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Abstract

This dissertation presents the measurement of single muons from the semi-leptonic decay of

heavy quark mesons (charm and bottom) in
√

s=200 GeV p+ p collisions at the Relativistic

Heavy Ion Collider at Brookhaven National Lab. The data were recorded in 2005 by the

PHENIX experiment. The PHENIX muon spectrometer measures particles at forward an-

gles from approximately 15◦ to 33◦ relative to the beam line in both forward and backward

directions.

A new analysis technique was developed to estimate and subtract backgrounds from light

hadrons in a statistical fashion to reveal the yield of heavy flavor single muons. The yield of

single muons is measured as a function of transverse momentum and is used to estimate the

charm quark production cross section over the measured region. As heavy quark production

is a true prediction of perturbative quantum chromo-dynamic calculations, the measured

single muon yield and estimated charm quark cross section are compared to theoretical cal-

culations. These comparisons show that the measured yield of single muons exceeds the

existing theoretical expectations by a varying degree, from a factor of four at the lowest

measured transverse momentum to a factor of two at the largest measured transverse mo-

mentum. The integrated charm quark production estimate also exceeds existing theoretical

estimates for charm at forward angles. However, the sizable uncertainties present in both

the measured and calculated quantities prohibit a definitive statement concerning charm

production at forward angles. In addition to theoretical comparisons, this measurement of

single muons in p + p serves as a springboard to further heavy quark results in both the

RHIC spin and heavy-ion programs.
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Chapter 1

An Introduction

As an adolescent I aspired to lasting fame, I craved factual certainty, and I thirsted

for a meaningful vision of human life - so I became a scientist. This is like becoming

an archbishop so you can meet girls.

- M. Cartmill

It is certain that human beings will never fully understand what happens when two nuclei

collide. Although a complete understanding will forever lie beyond our grasp, there is much

that can still be learned from experiments regarding the nature of the strong nuclear force.

In comparison to some disciplines, the overall pace of discovery in nuclear physics is often

not rapid. Tempered by the large experimental costs and the incremental nature of both

experimental and theoretical advances, the pace of discovery is perhaps best viewed on the

timescale of decades. Despite these limitations, much has already been learned.

The year 2008 marks 100 years since Rutherford’s seminal work exploring the nuclear struc-

ture of matter. That the nuclei of atoms are composed of neutrons and protons, themselves

containing point-like constituents referred to as quarks and gluons, dates from experimen-

tal and theoretical developments of the 1960’s and 70’s. Since that time we have further

expanded our theoretical understanding of the fundamental interactions of these basic con-

stituents of matter, as well as our ability to create and measure the wide array of observed

quark combinations and the gluons that bind them. Measuring the production of these re-

markable components of the natural world in the context of a theoretical framework derived

from first principles is an essential aspect of high energy and nuclear physics research. Ul-

timately, we seek answers to a most fundamental question of existence: what is the nature

of the force that allows the gluons to bind quarks within nucleons, thus permitting the very
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existence of the atoms that comprise our reality?

Through studies of high energy nucleon-nucleon collisions as described here, it is possi-

ble to gain glimpses, imperfect though they may be, into this elusive aspect of the universe.

This research, undertaken to measure heavy quark production produced in ultra-relativistic

nuclear collisions, serves as an incremental step in the grand human program of attempting

to better understand the fundamental forces of nature.

1.1 Content and organization of the thesis

The work presented in this dissertation describes the measurement of single-muon trans-

verse momentum spectra from the semi-leptonic decay† of heavy quark mesons originating

in proton-proton (p + p) collisions at a center of mass energy, denoted by
√

s, of 200 GeV.

This measurement is made using the PHENIX detector at the Relativistic Heavy Ion Col-

lider (RHIC) at Brookhaven National Lab (BNL). In this dissertation, the heavy quarks of

“flavor” charm and bottom are collectively referred to as heavy flavor†. Light quarks are

then u, d, s, and their anti-particles. A heavy-flavor single-muon measurement in p+p colli-

sions addresses three physics goals at RHIC: 1) Measurements of heavy flavor in p + p serve

as the baseline measurement for heavy-ion heavy-flavor measurements used in the study of

the hot, dense partonic medium produced in heavy-ion collisions at RHIC, 2) Heavy quark

production cross sections measured in p + p serve as tests of perturbative quantum chromo-

dynamic calculations, 3) Heavy flavor measurements in polarized p + p collisions at RHIC

provide direct access to gluons in the proton allowing measurements of gluon density and

ultimately the fractional contribution of gluonic spin to the total proton spin. For the re-

search presented in this document, experimental conditions do not yet permit a meaningful

heavy quark spin measurement in PHENIX. Instead, the first two physics goals provide the

primary motivation for this work. The methodology established in this thesis serves as the

basis for additional single-muon measurements by PHENIX in different collisions environ-

ments (Au + Au, Cu + Cu, and d + Au), as well as for future single muon spin analyses.

The remainder of this introductory chapter (Ch. 1) is aimed at providing a general dis-

cussion to provide a useful context and motivation for the topic of this thesis research. The

final chapter discusses some remaining experimental challenges and the prospects for future

†Decay through a weak interaction, producing one lepton and neutrino, and one or more hadrons.
†The top quark is too heavy to be relevant at the collision energies discussed in this work.
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results from single muons in PHENIX. The chapters in between provide some perspective

on elements of theory (Ch. 2), a historical perspective on previous experimental efforts (Ch.

3), a description of the collider and detector used (Ch 4.), the actual work done to measure

the single-muons (Ch. 5), and the discussion of the results (Ch. 6). There are also a handful

of appendices in which various details are provided that do not cleanly fall into any of the

aforementioned chapters.

1.2 RHIC as a QGP and QCD machine

One of the most celebrated principles of the accepted theory of strong interactions, quan-

tum chromodynamics (QCD), is that of asymptotic freedom. This suggests that the effective

coupling of the strong force, αs, decreases with increasing momentum transfer, Q2 or, equiv-

alently, with decreasing distance between the interacting particles. High-energy collisions of

particles have successfully demonstrated this principle. Directly related to this is the princi-

ple of confinement, where the strong force coupling becomes progressively stronger at lower

energies, which corresponds to longer distances. For this situation, individual quarks and

gluons are bound inside hadrons in a condition referred to as “infrared slavery.” Collisions

of heavy nuclei at ultra-high energies are thought to produce a state of deconfined, strongly

interacting nuclear matter, the quark gluon plasma [1]. RHIC was built to produce and

study this possible state of matter. To this end, RHIC is capable of colliding the full range

of nuclei from p + p to Au + Au across a wide range of collision energies, from a minimum

center of mass energy per nucleon-nucleon (NN) collision of
√

sNN=22 GeV to a maximum

of
√

sNN=200 GeV†. RHIC is also capable of producing asymmetric collisions between dif-

ferent size nuclei, as well as producing polarized proton beams, which serve the parallel and

complimentary RHIC physics program to study the spin structure of the proton. This wide

variety and range of collision possibilities at RHIC offer a unique technical and experimental

challenge, for which the “machine”‡ people should be greatly complemented.

For a high-temperature and/or high-density thermal medium of nearly massless, strongly

interacting particles (such as quarks), the characteristic momentum transfer is of the order

of T , the temperature [4]. For this type of matter, increasing T corresponds to a decreasing

†maximum of
√

s=500 GeV for p+p, the minimum
√

sNN for all ions which may in the future be reduced
to
√

sNN ≈ 5 GeV to permit search for the QCD critical point. See Figure 1.1.
‡the colloquial name for collider physicists used by detector physicists, who are called “users”
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effective coupling between the particles. Figure 1.1 shows a schematic of a possible phase dia-

gram for nuclear matter over a range of temperature and baryon chemical potential, µB [2,3].

Theoretical arguments and experimental data [5] suggest that nucleus-nucleus collisions at

RHIC are characterized by low net baryon density, depicted in the left half of the phase

diagram. In this region, and at low temperatures, strongly interacting quarks and gluons

are confined within nucleons. For increased temperatures, this strongly interacting material

is thought to exist as a hadron gas. Lattice QCD calculations suggest that at even higher

temperatures a phase transition with a critical temperature of about 175 MeV [6, 7] may

occur. This phase transition may lead to a state of matter where quarks and gluons are

deconfined, such as may have existed a few microseconds after the (most recent) Big Bang.

Whether there is actually a phase transition, the order of the phase transition if it exists,

and the possible existence of a critical point all complicate the discussion of the properties

of the strongly interacting matter in the high temperature, low baryon density region of

the phase diagram. However, what is much clearer is the possibility of using high-energy

nucleus-nucleus collisions, such as those produced at RHIC to explore this region of the phase

diagram. The collision of two nuclei has a short-lived overlap region with a total momentum

of zero that is roughly the size of a nucleus, permitting a meaningful estimate of an energy

density within the overlap region. In head-on Au + Au collisions at RHIC, energy densities

are conservatively estimated to be at least 5 GeV/fm3 [5]. By comparison, existing theoret-

ical calculations estimate the required energy density for a QCD phase transition to be on

the order of 1 GeV/fm3 [5, 8], suggesting that RHIC collisions produce conditions sufficient

to explore the possible formation of this new state of matter.

Collisions of heavy ions are described using the standard notion of impact parameter, b.

For nuclei, b describes the transverse distance between the centers of two colliding nuclei.

