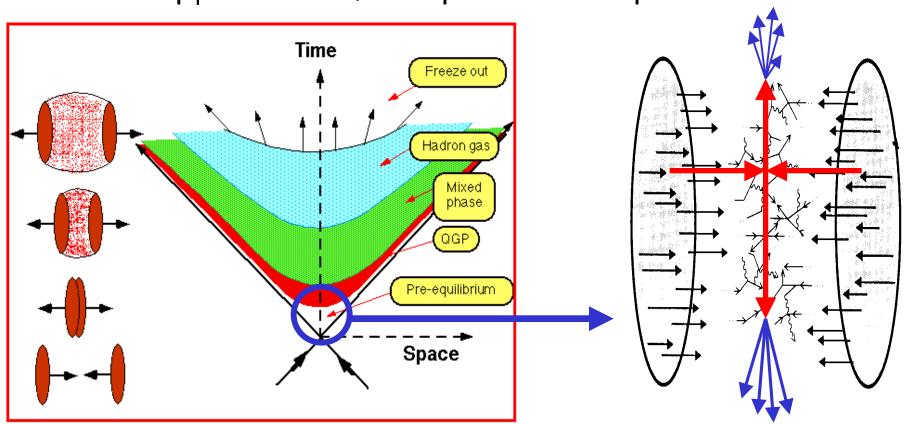
Suppression of High-p_⊥ Hadron Production in Au+Au Collisions @ RHIC


Brian A. Cole, Columbia University for the PHENIX Collaboration

Probing Initial Conditions @ RHIC

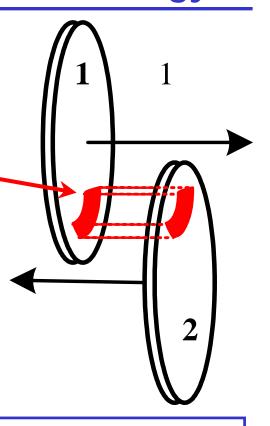
- Initial conditions due to semi-hard gluon radiation.
- Use hard-scattered quarks/gluons to probe early times
 - On shell even before the gluons.
 - Measure the fragmentation products \Rightarrow high-p_T hadrons
 - Above $p_T = 2 \text{ GeV/c}$, hard production expected to dominate.

PHENIX A-A Hard Interaction Phenomenology

- Assume (for moment) same parton distributions in nucleon and (Au) nucleus.
- Consider differential area dA in transverse plane of the collision.

$$- dN_{nn} = dA \eta_1 \eta_2 \sigma_{nn}$$

$$- dN_{hard} = dA \eta_1 \eta_2 \sigma_{nn}^{hard} = dN_{nn} \left[\frac{\sigma_{nn}^{hard}}{\sigma_{nn}} \right]$$


After integrating over dA,

$$-N_{hard} = N_{nn} \left(\sigma_{nn}^{hard} / \sigma_{nn} \right)$$

Obtain N_{nn}

- Cronin effect (+)
- Shadowing (-) /EMC (+/-)
- "Gluon saturation" (-)
- "Collective" effects (+?)
- Medium induced radiation (-)

Pioneering High ENergy Ion eXperiment

University of São Paulo, São Paulo, Brazil

Academia Sinica, Taipei 11529, China

China Institute of Atomic Energy (CIAE), Beijing, P. R. China

Laboratoire de Physique Corpusculaire (LPC), Universite de Clermont-Ferrand, 63170

Aubiere, Clermont-Ferrand, France

Dapnia, CEA Saclay, Bat. 703, F-91191, Gif-sur-Yvette, France

IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France

LPNHE-Palaiseau, Ecole Polytechnique, CNRS-IN2P3, Route de Saciay, F-91128,

Palaiseau, France

SUBATECH, Ecole des Mines at Nantes, F-44307 Nantes, France

University of Muenster, Muenster, Germany

Banaras Hindu University, Banaras, India

Bhabha Atomic Research Centre (BARC), Bombay, India

Weizmann Institute, Rehovot, Israel

Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo 188, Japan

Hiroshima University, Higashi-Hiroshima 739, Japan

KEK, Institute for High Energy Physics, Tsukuba, Japan

Kyoto University, Kyoto, Japan

Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan

RIKEN, Institute for Physical and Chemical Research, Hirosawa, Wako, Japan

University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo, Japan

University of Tsukuba, Tsukuba, Japan

Waseda University, Tokyo, Japan

Cyclotron Application Laboratory, KAERI, Seoul, South Korea Kangnung National University, Kangnung 210-702, South Korea Korea University, Seoul, 136-701, Korea

