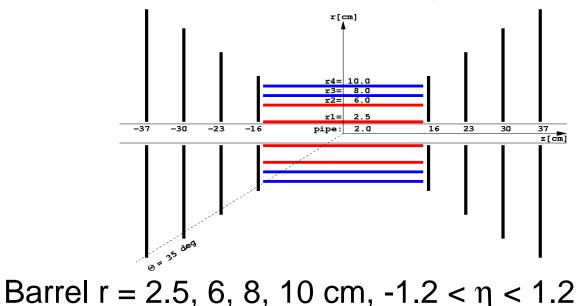

Overview of Vertex Detector Upgrade

- Physics recap
- Recent progress
 - Si strips/pads
 - B => displaced J/ ψ
- Next tasks

Spin Goals

- extend x-range of ΔG gluon spin structure function
 - gg -> bb, or cc

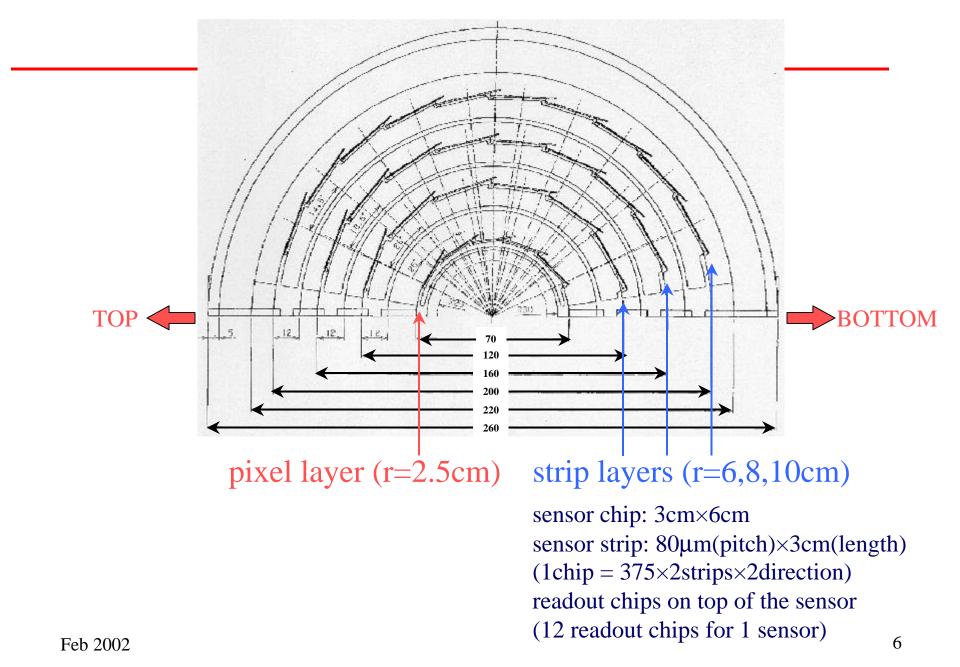


- Heavy-flavor production in pp, pA, AA over broad range y
 - unique measurement of b-mesons => displaced J/ψ
 - precision measurement of open charm spectra
- Physics case for open beauty, open charm
 - pp: detailed tests of initial hard-scattering processes
 - pA: gluon structure function in A, multi-step processes
 - AA: possible production in pre-equilibrium stage
 - probes earliest/hottest stage of reaction
 - energy-loss of heavy-quark different than light-quark
 - recoil less during gluon bremsstrahlung
 - open charm provides baseline for J/ $\!\psi$

Strawman Detector: 2001

Each Si layer, 1% radiation length {detector, cooling, support}

GEANT * pixel barrels * strip barrels * pixel disks endcap, pixels 4 circular disks z=16, 23, 30, 37cm $1.2 < |\eta| < 2.4$


Served purpose, established feasibility (last DC meeting) matching muon tracks to Si hits multiple-scattering reasonable for e, μ D=> hadron decay, possible/borderline

Strawman 2002: In Progress

- Outer two/three layers: Si microstrips, Li from BNL
 - 80µm * (8mm-3cm)
 - test this Spring with analog readout
 - » possibly copy NA60 use of CERN SCTA128VG
 - open issue if final electronics have ADC or just a 0/1 bit
 - $-r_3 = 8 \text{ cm}, r_4 = 10 \text{ cm}$
- Inner one/two layers
 - use Si pixels if ready, otherwise Si microstrips
- Endcaps, geometry being revisited
 - what pixel size is really needed for displaced vertices
 - what extent of disk (r) is needed to match with muon arms