Collisions with small b and large overlap are referred to as central collisions, while collisions

with large b and small overlap are referred to as peripheral collisions. Nuclear matter in

the collision overlap region of heavy-ion events is initially heated and compressed to form a

hot, dense matter of deconfined quarks and gluons (known collectively as partons) that is

thought to quickly reach local chemical and thermal equilibrium. Defining a “fire-ball” of

produced particles from a relativistic heavy-ion collision as being in any sort of equilibrium

is, perhaps, counterintuitive. However, measured particle yields at RHIC can be described

by a thermal-statistical model using only the parameters T and µB that assumes chemical

4



Figure 1.1: Conjectured QCD phase diagram as a function of Temperature T and baryon
chemical potential, µbaryon [2, 3]. The early universe is thought to have been filled with
quark-gluon plasma (QGP) during the first microseconds after the big bang. The QGP is
also thought to be created in heavy-ion collisions at RHIC. A first order phase transition
may occur for µbaryon above the possible critical point.
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Figure 1.2: Schematic heavy-ion collision timeline. The thermal freeze-out image is an event
display from a central Au+Au collision event measured in the PHENIX central arm. Figure
adapted from [11].

equilibrium [9,10]. Once a state of equilibrium is achieved, regardless of its macroscopic du-

ration, thermodynamic quantities such as pressure, temperature, entropy, etc. can be used

to characterize the system.

As depicted in Figure 1.2, after the initial collision of heavy ions, parton production is

expected within a time of ∼1 fm/c †. Pressure drives the system to expand and cool,

returning the local energy density below the threshold for a phase transition, and according

to QCD the partons become confined within hadrons. This “hadron gas” continues to expand

and interact until chemical freeze-out, which fixes the experimentally observed composition

of matter [12]. After further expansion and cooling, the hadrons undergo their last collisions

and thermal freeze-out occurs. The hadrons then follow known modes of decay, which can

be detected experimentally.

1.3 QCD and “hard” collisions

In addition to the role of heavy-ion baseline, measurements made in p+p collisions, including

those of heavy quarks, provide tests of QCD that can be directly compared with theoreti-

cal calculations. The established framework for the interaction and production of particles

is the Standard Model, which possesses three symmetries, written as SU(3)×SU(2)×U(1),

that are necessary and sufficient to describe the interactions of known particles [13]. Despite

†(1×10−15m) / (3×108m/s ) ∼ 3×10−8 sec.
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the spectacular success of the Standard Model, a few lingering, less-than-desirable features

exist, such as the ad hoc way in which fermion masses, parity/CP violation enter the theory,

and the absence of direct observation of the Higgs boson [14]. Despite the overwhelming

success of the Standard Model to describe particle interactions, the discovery of the Higgs

boson, possibly at the Large Hadron Collider at CERN, will be a crowning experimental

achievement in physics.

The gauge field theory Quantum Chromodynamics (QCD) is the SU(3) component of the

Standard Model and describes the strong interaction between two kinds of particles with

color charge, quarks and gluons, the latter being the gauge bosons of the theory which me-

diate the strong force. The property of asymptotic freedom states, rather remarkably, that

the strong interaction is effectively weak at short distances or high energies. In this regime

where QCD is effectively a weakly interacting theory, perturbation theory may be applied.

In this case, a typical perturbative cross section in QCD can be written as a power series in

terms of the effective (and renormalized) QCD coupling, αs [15]:

σ = A1 αs + A2 α2
s + ..., (1.1)

where Ai are calculated from appropriate diagrams according to the Feynman rules. Cal-

culations up to αs are generally referred to as lowest (or leading) order (LO); calculations

up to α2
s are referred to as next-to-leading order (NLO), and so on. Skirting around the

details of renormalization for the moment, the strength of the QCD interaction, αs, which

is expressed in several different forms in the literature, can be written at lowest order in

terms of renormalization energy scale parameter, µ2
R (which will be discussed in more depth

in Chapter 2):

αs(µR) =
4π

β0 ln(µ2
R/Λ2

QCD)
, (1.2)

where ΛQCD is a measure of the scale at which αs really does become “strong” [16], and

β0 is the lowest order power series expansion of the β-function used in renormalization to

determine the coupling αs(µR) [15]. The exact details of the β-function are neglected for

this discussion. Higher order terms in the expansion of αs are expressed in inverse powers

of ln(µ2
R/Λ2

QCD). For the relevant high-energy, heavy-quark calculations to be discussed in

this dissertation, the renormalization scale, µR, approximately coincides with the physical

energy scale, E, of the interaction, and for the purpose of this discussion the physical energy
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scale is equated with the transverse momentum of the detected particle, E ∼ pT . The value

for ΛQCD varies depending on the number of “active” quark flavors†, but it is generally of

the order 200 MeV, which is close to the mass of a typical hadron [17]. Ultimately, faith in

QCD as the theory of the strong interaction is based primarily on the ability of perturba-

tive QCD (pQCD) to successfully match the large body of experimental data that has been

accumulated.

Equation 1.2 is formulated in such as way to nicely highlight some important properties

of QCD. The property of confinement, that only color-singlet (color neutral) combinations

of quarks, anti-quarks, and gluons of the size ∼ 1 fm exist as independent particles able

to propagate over distances greater � 1 fm, is readily seen for µR ∼ ΛQCD. In this case

αs(µR) is large, indicating strong coupling. On the other hand, as the energy scale becomes

large, µR � ΛQCD, the effective coupling becomes very small, justifying a quasi-free (i.e.

perturbative) treatment of partons within the nucleus.

The crossover between the dominance of non-perturbative and perturbative effects in a par-

ticular high-energy collision is often denoted by referring to processes as either hard (per-

turbative) or soft (non-perturbative). Experimentally, the crossover from the dominance of

one regime to the other is usually taken to be pT ∼ 2.0 GeV/c. In terms of Equation 1.2,

the crossover takes place at distances Λ−1
QCD ∼ 1 fm [16]. This is the point where quarks

are bound to form hadrons and where perturbation theory is not longer applicable. Lat-

tice QCD approaches, which implement discrete lattice spacings to remain ultraviolet finite

(non-divergent) are used to explore this non-perturbative regime. This work, however, is

concerned with an inherently hard process, heavy quark production.

1.4 Particle production and “hard” probes

Generally speaking, the interaction of two particles can be described as either elastic or in-

elastic. Elastic collisions conserve the identity of the original particles and conserve kinetic

energy. In high-energy physics, inelastic collisions are characterized by the production of

“new” particles and often result in the obliteration of the original particles. Three general

types of facilities exist to provide these high-energy inelastic collisions for study: fixed-target

†this is discussed in Chapter 2
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accelerators, lepton (such as e+e−) colliders, and hadron colliders. In point-like e+e− anni-

hilation “collisions” all of the center of mass energy contributes to particle production. The

situation is different in fixed-target hadron-hadron collisions and hadron-hadron colliders due

to the fact that hadrons are composite particles with the center-of-mass energy distributed

over the nuclear constituents, generally referred to as partons, which include valence quarks,

“virtual” quark/anti-quark (qq̄) pairs, and gluons. In hadron-hadron collisions, inelastic

collisions result in the dissipation of incident parton longitudinal energy which is then trans-

ferred into particle production. In p + p collisions, the subject of this research, colliding

protons retain on average about half of their initial momentum after the collision, suggesting

that only about half of the center-of-mass energy is used in particle production [18].

The likelihood, in terms of interaction cross sections, for both elastic and inelastic colli-

sions have been measured for p + p collisions at several different facilities and indicate at
√

s = 200 GeV, such as at RHIC, protons interact four times as often inelastically as elasti-

cally. The average total charged particle multiplicity at this energy from inelastic collisions

is six [18]. These produced particles can be plotted in terms of the kinetic variable transverse

momentum, pT , which is defined as the component of momentum perpendicular to the beam

axis. Particle yields measured over a limited solid angle are denoted by dN/dpT and exhibit

an approximately exponential drop with increasing pT . Invariant yields or cross sections ex-

trapolate dN/dpT over the full 4π phase-space and are written as E dN
d3p

or E dσ
d3p

, respectively†.

Hard processes are important for particles produced with pT & 2.0 GeV/c. In these hard

reactions the incident partons that undergo a hard scattering reaction can produce particles

with large pT which are said to serve as “hard probes” of the collision. Hard probes play

a vital role in the study of nuclear matter and QCD, for they permit the study of particle

production processes that are both theoretically calculable and experimentally accessible.

Light quarks with pT > 2.0 GeV/c depend on a single hard scale, µ and therefore provide

a straightforward application of pQCD. Existing NLO pQCD calculations for light quark

production for pT > 2.0 GeV/c are in good agreement with experimental measurements [19].

Because of their large mass, which also provides an additional hard scale in the perturbative

calculation, heavy quarks are by definition hard probes. In the following section heavy quark

production and its utility as a probe of QCD and QGP is explored further.

†Invariant yields are discussed in Appendix D.
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Figure 1.3: Leading order production diagrams for heavy quark pairs, QQ̄. Diagrams
adapted from [21] and [22].

1.5 Heavy quark production at RHIC and its role as a

probe for both QCD and the QGP

Of the three flavors of “heavy” quarks, charm, bottom, and top, the energy available at

RHIC to produce heavy quark pairs, QQ̄, is sufficient, statistically speaking, primarily for

charm production. Bottom production is also relevant but significantly below charm in total

production; the total bottom cross section is estimated to be 1-2% that of charm (for specific

values see Table 1.1). With a mass of 174 GeV/c2, the energy required for top quark pair

production is above the obtainable threshold at RHIC. Therefore, for the purpose of this

dissertation the term heavy flavor is taken to mean some admixture consisting primarily of

charm quarks with a small contribution of bottom quarks. In
√

s=200 GeV p + p collisions,

pQCD calculations indicate that the charm cross section exceeds the bottom cross section

until pT ∼4.0 GeV/c, above which bottom then dominates [20].