Myong Ji University, Yongin City 449-728, Korea

System Electronics Laboratory, Seoul National University, Seoul, South Kor Yonsei University, Seoul 120-749, KOREA

Institute of High Energy Physics (IHEP-Protvino or Serpukhov), Protovino, F Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia Kurchatov Institute, Moscow, Russia

PNPI: St. Petersburg Nuclear Physics Institute, Gatchina, Leningrad, Russia Lund University, Lund, Sweden

Abilene Christian University, Abilene, Texas, USA

Brookhaven National Laboratory (BNL), Upton, NY 11973

University of California - Riverside (UCR), Riverside, CA 92521, USA

Columbia University, Nevis Laboratories, Irvington, NY 10533, USA

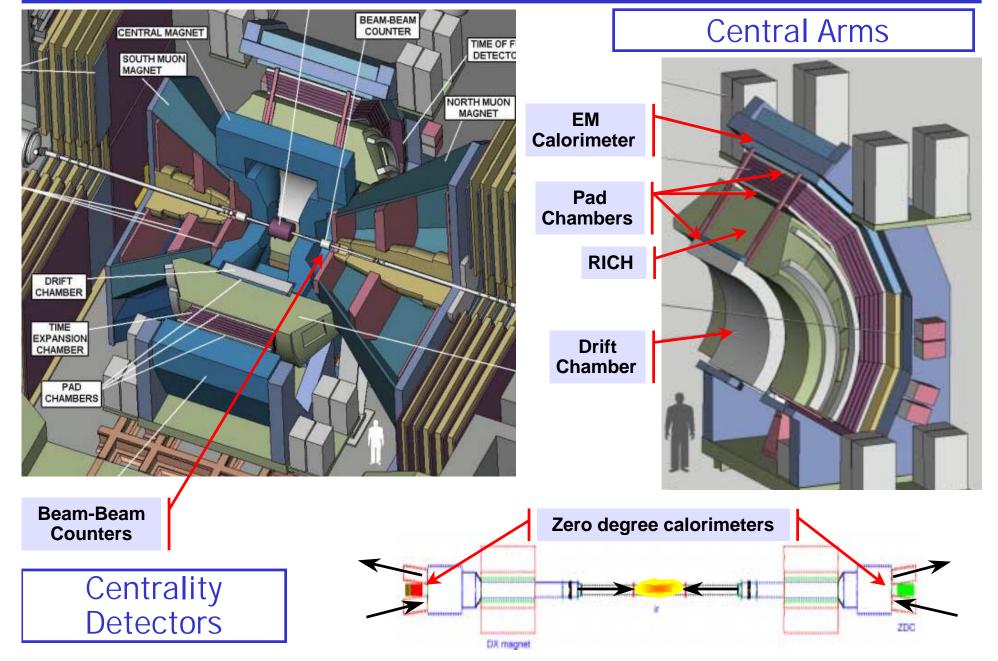
Florida State University (FSU), Tallahassee, FL 32306, USA

Georgia State University (GSU), Atlanta, GA, 30303, USA

Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA

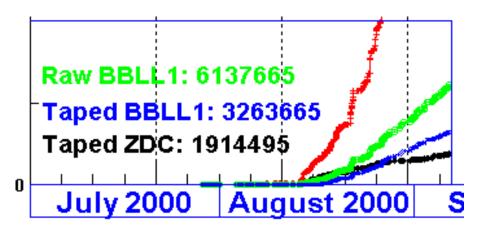
LANL: Los Alamos National Laboratory, Los Alamos, NM 87545, USA