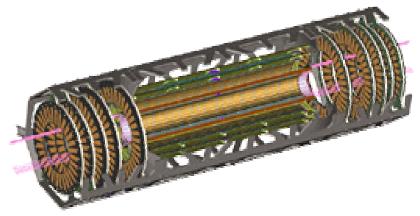
Half shell of the silicon detector

Open Beauty Via Displaced J/ ψ

- B ct ~ 388-449 μ m larger than D ct 120-317 μ m
- b-tagging in HE experiments
 - pair of b, \overline{b} each lead to a large displaced vertex

» small probability of both c, \overline{c} decaying this far

- not easily used in HI because of large c, \overline{c} mult/event
- Use instead B -> J/ψ BR ~ 1.3%
 - displaced J/ψ
- Issues
 - rate
 - resolution of displaced J/ ψ vertex


$B \rightarrow J/\psi \rightarrow \mu^{+}\mu^{-}$ (Strawman 2001)

- Displaced vertex resolution for reconstructed J/ψ ~133µm
- Mean decay length for B ~1.1 mm, or 8 X our resolution!
- Fraction of events passing a 1 mm vertex cut is 39%.
- 2*10**-4 of prompt J/ψ background pass a 1 mm cut
- Mean Pt of J/ψ from B decay is 2.1 GeV/c.
 - further enhance our S/B by just making a Pt cut.
- Rates being looked at

Mechanical/Cooling Constraints

- Contact has been made with hytecinc.com
 - Los Alamos firm
 - experience with rigid, stable, low-mass support
 - » HEP (ATLAS pixel), space applications

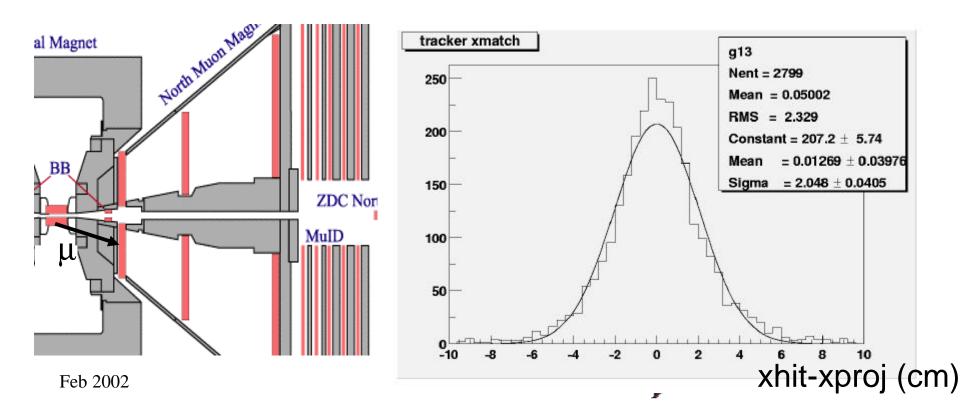
Early conversations only,

benefits are experience and speed, save \$ in long run ?

Next Steps

- Phenix technical note being prepared
 - summarize work done so far (Strawman 2001)
 - re-use parts for phenix letter-of-intent
- Strawman 2002 being developed for LOI
- Aim to rapidly move to project, funded by RIKEN
 - Si micro-strips, tests this spring
- Steps not really started
 - zero-suppression, have to do this but how and what will final event-size be
 - on-line triggering to get statistics
 - » algorithms from other expts start with outer-tracks match Si hits

Backup Slides


Pixel Hardware Options

- Si Pixel
 - hybrid: two sensor+readout chips bump-bonded
 - » SUNY-SB and RIKEN
 - » "piggy-back" on NA60/ALICE production
 - » chip wafers now in production
 - » bump-bonding vendors either booked or \$\$\$\$
 - » now to be done at VTT, Finland
 - » delivery to NA60 2/2002
 - monolithic: one chip sensor+readout
 - » e- from epitaxial layer
 - » Iowa State, LBNL (STAR)
 - » feasibility studies, similar products in optical industry