At leading order the primary heavy quark production mechanism at RHIC energies is gluon

fusion, g+g→Q+Q̄†, with suppressed LO contributions from the process q+ q̄→Q+Q̄ since

it requires an anti-quark in the initial state [23]. At next-to-leading order some contributing

processes are i) q + q̄→Q + Q̄ + g, ii) g + q→Q + Q̄ + g, iii) g + q̄→Q + Q̄ + q̄, and iv)

g + g → Q + Q̄ + g [21]. In these LO and NLO processes, heavy flavor is produced sym-

metrically, with equal numbers of quark and anti-quarks. It is also worth mentioning that

in terms of the “typical” pQCD cross section expressed in Equation 1.1, these LO diagrams

for heavy quark production are proportional to α2
s not αs. NLO processes are then of order

α3
s. This can be explained examining the diagrams in Figure 1.3. Every vertex contributes a

†concerning notation: q (q̄) refers to an initial quark (anti-quark), g for gluons, Q (Q̄) for final state quark
(anti-quark)
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Figure 1.4: Pictorial representation of the fragmentation of a charm quark and the semi-
leptonic decay of a charm meson. The measurement of the lepton depicted on the right-hand
side of the figure is the primary focus of this dissertation.

single factor of gs to the amplitude, M, where gs is the QCD coupling before renormalization

and is related to αs in the following way: αs = g2
s/4π [15]. The two vertices in each of the

LO diagrams in Figure 1.3 have an amplitude of M ∼ g2
s ∼ αs, according to the Feynman

rules [24]. The cross section, σ, is related to the amplitude by σ ∼|M |2, and the overall

cross section from these LO diagrams is therefor σ ∼ α2
s.

At the center of Figure 1.4 is a charm/anti-charm quark pair produced in an initial inelastic

hard collision. This cartoon diagram represents the central phenomena of interest of this

dissertation, and will be referenced indirectly throughout the rest of this work. The host of

cc̄ resonances (J/Ψ,Ψ, etc.), referred to collectively as charmonia, are of huge historical and

experimental importance. However, these resonances comprise just a tiny fraction of the

total charm cross section < 1%. Most of the charm cross section results in the production of

the family of charm mesons, referred to as D’s. Two decay processes of experimental interest

at PHENIX (having large branching ratios) are shown in Figure 1.4. The D0 meson decay on

the left shows the hadronic decay to K−π+. The study of this hadron decay mode is used at

RHIC to measure charm production but is not the focus of this work. The decay illustrated

on the right of Figure 1.4 shows the semi-leptonic decay of D̄0 to a lepton, the lepton’s

anti-neutrino, and a K+. The detection of these “single” leptons, either electrons or muons
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in this context, is the central focus of this dissertation. The decay mode shown here is just

for the D̄0. In reality, there are multiple D mesons that decay semi-leptonically. Measuring

the inclusive yield of single leptons from D meson decay and knowing the appropriate mix

of types of D mesons and their branching ratios to single leptons, the total production of

charm can be estimated. Provided that this is experimentally possible, it is worth discussing

the motivations for doing so.

Heavy quark production is of considerable and ongoing experimental and theoretical interest,

due in part to the fact that current understanding is incomplete on both fronts. Contrary to

light quark flavors (u,d,s) the large mass of heavy quarks permits the calculation of total and

differential (pT spectra) production cross sections over all pT . That means that heavy quark

production provides a direct test of QCD (or more precisely, pQCD). However, consideration

of heavy quarks introduces the additional hard scale of mass, mHQ, into the perturbative se-

ries that requires a reorganizational scheme that reduces the two scale problem to an effective

single scale problem which takes into account the relative sizes of pT and mHQ [17]. Multiple

effective single scale calculation schemes exist and are further discussed in Chapter 2. While

pQCD calculations for light quarks are restricted to pT & 2.0 GeV/c, for heavy quarks the

large mass provides a hard scale for pT . 2.0 GeV/c allowing pQCD calculations in this low

pT region. However, in this region large theoretical uncertainties arise from an incomplete

knowledge of several key inputs: the effective mass of the heavy quark, uncertainties in the

parton distribution functions (PDF’s) and fragmentation functions measured in e+e− anni-

hilations, and most importantly, the choice of renormalization and factorization scales in the

perturbative series. All of these issues are discussed in Chapter 2.

While there have been several experimental heavy quark measurements, higher precision

measurements are required to better constrain existing pQCD calculations which contain

these large uncertainties. This is especially true for charm production, where the relative

“lightness” of charm introduces significantly larger uncertainties into calculations as com-

pared to bottom. Current experimental and theoretical measurements and uncertainties for

the total heavy quark production cross sections for
√

s=200 GeV p + p collisions are listed

in Table 1.1.

As illustrated in Figure 1.5, processes with large momentum transfers, referred to as “hard”

processes, between partonic constituents within colliding nuclei can produce particles with

large pT . These “hard” collisions are the dominant processes for particles produced with pT
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(a) A hard p + p interaction. (b) A hard interaction in a heavy-ion collision.

Figure 1.5: Illustration of interactions p+p and heavy ion collisions. Particles produced in
a QGP-like medium will pass through the medium before being detected. The effect of the
medium on these hard collision probes can be studied relative to control interactions in p+p
collisions though quantities such as, RAB (Equation 1.5. Figure adapted from [30]

above about 2 GeV/c. In p + p collisions, where a QCD phase transition is not expected,

measured particle production serves as a baseline to heavy ion collisions. In a QGP-like

medium produced in, for example, Au+Au collisions, energetic partons (large pT ) produced

in hard scattering events passing through the medium can lose energy and momentum, ei-

ther through gluon radiation (brehmsstrahlung) or in elastic or inelastic interactions with

the medium [4].

In heavy collisions, the nuclear modification factor, RAB,

RAB =
dNA+B

〈Ncoll〉 × dNp+p

(1.3)

is one of the quantifiers of medium effects on particle yields. RAB is defined as the ratio of

particle yields in a particular heavy-ion collision environment, dNA+B, and particle yields

measured in “binary” nucleon-nucleon collisions, dNp+p, scaled by the expected number of

point-like binary nucleon-nucleon collisions, 〈Ncoll〉†, for the centrality class of heavy-ion

collisions being considered. A distinction is made between “intitial” state effects, which

result from the physics of the incoming nuclei prior to the collision, and “final state” ef-

fects that include the effects of the produced medium on particle yields. Neglecting initial

†〈Ncoll〉 is determined from Glauber model calculations [31].
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Table 1.1: Theoretical and experimental heavy quark cross section estimates for
√

s =200
GeV p + p collisions. The STAR result is obtained from a d + Au measurement.

Quark Mass (GeV) σtotal (mb) Uncertainty on σ Source
charm 1.25±0.09 0.256 +0.400 / -0.146 FONLL [20]
charm 0.244 +0.381 / -0.134 NLO [25]
charm 0.567 ± 0.057stat ± 0.224sys PHENIX [26]
charm 1.3 ± 0.2stat ± 0.4sys STAR [27]
bottom 4.2-4.7±0.07 0.00187 +0.00099 / -0.00067 FONLL [20]
bottom 0.0046 ± 0.0013stat +0.0026/-0.0022sys PHENIX [28]
bottom 0.0039 ± 0.0025stat +0.003/-0.002sys PHENIX [29]

top 174.2±3.3 ∼ 0 N/A N/A

state effects (e.g. Cronin broadening [32]) and assuming binary scaling of point-like QCD

nucleon-nucleon processes, we should find RAB=1. Ignoring these effects, deviation of RAB

from unity in heavy-ion collisions is equivalent to deviation from simple QCD expectations

for particle yields, presumably due to QGP-like medium effects.

The applicability of binary-scaling of QCD processes in heavy-ion collisions has been demon-

strated (within experimental uncertainties) by two measurements at RHIC. The first is made

using “direct” photons produced in initial hard collisions via the process g + q → γ + q. As

photons interact electromagnetically, a strongly interacting medium should be transparent to

photons, thus their production reflects only the properties of the initial state [5]. PHENIX

reported in 2005 that direct photon yields in Au + Au collisions measured over different

centrality classes do show RAA=1 (RAA for Au + Au instead of the generic RAB), exhibiting

binary scaling relative to a p + p pQCD calculation [33]. The binary scaling of total heavy

quark production has also been demonstrated [34] and is taken as another experimental con-

firmation of the binary scaling of point-like QCD processes in heavy ion collisions.

One of the most striking experimental results at RHIC is that of the significant energy loss

of light quarks observed in the QGP-like medium. In this case, light quarks are “observed”

through light meson measurements, such as π0, while heavy quarks are “observed” through

single leptons as already discussed. Figure 1.6 shows the nuclear modification factor, RAA

(subscript AA for Au + Au), plotted for both light (via π0) and heavy quarks (via e±’s from

D’s) for selected pT bins as a function of Npart. Npart is the number of participant nucleons

in a given heavy-ion collisions and is a measure of collision centrality, where Npart increases
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Figure 1.6: Nuclear modification factor for light and heavy quarks as a function of the
number of participants, Npart. See text for additional details.
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for more central events. Light quark energy loss is exhibited for π0 of pT >4.0 GeV/c (solid

(red) squares) where RAA shows clear and increasing suppression with increasing collision

centrality up to a factor of five in particle yields (RAA ∼ 0.2 at higher pT ) relative to the

appropriately scaled p+ p baseline. Quark energy loss in the medium is understood through

gluon radiation and elastic and inelastic scattering of quarks within the medium. For a speci-

fied value of pT , suppression in RAA vs. Npart is a direct result of this energy loss that reduces

the original particles’ pT values (effectively shifting the pT spectra to the left on a plot of pT ).