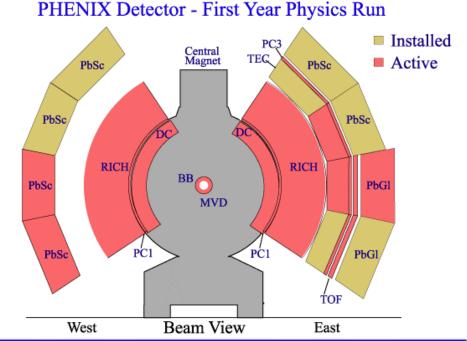
LLNL: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA University of New Mexico, Albuquerque, New Mexico, USA

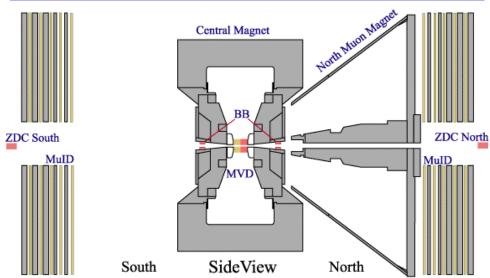

New Mexico State University, Las Cruces, New Mexico, USA

Department of Chemistry, State University of New York at Stony Brook (USE

Stony Brook, NY 11794, USA

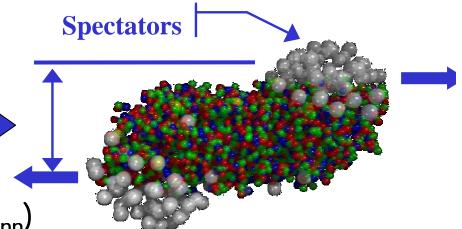

PHENIX Experiment @ RHIC

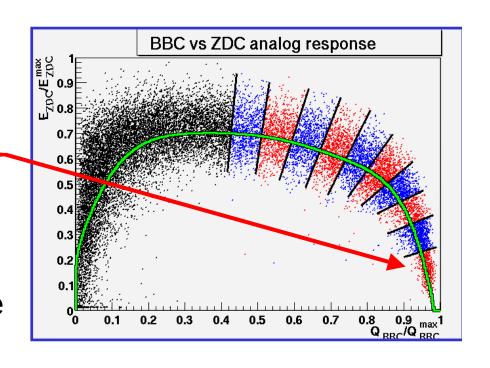




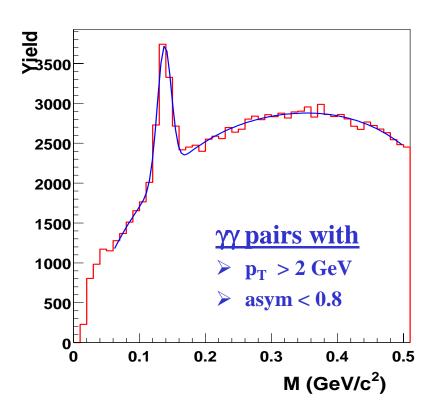
PHENIX Run-1 Operation

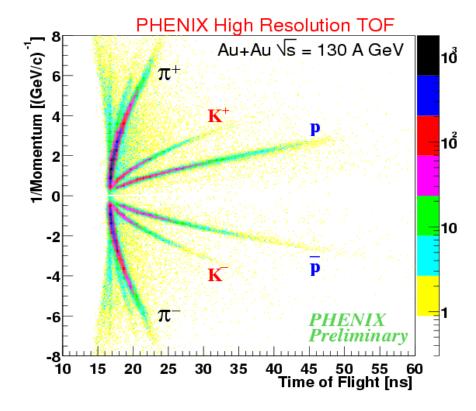
- RHIC operation
 - Au+Au @ $\sqrt{S_{NN}}$ = 130 GeV
 - Attained ≈ 10% of design L
- PHENIX operation
 - ~ ½ central arms active
 - Beam-beam trigger
 - \gt Accepts 92 ± 4% of σ_{hadr}
 - > 3.2 million events recorded
 - $> \approx \frac{1}{2}$ with $|\Delta z| \leq 20$ cm




Event Characterization

- Collision impact parameter determines "everything"
 - Nuclear overlap
 - # participant nucleons (N_{part})
 - # nucleon-nucleon collisions (N_{nn})


- Follow the "ridge"
- \bullet Classify by fraction of σ_{hadr}
 - e.g. 0-5% \Rightarrow 5% of σ_{hadr} with smallest impact param's
- To determine <N_{nn}>
 - Relate Q_{BBC} to N_{part}
 - Use nuclear geometry to relate
 # participants to N_{nn}



Hadron Identification in PHENIX

- $\pi^0 \rightarrow \gamma \gamma$ reconstruction with electromagnetic calorimeter.
 - Statistical identification in A-A.
 - S/B increases with p_T
 - π^0 identification for p < 20 GeV/c.
 - EMCal energy scale error < 1.5%.

