
Completion Time
Average Rate

• Focus on sending
– ~200 µs overhead

per transfer
– Can sustain line

rate w/ >7Kbyte
blocks

– Identical results for
2 NICs

August 10, 1998 Brian A. Cole Slide P12

 TAC Review 1998

Winsock Performance (2)
Good News
• Software can saturate and sustain OC-3 line speed.
• Basically works “out of the box”

– No fussing with PCI issues (yet)
• Results are consistent for 2 NICs+Winsock SPI’s

Bad News
• Overhead of 170 µs to every transfer.
• Asynch. I/O shows odd NT behavior for small blocks.
• Results are consistent for 2 NICs+Winsock SPI’s

Future
• Microsoft recognizes overheads in Winsock

– ATM support moved into NT kernel in NT5.0
– Supposedly the observed overheads are much reduced

• But ! We can’t test this claim because NT5 beta delayed
Our plans
• Performance is sufficient for now thru year-2 run.
• Forge ahead but re-evaluate after NT5 measurements.
• Study Winsock on Alpha- smaller OS overheads ?
• Re-measure on 400 Mhz Pentium-II machines.

August 10, 1998 Brian A. Cole Slide L11

 TAC Review 1998

New Winsock Measurements

Observations / conclusions
• Memory+CPU can outpace NIC on per-byte basis

– Not true for Micron 200 Mhz P1 (see previous slides).
• Non-optimized code, optimization on 200 Mhz gives 1/3

improvement in performance.
• Winsock/NT overheads are less of an issue.

0

20

40

60

80

100

120

140

160

180

200

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

Block size (Kbyte)
T

im
e/

bl
oc

k
(u

se
c)

•Using DELL 400 Mhz P2
•100 Mhz memory bus
•Cache still runs at 1/2

memory bus speed.
– XION cache runs 100 Mhz
⇒ Expect even lower over-

heads per operation

•BUT very costly now!!
– XION uses Custom Intel in-

house SRAM

August 10, 1998 Brian A. Cole Slide P8

 TAC Review 1998

Implementation Issues - Hardware
ATM
• We have and are using a FORE ASX-1000 switch.

– 64 ports max (currently equipped with 4 - soon 8)
– Max bandwidth of 10 Gbit/s
– Max usable data bandwidth 5 Gbit/s

⇒ gets us to 500 Mbyte/s (Baseline)

• We have tested different NIC’s
– We seem to be insensitive to differences
– For now will use FORE NIC’s, cost + convenience.

PC’s
• We plan to continue using Pentium PC’s for SEB/ATP

– but Alpha prices are coming down, may continue.
• Most likely will use rack-mount chasis w/ motherboards

– passive backplanes + SBC’s investigated, but w/
recent dramatic technology changes are less viable.

• Will use Alpha for controller
• Likely dual-cpu systems for ATP’s after year-1.

August 10, 1998 Brian A. Cole Slide P9

 TAC Review 1998

Implementation Issues - Software
Operating System
• We have chosen NT as our operating system for now.
• We will maintain choice at least through year-1.

– Essential for stable development, decision making.
• Try not to tie ourselves too heavily to NT

– No MFC, Active-X, Windows, …
– Use Winsock2 socket interface for ATM

• But, will take advantage of
– “Cleaner” NT synchronization mechanisms
– Intrinsic asynchronous I/O support

• OS-specific features are wrapped up in objects
– Localizes OS-specific code
– Re-write classes for different OS if ever required.

Future alternatives
• Linux most likely

– Not thrilled w/ POSIX synchronization, AI/O.
• Lynx-OS also possible but expensive.

August 10, 1998 Brian A. Cole Slide P10

 TAC Review 1998

Implementation Issues- Software (2)
Use of C++
• Many people express concerns regarding speed of C++

– Clearly not a concern for control/monitoring
• But we’re also using C++ for “real-time” structures

– Such concerns are irrelevant for year-1, probably 2.
– They may also be simply wrong (or un-informed)

⇒ see preliminary benchmarks by P. Steinberg

• Our approach:
– Be reasonable, but use C++ features (e.g.

polymorhpism) where appropriate.
– Use templates where possible.
– Reduce on-the-fly creation/destruction of objects.

• Libraries/STL
– Currently we are using SGI STL implementation

⇒ even on NT -- Visual C++ templates less stable

– We are not currently using any commercial libraries.
⇒ We are considering using RougeWave STL & threads++

August 10, 1998 Brian A. Cole Slide P13

 TAC Review 1998

Progress/Future Schedule
Current Status
• We have nearly complete implementation of SEB code.

⇒ Also yields much infrastructure needed for controller/ATP.
⇒ This includes handling of PRDF, frame assembly.

– Integration w/ ONCS not quite complete.
– 1st Chain test of DCM, Pamette, SEB in 1-2 weeks.
– Incorporation of ATM messaging + Asynch I/O RSN.

• Currently developing Controller code
– Have implementation of main control structures.
– Incorporating messaging with input/output queues.

• Goal is to have standalone 2x2 event builder in Sept.
– Limited monitoring
– Error handling will not be complete.
– No real trigger algorithm support.
– Extremely simple Controller “policy” algorithms.

• From there:
– Flesh out exception handling & error reporting everywhere.
– Implement real controller policy algorithms (e.g. load-leveling).
– Flesh out trigger algorithm support software.
– Implement object “pools” to avoid new, delete

August 10, 1998 Brian A. Cole Slide P14

 TAC Review 1998

Schedule - Engineering Run
Hardware configuration
• 2 SEB’s w/ single Pamette (400 Mhz Pentium)

– likely will be first 2 rack-mount systems
• 2 ATP’s (400 Mhz pentium) - in hand
• 1 Controller (533 Mhz Alpha) - in hand
• ASX-1000 w/ 8 ports - in hand
• Terminal switch - Yet to be purchased (Raritan)

Software
• “Version 1” of Event Builder code

– Fully functional SEB interface.
– All components functional w/ full control interfaces
– At least minimal monitoring (counters, buffer depths)
– Functional connection to ONCS data logging.

• Goal is to have this in November 1998.
– Even if we “miss” we’ll be ready by engineering run.