Heavy quarks also have a valuable role to play in studying energy loss in the QGP-like

medium. As previously discussed, photon production in a heavy-ion collisions has demon-

strated the binary scaling of point-like QCD nucleon-nucleon collisions indicated by RAA=1

(Equation 1.5). As opposed to photons that only interact electromagnetically, heavy quarks

are color charged objects and are expected to interact with a medium of deconfined quarks

and gluons. Heavy quarks are produced primarily through initial hard processes with a

timescale of τ ∝ 1/2mHQ for QQ̄ pairs and subsequent thermal production processes are

strongly suppressed [35]. The weak decay of heavy quarks means that their lifetime is longer

than the produced medium. This allows heavy quarks to also serve as probes of phenomena

of color-screening and color charge density of the medium [4]. Energy loss in the medium

for heavy quarks through gluon radiation was expected to be strongly suppressed relative to

light quarks at forward angles, the so-called “dead cone effect” [36].

A plot of particle production over all pT and Npart showing no suppression (RAA=1) would

provide some reassurance that the observed suppression is not due to other, non-medium

effects. In Figure 1.6 the solid (blue) circles show RAA for heavy flavor single electrons (de-

scribed in the next section) for pT > 0.3 GeV/c, which contains more than half of heavy-flavor

single electrons above this lower experimental pT bound. RAA for the integrated heavy-flavor

yield is consistent with unity and indicates the applicability of binary scaling of QCD pro-

cesses for heavy flavor production for all Au + Au collision centralities. The open (blue)

circles in Figure 1.6 show heavy flavor single electrons for pT >3.0 GeV/c. Suppression as

a function of Npart is also observed for heavy quarks. The single electron pT >3.0 GeV/c

bin is equivalent to the pT >4.0 GeV/c bin for π0 since heavy flavor single electrons result

from charm mesons with pT >4.0 GeV/c†. This apples-to-apples comparison between light

and heavy quarks indicate that heavy quark energy loss is less than that for light quarks,

but the energy loss is still greater than originally expected when considering the anticipated

†The inherent momentum degradation in the process D → lepton.
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dead cone effect. This observed energy loss is not fully understood, but this observation

along with hydrodynamic calculations for Au + Au data suggest that the QGP-like medium

is behaving like a strongly interacting fluid rather than a quark-gluon “plasma” [34]. Our

understanding of the medium produced at RHIC is evolving, and heavy quarks are playing

a vital role in driving this evolution.

1.6 Heavy flavor measurements in PHENIX

As free quarks are not observable in nature, charm quarks produced in the initial hard scat-

tering processes between partons will hadronize primarily into the family of “open” charm

D mesons, which are combinations of rare c or c̄ quarks with one of the ubiquitous light

quarks. The energy distribution of a final state D meson is described by its corresponding

fragmentation function, which describes the fraction of energy inherited from the original c-

quark. Both hadronization and fragmentation are examples of primarily soft QCD processes

which cannot be calculated perturbatively but can be measured experimentally. The charm

quantum number is preserved in strong but not weak interactions, so the single charm quark

D’s decay weakly with corresponding lifetimes of τ ∼ 10−15 seconds. An example of the

weak, semi-leptonic decay of a D meson has been shown in Figure 1.4, where the resulting

“single” lepton, l, is either an electron or muon.

Direct lepton production through weak and electromagnetic interactions are suppressed rel-

ative to the strong interaction by twelve and four orders of magnitude respectively [24], so

experimentally speaking, essentially no leptons are directly produced in nucleon-nucleon col-

lisions. This relative dearth of “early” leptons suggests that they may be useful probes for

charm detection; however, electrons and muons are by no means scarce particles, for they

are produced abundantly in light hadron decays that must be successfully accounted for and

eliminated through experimental techniques.

As prescribed by the weak interaction theory, certain decay modes of D mesons are more

highly favored than others. The single lepton semi-leptonic decay has already been men-

tioned. Other prominent decay modes such as D0 → K−π+ and D+ → K−π+π− result

in light hadron daughters. Both the semi-leptonic and hadron decay channels represent ex-

perimentally convenient methods for measuring heavy quark production from heavy flavor

mesons. The semi-leptonic decay mode amounts to an indirect measurement since only the

leptons are measured and used to infer the D meson and by extension the charm quark. A
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direct measurement of D mesons using hadron daughters forms an invariant mass from the

expected hadron decay combinations, permitting “direct” observation of D’s as a peak in the

invariant mass spectrum. An overview of both direct and indirect methods is now discussed.

One such direct measurement of charm is the reconstruction of a K−π+ resulting from

the decay of a D0 meson. Once the invariant mass† distribution is formed, and the D peak

is observed, the background level represented by the invariant mass continuum beneath the

peak is statistically subtracted to provide the yield of D mesons. The proper decay length,

denoted by cτ , for D± is 311.8 µm and for D0 is 122.9 µm. In simulations using the PHENIX

detector, the mean detected vertex of D±’s is about 800 µm from the primary collision ver-

tex, with the additional factor of 2.5 due to the Lorentz boost. The charm/anti-charm quark

pairs decay essentially at the collision vertex, while heavy flavor mesons will decay from a sec-

ondary vertex offset by the boosted lifetime of the particle. Precise vertex determination and

identification of these secondary charm decay vertices could permit the reduction of the large

amounts K−π+ pairs not arising from charm meson decay but has not yet been implemented.

Identification of these displaced vertices permits the tagging of likely heavy flavor decay

events, reducing the overall background to a level that allows direct measurements with a

high degree of significance. This is done at the B-factories [37] and the Tevatron [38] where

the detectors possess these capabilities. However, neither of the large detectors at RHIC,

STAR and PHENIX, currently possess displaced vertex measurement capabilities, hamper-

ing efforts to make direct measurements. The inability to tag likely C or B events using

a secondary vertex dramatically increases the backgrounds prohibiting precision measure-

ments [27]. Without precision vertex information these analyses, especially in heavy-ion

collisions, face very low signal to background levels (1/100’s) but do benefit somewhat from

the ability to calculate backgrounds from the invariant mass continuum below the mass

peak. Efforts to install high resolution vertex tracking permitting the identification of these

secondary heavy flavor vertices are underway in both STAR and PHENIX and have the

possibility of revolutionizing heavy quark measurements at RHIC.

The indirect method of heavy flavor measurement, which is the method employed in this dis-

sertation work, is made is through the measurement of single leptons from the semi-leptonic

decay of D mesons. The basic analysis methodologies to measure both single electrons and

†frame invariant mass, M , defined as: M2 = E2− | P |2, where E is the particle’s energy and P is its
momentum.
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single-muons have been employed since the early 1970’s [39]. The measurement is statistical

in that estimates of all “backgrounds” are subtracted from all single lepton candidate tracks

identified in the detector. If the primary sources of backgrounds are well understood and

subtracted, the remaining excess of particle tracks is then attributed to the heavy flavor

signal. In this method, no individual reconstructed particle or track is identifiable as being

either signal or background. It is only through the statistical (numerical) estimation and

subtraction of quantities that any physics message is obtained. While this methodology does

not characterize individual events, clear kinematic differences between the “prompt” or “di-

rect” leptons from heavy flavor decay and the various sources of background that originate

from the copiously produced hadrons do exist. Characterization of the backgrounds through

these indirect means is the key to this methodology and serves as the primary limitation to

precision for measurements made using this approach.

The two lightest mesons, pions and kaons, represent a dominant fraction of the total in-

elastic cross section for p + p collisions. An approximate ratio of light hadrons to muons

from charm can be obtained by approximating the light hadron (π, K) production cross sec-

tion as the full p+p inelastic cross section of 30 mb. The total charm quark production cross

section has been measured by the PHENIX collaboration to be about 0.5 mb. The Particle

Data Group quotes a global fractional value of charm quark decay to single leptons at 9.6%.

For the indirect method, PHENIX measures this inclusive set of single leptons resulting from

all D meson decay, which is primarily D0 and D±. About 3.2% of the D0’s have muons in

the decay chain (∼3.5% for electrons). The values for D±’s are ∼9.5% for muons and ∼8.6%

for electrons. Assuming that nearly all measured charm in the single-muon channel results

from D± and D0 semi-leptonic decay, and assuming a D chemistry of 70% D0 and 30% D±,

the branching fraction for charm to single-muon is approximately 5%. This suggests a ratio

of light hadron to heavy flavor single-muon of: 30 mb/(0.5 mb · 0.05) = 1200. Fortunately,

with the existing PHENIX detector design the ratio of total background to signal in the

muon channel is reduced to an overall level of 2:1 or 3:1 depending on pT . The situation for

the single electron measurement in PHENIX is a bit rosier, with the background to signal

ratio less than 1 for all of the acceptance except at the lowest values of pT .

As opposed to the direct method, which can easily distinguish between charm and bot-

tom through the use of invariant mass distributions, the charm and bottom components

are not easily separable with the indirect measurement approach, although recent results

are able to provide a first look at separating the charm and bottom components [28]. As
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mentioned, for heavy flavor single leptons, charm is the dominant component below a pT

of about 4.0 GeV/c, with bottom believed to dominate above that [20]. The heavy flavor

single-muon measurement presented in this works covers the pT range from 1.0-5.0 GeV/c,

so the term heavy flavor is nearly synonymous with charm.

1.7 The PHENIX central arm heavy flavor measure-

ment

The PHENIX detector (Chapter 4), which is used for this dissertation measurement, does

not possess full 4π solid angle coverage. Rather, the detector is designed to make measure-

ments in two primary kinematic regions. With the convention of angles measured relative

to the longitudinal beam axis, the two regions are: 1) mid-rapidity†, with π/2 acceptance

centered at 90◦ polar angle in the “central arm”, and 2) forward rapidity, from about 10◦ to

30◦ polar angle in both forward and backward directions with full azimuthal coverage.