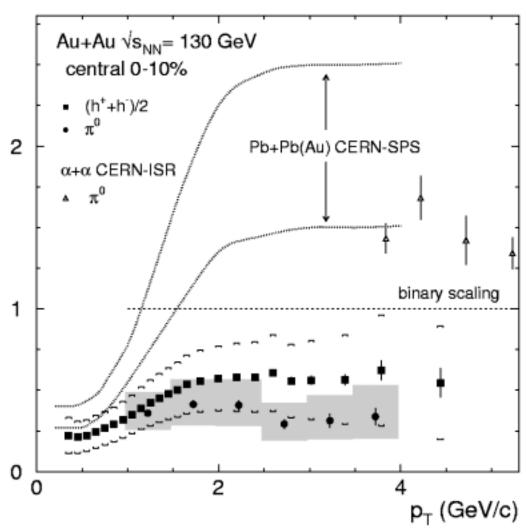
- Charged particle tracking
 - $-\delta p/p = 0.6\% \oplus 3.6\% p.$
- π[±], K[±], p, p-bar via time-of-flight
 - $-\sigma_{TOF}$ ≈ 115 ps over ~ 5m path.
 - $\Rightarrow \pi$ identification for $p \le 2.5$ GeV/c.
 - \Rightarrow p/p-bar identification. for $p \le 4$ GeV/c.

High-p_T Hadron Production

First published high-p_T data @ RHIC

- Peripheral
 - 60-80%
 - $\langle N_{nn} \rangle = 20 \pm 6$
- Central
 - -0-10%
 - $\langle N_{nn} \rangle = 905 \pm 96$
- Consistency check on π^0 data.
- Compare with N_{nn} scaling of p(bar)-p:

$$\frac{1}{N_{event}} \frac{d^2 N_{AA}}{dy \, dp_T^2} = \frac{\left\langle N_{nn} \right\rangle}{\sigma_{total}} \frac{d^2 \sigma_{nn}}{dy dp_T^2}$$

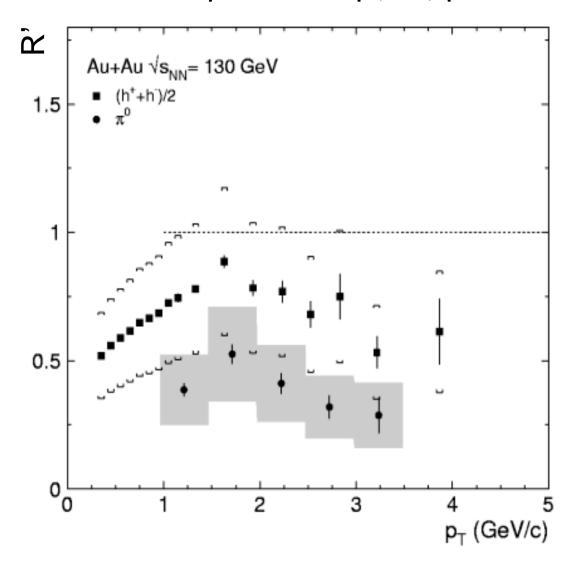

"Suppression" at High-p_T

Nuclear modification factor

$$R_{AA} = \frac{\frac{1}{N_{event}} \frac{d^2 N_{AA}}{dy dp_T^2}}{\frac{\langle N_{nn} \rangle}{\sigma_{total}} \frac{d^2 \sigma_{nn}}{dy dp_T^2}}$$