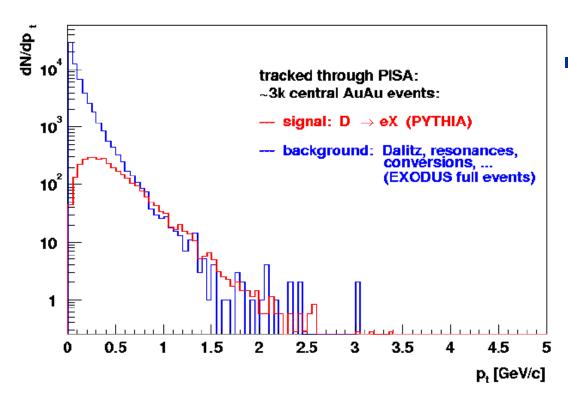
Matching to Muon Arms

- Match tracklets in Si to muon spectrometer
 - cut on same charge
 - momentum similar to 50% before/after muon shielding
 - match hit within 3σ on first tracking layer

Signal/Background Muons from Charm

- p+p simulations (in progress)
 - tracklets matched to muon spectrometer
 - DCA resolution to collision vertex ~ $100\mu m$
 - identify displaced decays, candidate μ from D, B
 - $D => \mu + X$

» confirm by having displaced track (X) in coincidence


- upper cut on decay removes long-lived pion decays
- (μ from D)/(μ from π)

» S/B > 1 for pt > 0.5 GeV/c

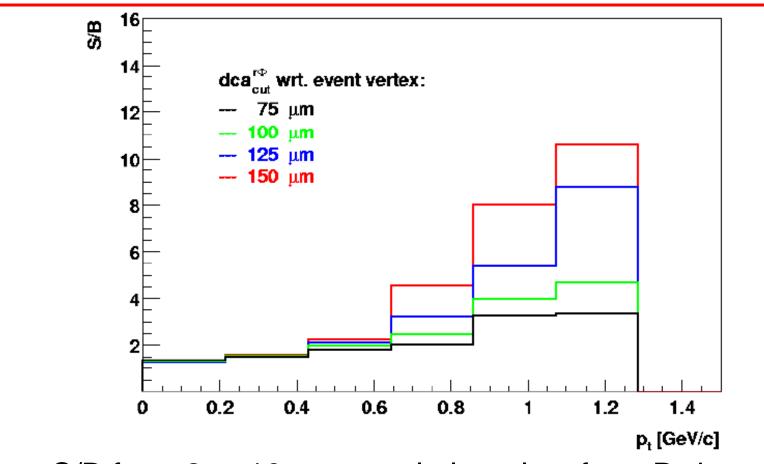
- will enable measurement of spectra of open charm



Central Arm: Electrons from D decay (Au+Au Simulations)

- Without cuts on displaced vertex
 - S/B \sim 1 for high-pt
 - S/B ~ 0.1 pt=0.5 GeV/c

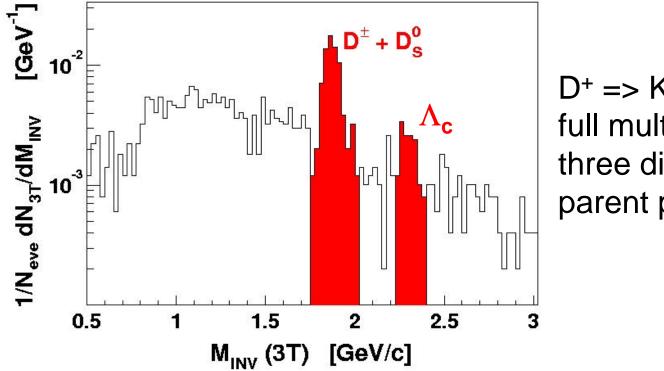
Distance of Closest Approach



50µm x 425µm pixels, full multiple scattering dca resolution (electrons) < 50 µm less than $c\tau$, D⁰: 125µm D[±]: 317 µm

Feb 2002

Signal/Background With DCA Cut



- S/B from 2 to 10 => sample largely e from D-decay
 - large momentum range => spectra and yields of D

Hadronic Decays of D

Construct invariant mass => extract counts => spectra

- multiple scattering, slow hadrons, makes this very tough

D⁺ => K⁻ $\pi^+ \pi^+$ (BR 9%) full multiple-scattering three displaced tracks, parent points to collision

Provides 2nd measure of D spectra, consistency with D=>e+X

Vital Statistics

- Total silicon surface area = 1.4 m²
- Barrel pixels 5M
- Barrel strips 50K
- Endcap pixels ~ 12M
- Requires zero suppression
- Two estimates of data volume per central event
 - hit channels (real+background) => 80K channels
 - 97% zero suppression => 500K channels
- No discussion yet on trigger possibilities