The heavy flavor single electron result previously discussed (Figure 1.6) is a PHENIX central

arm single electron measurement. The central arms have very little material within their

acceptance, enabling them to focus on the measurement of electrons [26,34]. Using particle

identification detectors, a clean sample of electrons can be collected. However, there exist

several sources for electrons apart from that of heavy flavor decay. The largest source of

background electrons result from π0 → γγ decay and the subsequent photon conversion

(a.k.a. pair production γ → e+e−) in the limited material (mostly air) between the collision

vertex and the PHENIX central arm detector. Dalitz decay, π0 → e+e−γ, also contributes

significantly. Other less important sources of background electrons arise from direct photons,

weak kaon decay, and vector meson decay. Most of these backgrounds, namely π0 and η,

have been independently measured by PHENIX [19] and provide excellent input into Monte

Carlo detector simulations which only have to deal with well understood electromagnetic

processes. The level of photon conversion background is essentially measured by adding ad-

ditional conversion material in the PHENIX acceptance for a portion of the collision period.

The additional material increases the level of photon conversion by a well determined factor.

These various details all combine to allow PHENIX to make the most precise heavy flavor

charm quark cross section measurements at RHIC [26,34].

†Rapidity is defined in Appendix A. It is related approximately to polar angle, with mid-rapidity corre-
sponding to θ=90◦.
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1.8 General detector methods for measuring single muons

This section introduces two important details of experimental detector design when measur-

ing single muons. The next section (Section 1.9) then discusses these details in terms of the

existing PHENIX muon detector. The standard technique for muon identification employs

large amounts of dense material (e.g. steel) which interacts with and absorbs hadrons. Un-

like electrons, which due to their light mass readily interact in absorber, high momentum

muons possess significant penetrating power. To optimize an experiment to measure muons,

there are two simple, though immensely important details to consider: 1) the location of the

closest absorber to the collision vertex, and 2) the total amount of available absorber and

how it is allocated before the muon detection equipment.

Location of closest absorber to the collision vertex

Placement of absorber material as close as possible to the collision vertex maximizes the

number of hadrons absorbed before they can decay into muons. Once a hadron decays into a

muon, it will likely penetrate the absorber material and reach the muon detection layer as a

background track. Since primarily just two types of particles are at play in the single-muon

analysis, heavy flavor muons and light hadrons, represented primarily by π± and K±, it is

instructive to consider the decay of both types of particles in the muon arm acceptance. The

dominant decay channel for charged pions is π± → µ±νµ (99.99%). The neutrino passes

undetected through the detector and, to a large extent, the muon possesses the energy and

direction of the parent pion.

Once a hadron decays into a muon the likelihood that it will penetrate to the deepest layer

of the detector entering the pool of muon candidates dramatically increases since muons will

not be absorbed in the steel. The dominant source of energy loss for muons is ionization

energy loss in the steel. Depending on the location of the closest absorber material, with

an average decay length, cτ of 7.8 m, a small but meaningful fraction of the total number

of pions will decay into muons. The fraction of pions that do decay as a function of decay

length (cm) is given by [15]:

P (z) = 1− e−Mz/ |p|cτ ,

where P (z) is the probability that an unstable particle decays before a distance z, M and |p |
is the particle’s mass and momentum, and cτ is the mean proper lifetime in meters. The cτ
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for muons is 658.7 meters and for kaons is 3.7 m. The large cτ for muons indicates that their

decay is irrelevant for the current analysis. Using these values the decay likelihood can be

plotted (Figure 1.7) as a function of the distance traversed for a pT =1.0 GeV/c and pT =5.0

GeV/c, which is the range over which single-muons have been measured. The figure shows

that the likelihood for a pion to decay before reaching absorber material is about two orders

of magnitude above the muon decay likelihood (not visible in the figure), while the kaon decay

probability is more than a factor of 3 to 4 larger than that for pions for the same pT . This

plot includes the 99.9% and 63.4% branching ratio for π’s and K’s to muons, respectively.

Although the overall yield of kaons produced in collisions is significantly less than that of

pions (Figure 5.18 shows the K/π ratio as a function of pT ), due to the increased decay

probability before reaching absorber material, kaons contribute nearly equally as a source of

muon backgrounds from hadron decay.

Depth and allocation of absorber material

It is illustrative to examine a “traditional” fixed-target muon experiment, such as the Fermi-

lab experiments with 300 GeV proton beams incident on fixed uranium targets [40]. Fixed-

target collisions produce muons boosted in the direction of the incident beam, while particles

produced in the center-of-mass of colliding beams do not receive the same momentum boost

in the forward/backward direction of the beams. The Fermilab fixed-target experiment

measured muons with momenta between 90 and 150 GeV/c, while typical muon momenta

at RHIC ranges from as low as 3 GeV/c to approximately 25 GeV/c. The degree of multiple

scattering a particle undergoes scales inversely with the particles momentum, θ ∼ 1/p, so

a comparison of the lower bound of muon momenta indicates that for the same amount of

material muons in PHENIX would experience a factor of 30× more multiple scattering. The

extent of angular straggling directly impacts particle tracking resolution, which by extension

directly degrades momentum determination. The Fermilab experiments used 3 m of steel

immediately following the target for hadron absorption. An additional 5 m of steel was used

in the muon apparatus down stream of the beam. The total of 8 m of steel absorber can

be compared to the ∼1.5 m of steel in the PHENIX muon arm. The amount of total steel

directly sets the hadron contamination level in the measured muon tracks.
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Figure 1.7: Particle decay likelihood as a function of flight path of π (blue), K (red), and
µ (green, but not visible) for pT 1.0 and 5.0 GeV/c. Typical muon decay likelihood is
below 10−3. The typical z-vertex acceptance for the single muon analysis includes the range
20≤ z ≤60 cm of total decay path length since the closest absorber is at |z |<41 cm accepted
collisions have a range of -20≤ z ≤20 cm.
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1.9 How PHENIX measures single-muons at forward

angles

Compared to the mid-rapidity central arm measurements, the experimental situation is less

sanguine for forward rapidity heavy flavor measurements in the single-muon channel. The

presence of steel in the PHENIX forward angle muon spectrometers removes all of the back-

grounds that arise from electromagnetic processes that play a crucial role in the PHENIX

central arm single electron analysis, although other important sources of muon backgrounds

remain. The two PHENIX “muon” spectrometers, also referred to as muon “arms”, at

forward and backward rapidity are optimized primarily for the measurement of dimuons

resulting from charmonium decay. So, a measurement of single-muons with the PHENIX

detector must be able to successfully estimate and eliminate large backgrounds using a de-

tector that was never designed for that explicit purpose. The key issues of the location of

first absorber material and the total amount and allocation of the absorber material have

been discussed for optimal muon detection. These two issues are now considered for the

PHENIX muon arms.

Location of closest absorber to the collision vertex in PHENIX

The PHENIX experiment possesses a interaction region that is free of instrumentation or

other material over a region ± 41 cm along the direction of the beam pipe (z-direction).

Figure 1.7 illustrates that a non-negligible fraction of pions and kaons will decay into muons

in this region. The probability for a hadron to decay over a given distance (in the lab frame)

decreases with increased momentum. This can be seen in Figure 1.7 as the pT =5.0 GeV/c

probability lines (dashed) lie a factor of more than three below the pT =1.0 GeV/c lines

(solid).

Unlike at fixed-target experiments where the interaction point is well known by the lo-

cation of the target material, at RHIC, where protons and heavy ions are circulated in

bunches within two beams moving in opposite directions, the timing of the delivery of differ-

ent bunches is not accomplished exactly at the interaction point at z=0. Instead, collisions

between the two beams occurs over a wide swath in z that extends ± 30 cm of z=0. Given

this, ideally the placement of the nearest absorber material would be at ± 30 cm from the

vertex; however, this wide collision region also serves as the event vertex for the PHENIX cen-

tral arm acceptance. In order to prevent backgrounds from originating in absorber material
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and entering the central arm detector acceptance, the nearest absorber material in the muon

arm begins at z = ± 41 cm, roughly 10 cm beyond its optimal placement for muon detection.

The schematic location of the sensitive detector layers and the amount of steel hadron ab-

sorber in a particular PHENIX muon arm are represented in Figure 1.8. On the left side

of Figure 1.8 the first absorber material is comprised of copper “nose cone” and steel of the

central magnet that totals about 80 cm of contiguous absorber material. The combination

of the wide event vertex and the extra decay path to the first absorber material means that

above the minimum pT cutoff of the muon arm acceptance, essentially all of the light hadrons

that decay into muons will enter as backgrounds tracks into the pool of inclusive muon can-

didates. Since light hadrons have been estimated to outnumber heavy flavor single-muons by

a factor of more than 1000, the integrated yield of the non-negligible fraction of light hadrons

that decay to muons easily outnumbers the integrated yields of heavy flavor single-muons.

This effect is most pronounced at low values of pT (less than 3.0 GeV/c).

Depth and allocation of absorber material in PHENIX

The integrated nuclear interaction length is plotted on the vertical axis of Figure 1.8. By

definition, muon candidates penetrate to the deepest sensitive layer in the muon arm, which

is the Muon Identifier (MuID) gap 4 located at approximately 870 cm from the interaction

point. The total amount of steel absorber between the event collision vertex and the deepest

layers of the MuID is roughly 150 cm. Hadron interaction in material can be approximated

by a simple exponential model described by e−L/λI , where L is the integrated depth of ab-

sorber material and λI is the nuclear interaction length at a particular momentum for a

particular hadron in a given material. For our purposes it is useful to assume the hadron

is a pion which has a momentum averaged λI of roughly 16 cm in steel. Using these as-

sumptions, the 9.5λI of steel in the PHENIX muon arms naively provides a total hadron

rejection of e−9.5 ≈ 10−4. However, the likelihood for nuclear interaction is not equivalent to

the likelihood for nuclear absorption, which is the key to muon-hadron separation.