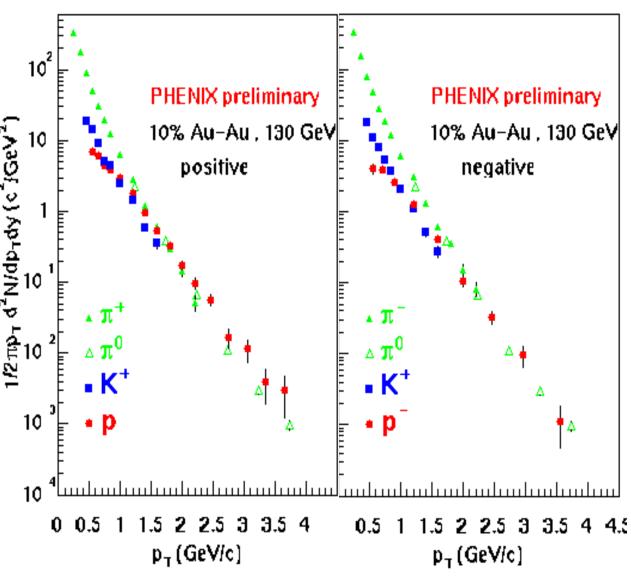
- $R_{AA} << 1$ for $p_T < 1$ \Rightarrow soft production
- For $p_T > 2 \text{ GeV/c}$
 - -Hadron $R_{AA} \rightarrow 0.6$
 - $-\pi^0 R_{AA} \rightarrow 0.4$
- Systematic errors include
 - Normalization
 - Uncertainty on N_{nn}
 - p(bar)-p interpolation to 130 GeV

K. Adcox *et al.*, Phys. Rev. Lett. 88:022301, 2002

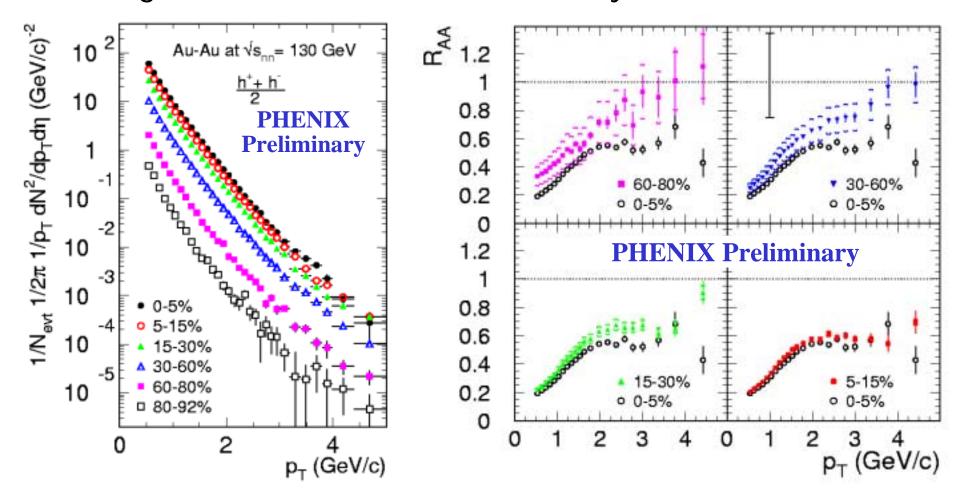


Suppression: Another Approach

- Compare peripheral and central Au+Au data
 - -Different systematics than above comparison to p(bar)-p.
- Define ratio (R')

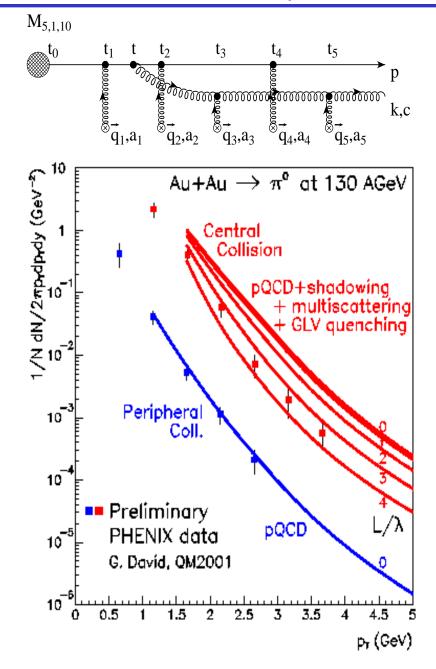

$$R' = rac{\left\langle N_{nn}
ight
angle^{periph}}{\left\langle N_{nn}
ight
angle^{cent}} rac{d^2 n^{cent}}{dy dp_T^2} rac{d^2 n^{periph}}{d^2 n^{periph}}$$

- Similar observations as above:
 - Even within Au-Au
 data, high-p_T yields
 don't scale with N_{nn}
 - Larger deviation for π^0
 - Also more significant.


Hadron Composition at High-p_T

- Why the difference between hadrons and π^0 's?
- Look at hadron composition.
- Observe
 - $-\pi^{\pm}$, π^{0} consistent
 - Large p & p-bar contribution.
 - p(bar) yield > π @ p_T > 2 GeV/c.
- High p_T p(bar)'s thought to be from non-pert. sources.
 - Background" to the hard physics.

Chg'd Hadrons -- Centrality Dependence

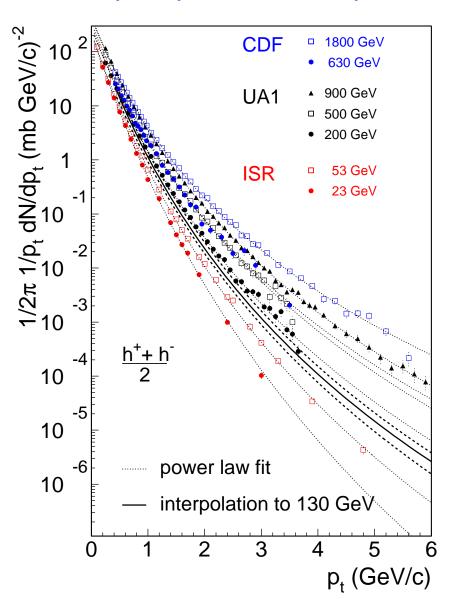

- In peripheral collisions $R_{AA} \rightarrow 1$ (where is the Cronin effect?)
- In more central collisions $R_{AA} \approx constant$ for $p_T > 2$ GeV/c.
 - R_{AA} → ≈ 0.6 (consistent with values above)
- Change in behavior in 30-60% centrality bin?

Why Suppression at High-p_T?

- One possibility: mediuminduced gluon radiation
 - Coherent multiple scattering of outgoing q/g
 - ► larger k_T gluons radiated.
 - Reduces outgoing q/g energy.
 - Reduces momenta of frag.
 products high-p_T hadrons.
- E.g. Gyulassy, Levai, Vitev
 - Perturbative QCD calculation
 ▶ LO + K_T (w/ A dep.) + shadowing
 - And calculation of gluon radiation for modest L/λ.

Not so fast ...

- ∃ other possible reasons for high-p_T suppression.
 - Shadowing.
 - > We should be in a safe x range x > 2 $p_T / \sqrt{s} = 0.06$ for $p_T = 4$ GeV/c.
 - But radial dependence of shadowing/EMC hasn't been measured.
 - Initial state gluon saturation
 - ➤ Modification of gluon "density" & k_T in highly boosted nucleus.
 - Other violations of factorization
 - \rightarrow g(x, Q²) or f(x, Q²) aren't what we think they are.
- Experimentally
 - We have ~ 100 increase in statistics from Run-2 (2001).
 - We just took high-statistics p-p data set @ \sqrt{s} = 200 GeV.
 - We will take d-A data in Run-3 (2002-2003).
- We haven't "discovered" anything yet.
 - We have & will continue to make careful measurements.


p-p Comparison Data

- Compilation of p(bar)-p charged-hadron data.
- Parameterize by powerlaw p_T dependence
 - $d^2N/dp_t^2 = A (p_0+p_t)^{-n}$
- Interpolate to 130 GeV

$$- P_0 = 1.72 \text{ Gev/c}.$$

- n = 12.4.
- A = 330 mb.
- Also $\pi/h = 0.63$ @ ISR
- Assign 20% systematic error on normalization of p-p d²N/dp_t².

Analysis by A. Drees, Stonybrook