In a research and development effort spanning 1989 to 1992 [41, 42] for what eventually

evolved into the PHENIX muon spectrometer, range measurements in absorber for different

types of beams (p,π,µ) were studied. Hadrons that interact in absorber material can shower,

producing soft particles that are readily absorbed. But at larger momentum, hadrons are

shown to increasingly interact in a way that produces “knock-on” particles that can carry
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Figure 1.8: Depiction of a PHENIX muon spectrometer including distances from the inter-
action point (0,0,0) of detector layers and absorber material. The green indicates the regions
of absorber material.
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nearly the same momentum as the interacting particle, thereby penetrating more deeply into

absorber material than expected in the simple exponential interaction model. The fraction

of events with hits as a function of nuclear interaction lengths was measured for pions of

8 GeV/c total momentum, which is equivalent to a pion with a pT of about 2.0 GeV/c in

the middle of the muon arm acceptance. Roughly half of the events produced a hit in the

calorimeter at a depth of 3.5 to 4λI . Pions of larger momentum are observed to produce

deeper penetrating particles. The results also show (see Figure 5.13) that after the initial

range of 3.5 to 4λI a more exponential-like trend is observed, and after 8λI only 3% of the

events showed hits. Extending the range measurement to 10λI for the same 8 GeV/c pion,

it is reasonable to expect a hadron absorption level of about 200. This indicates that for the

amount of total absorber in the muon arm, and given that the overall production of light

hadrons exceeds that for heavy flavor muons, the expected yield of “punch-throug” hadrons

(or a high momentum interaction remnant) that pass through the absorber material to enter

the inclusive muon candidate pool is expected to be roughly the same order of magnitude

than the signal heavy flavor muons. A natural question to ask is then, why not add more

absorber material to provide further hadron absorption?

Due to the relative softness of the muon momenta in PHENIX, the placement of absorber

material before the muon tracking chambers located at 50 < z < 500 cm in Figure 1.8 must

be balanced by the extent of tolerable tracking resolution degradation. Given this constraint,

the desire to additional absorber material to reduce hadron contamination in the muon sam-

ple runs up against a muon arm physics design goal. The MuID two shallowest absorber

layers located at large z (z > 600 cm) are intentionally thin to enhance the measurement of

light vector mesons with a typical pT < 2.0 GeV/c, which is at the low end of the momentum

acceptance muon arm. Any additional steel within the MuID volume cannot simultaneously

accommodate this physics goal and still fit within the space of the experimental hall; there-

fore, the extent of hadronic backgrounds described in both this section and the previous

section provide unavoidable challenges to making a single-muon measurement. Thankfully,

analysis techniques are available to identify and measure the yields of muons from hadron

decay as well as that of punch-through hadrons.

Background estimation and subtraction

An indirect single lepton measurement of charm, as previously described, takes all properly

reconstructed tracks to the deepest layer of the MuID and subtracts statistical estimates of
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the backgrounds in the last MuID layer to obtain the signal. Since the production of light

hadrons dominates the production of heavy flavor, this measurement technique requires an

accurate estimate of measured tracks originating from π±’s and K±’s, with significantly

smaller contributions from other hadrons such as K0
L, K0

s , p, and p̄. As discussed, the

primary muon backgrounds can be categorized as either originating from hadron decay or

originating from hadrons “punching-through” that are misidentified as muons.

The combined hadron decay and hadron punch-through backgrounds in the single-muon

analysis presented in this work are estimated using an integrated background Monte Carlo

estimate that is benchmarked and constrained by the muon detector’s ability to indirectly

identify both background types. Estimation of the muons from hadron decay exploits the

measured collision vertex dependence of these “decay” muons (Figure 1.7). The shallow

MuID absorber layers permit the measurement of unidentified hadron yields in the detector

layers at lower z (700 ≤ z ≤ 800 cm in Figure 1.8) since hadrons interacting and showering

in the steel will stop. Ideally, these two measurements would constrain a standard detector

GEANT based hadron Monte Carlo (MC) and permit a precise estimate of the backgrounds

in the last MuID layer, but there is one more wrinkle. The simulation of hadron interactions

for large amounts of steel is not well constrained. For thin absorbers the default hadron

shower MC code works well, but for large amounts of steel (such as >1 m), the differences

between the two standard hadron shower packages are of the order of 50% due to amplifi-

cation of small differences in the interaction cross section and in the reaction products [42].

By adjusting the overall interaction cross section in the MC hadron shower code, the in-

put hadron spectra can be “tuned” to simultaneously match the measured stopped hadron

distributions in the shallow MuID gaps and the measured hadron decay collision vertex de-

pendence.

Figure 1.9 summarizes the work performed in this dissertation. The inclusive track yield

(closed circles) is measured in the PHENIX muon spectrometer. The analysis undertaken

to measure heavy flavor single muons determines a series of track quality selection criteria,

dubbed “analysis cuts” which are optimized retain heavy flavor single muons and reject

backgrounds. The application of these analysis cuts removes backgrounds and results in

the pT spectrum represented by the open circles. The remaining background is estimated

and subtracted to determine the yield of heavy flavor single muons (blue stars). The final

ratio of signal/background for this analysis ranges from ∼0.3 to ∼0.5, which when combined

with a 10% uncertainty in the background estimates gives a minimum attainable systematic
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Figure 1.9: Plots of event normalized inclusive track yields versus pT along with the estimated
heavy flavor single-muon yield (stars). The application of analysis cuts reduces the total track
sample by about 50% at low pT and an order of magnitude at high pT (from solid to open
circles). Details are discussed in Chapter 5.

uncertainty of ∼30% on the final extracted cross section. In terms of invariant yields, the

analysis effort can be summarized by the following simple equation:

NH.F.µ(pT ) = Ntotal(pT )−Nhadrons(pT )−Nother(pT ),

where Ntotal is the invariant yield of inclusive muon candidates, Nhadrons is the estimated

yield of tracks originating from hadrons estimated by a tuned MC, Nother is some “other”

background source attributable to non-hadronic sources. The Nother component, which is

discussed later (Chapter 5.4), is small when compared to the hadronic background level and

is included here for completeness. The subtracted quantity, NH.F.µ, represents the sample

of single-muons attributable to heavy flavor decay. This subtraction takes a surprisingly

long time to compute: hundreds and hundreds of man hours, thousands and thousands of

computer hours, and two calender years.

After the subtraction, there are two final steps. The yield of single muons is then con-

verted into an invariant yield and/or cross section. The yield of single muons over the

measured pT region is then compared to pQCD calculations. A particular pQCD calculation

is used to extrapolate from the minimum measured pT of 1.0 GeV/c to pT =0.0 GeV/c. Using
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estimates of branching ratios and D meson chemistry, an integrated charm quark production

cross section, dσcc̄/dy, over the measured slice of rapidity can be extracted for comparison

purposes.
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Chapter 2

Theoretical and phenomenological

issues in heavy quark production

This dissertation presents a measurement of heavy quark production in high-energy hadron-

hadron (p+p) collisions. Since the theory describing this physics is QCD, interpreted through

the quark-parton model, these results are compared to pQCD calculations as a test of both

theoretical and experimental understanding. The phenomenological connection between

QCD and the quark-parton model is the assumption of factorization. Factorization per-

mits the separation of perturbatively calculable hard collision processes between hadronic

constituents from universal, experimentally measurable, non-perturbative parton densities,

which provide a description of the internal structure of the colliding hadrons. For hadron

production cross sections, such as for D charm mesons, the additional process of fragmenta-

tion of quarks into hadrons must be included in the analysis. This process is described by

fragmentation functions, which are measured experimentally and describe the decay proba-

bilities of the heavy quarks into daughter hadrons (e.g. π’s, K’s, and D’s). In calculations

that facilitate direct comparisons between experiment and theory, the additional step of

describing the non-perturbative hadron-to-lepton decay spectrum and the branching ratio

from the parent hadrons must also be considered. In p+p collisions this entire process can

be schematically represented as [43]:

pp
pQCD−−−→ Q

N.P.frag.−−−−−→ HQ
decay−−−→ lepton (2.1)

where Q is the heavy quark, N.P. frag stands for non-perturbative fragmentation process,

HQ is the heavy-quark hadron, and lepton represents the final-state observable. This chap-

ter discusses these ingredients in heavy quark production cross sections, with an emphasis
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on charm and to a lesser extent bottom production. Specific calculations relevant to this

experimental work are discussed.

Structure functions and parton distribution functions

Information concerning the internal structure of hadrons is an essential input into many

pQCD calculations and is especially relevant in the calculation of heavy quark production

in hadron-hadron collisions. The uncertainties in the parton distribution functions remain

an important source of uncertainty in present day charm quark production calculations. For

this reason a short discussion of the development of parton distribution functions is presented

here.

This topic has its origins in the deep-inelastic scattering experiments of the 1960s. In

the course of roughly a decade, quarks were first proposed as mathematical objects [44],

deep-inelastic scattering results indicated that quarks might actually be the fundamental

constituents of protons, the parton model was proposed by Feynman [45], and the existence

of the charm quark was verified. The initial quark model proposed by Gell-Mann, Zweig,

and Ne’eman a description of hadrons as being composed of combinations of quarks and

anti-quarks. The early quark model included three quarks, u, d, and s, but experimental

results quickly pushed the development of the quark model beyond that stage. High-energy

lepton-nucleon scattering experiments conducted beginning in 1968 (also referred to as deep-

inelastic scattering, or DIS), played an essential role in the development of the quark-parton

model.

In lepton-nucleon scattering, the incoming lepton exchanges a virtual photon (i.e. Coulomb

interaction) with the target nucleon (as depicted for deep inelastic scatting in Figure 2.1).

The effective spatial resolution of the photon goes as ∼1/Q2, where Q2 is the square of the

four-momentum transfer. For lower energy (smaller Q2) interactions with a target nucleon,

the virtual photon resolves a single point charge, the nucleon in this case, and the trans-

ferred energy induces excited states, or resonances. These resonances such as the ∆, with

an invariant mass of 1232 MeV/c2, are short lived with typical widths of Γ ≈ 100 MeV,

corresponding to ∼ 7·10−24 seconds [46].

Increasing the Q2 of the photon improves the spatial resolution. For larger Q2, the nu-

cleon will break apart into a number of secondaries. At sufficiently large Q2, the photon
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Figure 2.1: Schematic deep inelastic scattering diagram, adapted from [46]. γ∗ in the figure
represents the virtual photon, which acts as a probe.

is capable of resolving structure within the nucleon, which is referred to as deep inelastic

scattering. Figure 2.1 schematically depicts a typical deep inelastic lepton-hadron scatter-

ing process. A few of the other variables used to describe the DIS processes are ν, the

energy transferred from the lepton to the nucleon in the initial nucleon’s rest frame, and x

(the “Bjorken x”), which in the infinite momentum frame corresponds to the dimensionless

fraction of the proton’s momentum carried by the parton [13]:

x =
Q2

2Pq
=

Q2

2Mν
(2.2)

where q is the virtual photon four-momentum, P is the proton four-momentum, and M is

the invariant mass of the nucleon [46].

In the simple case of measuring the elastic scattering cross section of a lepton from a single

point charge, such as a nucleon for sufficiently low Q2, the scattering can be described in

terms of form factors, F , of one parameter, Q2. For inelastic scattering with large Q2 and sec-

ondary hadron production, another degree of freedom is needed to describe the cross section.

In this case the form factors, referred to in this context as structure functions, F1 and F2, are

expressed in terms of two parameters, x and Q2. Measurements of the inelastic cross section

permit these structure functions to be extracted, and in the regime Q2 → ∞ and ν → ∞
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(Bjorken limit) and for a given x over a large range of Q2, the total inelastic cross section

of leptons scattering from nucleons has been shown to be approximately independent of the

Q2 of the collisions; Fi(x, Q2) ≈ Fi(x). This phenomenon, that the scattering is expressible

in terms of functions of the single variable x, is called Bjorken scaling. That the structure

functions are approximately independent of Q2 for a given x, means that the photon is re-

solving single point charges within the nucleon. This is analogous to the single variable form

factors used to describe low Q2 elastic scattering cross sections. The observation of Bjorken

scaling, before the advent of QCD, was an important step toward the eventual adoption of

the quark-parton model [13].

If quarks were non-interacting, no additional structure would be observed as Q2 is increased

further, and exact Bjorken scaling would hold for all Q2 and x [24]. However this is not the

case, as is suggested by QCD phenomenology. With increasing Q2, the number of partons

resolved by the virtual photon increases. Since quarks are electrically charged and gluons are

not, the use of the photon to probe the structure of a nucleon in DIS experiments is limited

to the quarks, but it is understood that in addition to valence quarks and sea quarks, glu-

ons also contribute significantly to the internal structure of nucleons. The sea quarks, born

out of fluctuations in the QCD vacuum, have observable effects on the measured structure

functions. As a result, the scaling of structure functions in x and Q2 is, in fact, observed not

to hold.

In Figure 2.2 the structure function, F2, of the proton is shown versus Q2 for many values

of x. As discussed in [24], there is an increased probability of finding a quark at smaller

x because high-momentum quarks tend to lose momentum through gluon radiation. Two

distinct trends can be observed in the functions shown in Figure 2.2: 1) for small fixed x

(toward the top of the figure) the structure function increases with Q2, and 2) at large fixed

x the structure function decreases with increasing Q2 [15].

At low x and with increasing Q2, the increased spatial resolution of the virtual photon

allows one to observe the effects of the sea quarks that originate from the QCD vacuum

as quark/anti-quark pairs with lifetimes governed by the uncertainty principle. At low x,

with increasing Q2 the structure function increases because the number of partons sharing

the momentum of the nucleon increases. Due to the ephemeral nature of the sea quark

contribution their effective quantum numbers average to zero, and they carry only a small

fraction of the nucleon’s momentum [46]. This effect is reversed at larger x, with decreasing
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Q2. At large x there is an increased probability of observing softer “valence” quarks whose

momentum has been degraded by gluon emission [24].

Although the structure functions themselves are process dependent, process-independent

parton distribution functions (PDF’s) may be extracted from the structure functions mea-

sured in DIS experiments. These PDF’s can then be used in proton-proton collision cal-

culations that are ultimately compared to measured particle spectra. A fundamental set

of perturbative QCD relations known as the DGLAP∗ or the Altarelli-Parisi equations can

be used to infer some properties of the structure functions. Although perturbation theory

cannot be used to calculate the structure functions directly, the DGLAP equation permits

the calculation of the evolution of the structure function in Q2 once the function is known

(measured) at a specific x and Q2. The origin and utility of these equations are discussed

in [16,24]. In one application, the structure functions in various processes measured at lower

energies can be evolved to higher energies such as those seen at RHIC. The set of CTEQ†

parton distribution functions that result from a global fit to data and evolved in this man-

ner [50–52] are used as input to the heavy quark calculations of relevance to this work.

Uncertainties in the parton densities extrapolated from measured (HERA, see [15] for cita-

tions) to unmeasured regions (RHIC and LHC) are an important source of uncertainties in

the calculated cross sections at RHIC energies. Figure 2.3 shows the CTEQ6.5M u-quark,

d-quark, and g (gluon) distributions at the scale µ = 2 GeV normalized to the CTEQ6.1M

PDF’s [52]. The shaded areas represent an estimated uncertainty band from the CTEQ6.1M

analysis, and in the region of interest in the PHENIX muon arms (Figure 4.7), x ∼ 10−1 to

10−2, the uncertainties are ≈10-20%. For precision measurements these uncertainties could

be considered rather large, especially for the gluon distribution. For the charm measurements

at RHIC, other non PDF uncertainties dominate the current theoretical uncertainties. All

sources of uncertainties in heavy quark calculations are summarized in Section 2.2.2.

The renormalization and factorization scales

The concept of renormalization in QCD is especially relevant to this experimental disserta-

tion because the choice of the renormalization scale, µR, in heavy-quark pQCD calculations

is one of the largest sources of uncertainty encountered when comparing these calculations

to experiment. The goal of the section is not to attempt a grand summary of the details of

∗Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [47–49]
†Coordinated Theoretical-Experimental Project on QCD, www.phys.psu.edu/∼cteq
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Figure 2.3: CTEQ6.5M PDF uncertainties for u, d, and g as a function of x for the scale
choice, µ= 2 GeV [52]. The x range measured for charm in PHENIX is in the range 0.01 .
x . 0.1.

renormalization in QCD, but rather to provide sufficient context to understand the origin

and significance of µR and the related factorization scale, µF .

Renormalization in both QED and QCD refers to a re-parameterization of the interaction

strength through the introduction of a quasi-arbitrary parameter, µR, the renormalization

scale. This parameter determines how the perturbative series is expanded. The choice of

the renormalization scale is arbitrary in the sense that the final observed cross sections (or

|M|2) are physical observables and must therefore be independent of µR. In the following

discussion of heavy quark production, the common convention is followed relating µR to the

characteristic scale of the process [53], which in this case is mHQ. For additional, introduc-

tory reference to renormalization and the renormalization group equation please see [16,24].

The separation of the non-perturbative and perturbative components of a pQCD scattering

amplitude calculation is implemented through the “convenient” choice of the factorization

scale. This can be demonstrated by consideration of a generic pQCD expansion, which will

typically contain logarithmic terms such as ln(Q2/Λ2
QCD). Note that:

ln(Q2/Λ2
QCD) = ln(Q2/µ2

F ) + ln(µ2
F /Λ2

QCD), (2.3)

where the arbitrary scale µF is the factorization scale, and ΛQCD is the perturbative cut-

off [16]. For this particular example, partons with pT < µF may be considered part of the
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hadron structure and absorbed into the PDF, where as partons with pT > µF are considered

part of the perturbative component of the calculation.

The choice of the values of µR and µF has the single largest impact on the uncertainties

associated with the current set of heavy quark calculations of any parameter, especially in

the predictions of charm production amplitudes. This fact will be revisited several times in

the remainder of this dissertation. Concerning the exact choice of the factorization scale,

as long as µF is comparable to the hard scattering scale, e.g. µF ≈ pT , differences in the

calculated cross sections due to the variation of µF reflect differences at the next order in

the perturbation series [52]. Thus, variation of this parameter (and µR as well) in a next-to-

leading order calculation explores the uncertainty associated with the next-to-next-to-leading

order contributions. In practice, µF is conveniently chosen to be the same as µR.

Heavy quark fragmentation

Fragmentation functions are dimensionless functions that describe the inherently non-perturbative

(i.e. non-calculable) momentum degradation that occurs in the hadronization process of

quarks into hadrons. They describe the final state energy distribution of hadrons result-

ing from initial partonic hard scattering processes. Relative to light quarks, heavy flavor

mesons retain a large portion of the original heavy quark momentum. In practice, heavy

quark fragmentation functions are implemented by convolving non-perturbative effects us-

ing the Peterson or Kartvelishvili parameterizations [15] with a perturbative fragmentation

calculation. For heavy quarks produced at large momentum relative to their mass, per-

turbative effects in the form large logarithms such as αs log(mHQ/pT ) play an important

role in modifying the shape of the heavy quark fragmentation. Schemes that resum these

logarithmic terms provide the perturbative component of the hadronization process [20],

and the non-perturbative component is extracted phenomenologically from e+e− data. The

non-perturbative fragmentation function is expected to scale roughly as O(Λ/mHQ), where

Λ is a hadronic scale of a few hundred MeV. Because of this, the non-perturbative compo-

nent will have non-negligible effects without degrading the accuracy of the factorized pQCD

cross section (as claimed in [43]). The particular fragmentation function implementation

and subsequent hadron decay to leptons used by the primary calculation referenced in this

dissertation, referred to as FONLL, is discussed further in Section 2.2.2.
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2.1 Implementations of the factorization theorem

QCD’s utility as the theory of the strong interaction is largely rooted in predictions made

using the quark-parton model. In the original, pre-QCD parton model, hadrons are envi-

sioned as extended objects consisting of partons held together by their mutual interactions.

In the language of QCD and the improved quark-parton model, quarks and gluons are re-

ferred to collectively as partons that are asymptotically free at short distances. Within this

phenomenology, the internal structure of hadrons due to the long-distance mutual interac-

tions cannot be calculated. By neglecting parton-parton interactions, at high-energy/short

distances the scattering amplitudes of “free” partons can be calculated. The short-distance

and long-distance phenomena may be brought together into a single theoretical prediction

by asserting the factorization theorem [54].

Factorization refers to the ability to separate, or factorize, the short-distance (perturbative,

or hard) and long-distance (non-perturbative, or soft) components of the inclusive partonic

cross sections [17]. Long distance, non-calculable effects can be factorized into functions

describing the distribution of partons in a hadron (using PDF’s) or hadrons in a parton

for final-state hadrons (using fragmentation functions) [54]. These two non-perturbative

functions are measurable and are universal in the sense that when measured in one process,

such as in DIS or e+e− scattering, they can be applied to a different process, such as the

hadron-hadron collisions considered in this work. Once the non-perturbative effects have

been factored out, the remaining cross section is a short distance, perturbatively calculable

scattering of partons.

“Classic” leading-order heavy quark factorization

The primary mechanism for heavy quark production in hadron-hadron collisions is the hard

collision of one parton from each hadron. For hadron-hadron collisions at RHIC energies

the dominant leading-order process is gluon fusion. Other LO contributions are suppressed

because they require an anti-quark in the initial state [23]. LO gluon fusion, depicted in

Figure 2.4, is used to demonstrate the factorization theorem, as was first applied to heavy

quark production by Collins et al. in 1986 [55]. The cross section for hadrons A + B →
heavy quarks C + D + anything can be expressed as

dσ

dyC dyD
∼
∑
i,j

∫
dxAfi/A(xA)

∫
dxBfj/B(xB)Hij(s,mHQ, xA, xB, yC − Y, yD − Y ) (2.4)
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Figure 2.4: Schematic diagram of the leading-order (α2
s) process of gluon fusion in hadron-

hadron collisions. Additional details can be found in the text.

where x is the Bjorken x, the sum runs over the partons i and j, and Y is the rapidity of

the parton center of mass frame‡. The functions f are the PDF’s, and Hij is the partonic

hard scattering cross section for the production of a heavy quark pair (plus anything else).

In [55] it is stated that the calculation of the cross section in Equation 2.4 relies on one

basic assumption—that the mass of the heavy quark is sufficiently heavy to justify perturba-

tive treatment. In the center of mass of the produced heavy quark system the intermediate

virtual quark state is of order 1/mHQ, so if mHQ is sufficiently large, the process is dominated

by short-distance effects and is calculable in pQCD.

Two corollary details to this assumption play out in the calculation of the perturbation

series expanded in terms of αs. First, in the factorized cross section in Equation 2.4, contri-

butions suppressed by powers of the typical hadron mass scale, mhadron relative to mHQ are

ignored. Second, the partonic cross section, Hij, is expanded in powers of αs(mHQ), which

again requires mHQ to be large. As noted in Chapter 1, diagrams such as Figure 2.4 lead

to LO cross sections of the order of the square of the amplitude, |M |2, hence of order α2
s,

and the NLO terms are of order α3
s [56]. The coupling αs is evaluated at the scale of the

heavy-quark mass, which is ≈0.3-0.5 for charm, ≈0.2 for bottom, and ≈0.1 for top [57].

‡Y = 1
2 ln(xA/xB)
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Heavy quark factorization at general order

Rather than express the cross section as originally written in Equation 2.4 [55], the most

common form in current literature for the cross section of a heavy-quark pair (QQ̄) is written

as:

σQQ̄ =

∫
dx1 dx2 fH1

i (x2, µF ) fH2
j (x1, µF ) σ̂ij(x1p1, x2p2, mQ, µF , αs) (2.5)

where the f ’s are the parton distribution functions, σ̂ is the short-distance partonic cross

section (which is calculable order-by-order in pQCD [57]), and µF is the renormalization

scale. In calculations of total cross sections to NLO (order α3
s), an increase relative to the

LO result of about a factor of three is found [56]. Given the increase in the cross section due

to NLO terms, the size of the next-to-next-to-leading order (NNLO) terms should clearly

also be addressed. This is discussed in Section 2.2.1.

A general proof of the factorization theorem for heavy quarks in deep inelastic scatter-

ing, order by order for all orders of perturbation theory, was given by Collins in 1998 [58].

Two important features of the heavy quark factorization method are notable. First, the

heavy quark masses are retained in the calculations if they are non-negligible with respect

to the scale of the hard scattering. Second, in the calculation of the strong coupling, αs, the

assumed number of “active” light quark flavors, nlf , varies according to the physical scale

(such as momentum). This can be viewed as a mass-dependent application of the factoriza-

tion theorem.

As discussed in [58], the use of different numbers of nlf have overlapping ranges of va-

lidity with threshold or switching-points between the schemes, which for the case of charm

switches from nlf=3 to nlf=4. The active light quarks are treated as partons with zero mass,

and the inactive quarks are considered to be massive and non-partonic, so their contribu-

tions are not included. The matching between the nlf and nlf+1 schemes is done using the

renormalization and factorization scales set (approximately) to the the mass of the (nlf+1)th

quark. In the variation of the physical scale of the process, such as Q in DIS or pT in this

work, the number of active quarks is varied accordingly. For the case of charm, charm is

treated as non-partonic (i.e. massive) and nlf= 3 for pT < mcharm. For pT > mcharm, charm

is treated as an active partonic flavor, and nlf= 4.
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2.2 Calculations of heavy quark production

Unlike light quark flavors (u,d,s), “hard” processes are responsible for the production of heavy

quarks (c,b,t) which have masses, mHQ, greater than about 1.3-1.5 GeV/c2 (and hence a QQ̄

creation threshold of ∼3.0 GeV/c2). The large masses of the heavy quarks motivates pQCD

calculations of total QQ̄ cross section calculations, while is not justified for light quarks. The

consideration of heavy quarks introduces the additional quark mass scale, mHQ, in addition

to the basic energy scale (pT in this context), which requires a different organization of the

perturbative series depending on the relative magnitudes of mQ and pT . There are essen-

tially two cases to consider, mHQ∼pT and pT � mHQ [59]. The mass of the bottom quark

is sufficiently large so as to preclude some of the ambiguities associated with calculations of

charm quark production. This dissertation is concerned primarily with charm production, so

“charm quark” is used nearly synonymously with “heavy quark” in the following discussion.

The first case, mHQ∼pT , sometimes referred to as the Fixed-Flavor Scheme (FFN) for heavy

flavor production, is calculated from hard processes initiated by light quarks and gluons,

with the number of active light “partonic” flavors set to nlf=3 for charm. The number nlf

used in the calculation scheme determines how αs is calculated. This scheme is robust at

threshold, mHQ∼pT , but for pT � mHQ becomes unreliable since the perturbation series

contains terms of the form αn
s logn(p2

T /m2
HQ), which does not have good convergence prop-

erties for large n [59].

For the second case, pT � mHQ, sometimes referred to as the zero mass scheme, in which

the heavy quark is included as an active flavor, nlf=4 for charm, in the calculation which

serves to re-sum the logarithmic terms mentioned in the previous case. However, this scheme

becomes unreliable as pT → mHQ. This is the approach taken by global QCD analyses of

parton distributions (e.g. MRS, CTEQ) and Monte Carlo programs (e.g. PYTHIA, HER-

WIG) [17]. Since many of the experimental measurements are at the interface between these

two regimes, a heavy quark calculation spanning the full energy range must incorporate the

physics of both the zero-mass and FFN schemes. For charm production this means seam-

lessly combining the nlf=3 (FFN) and nlf=4 (mHQ) schemes over the full energy range.

The same idea holds for bottom production, in which the nlf=4 (FFN) and nlf=5 (mHQ)

schemes are combined.

For the purpose of comparisons to measurements at RHIC, production cross sections for
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heavy quarks are calculated with two basic approaches: 1) starting from total partonic cross

sections calculated to NLO with nlf=3 using standard proton PDF’s [60]. 2) integration of

pT and y distributions in the Fixed-Order Next-to-Leading-Log calculation which effectively

merges the nlf=3 and nlf=4 schemes as described above [20]. These two approaches are

discussed in the next two sections.

2.2.1 Heavy flavor cross section from NLO total partonic cross

sections

Reconsidering the schematic equation (Equation 2.1):

pp
pQCD−−−→ Q

N.P.frag.−−−−−→ HQ
decay−−−→ lepton

The partonic cross section, σ̂ij (the first step from pp to Q in the scheme above) can be

written in an O(α3
s) (NLO) form [60],

σ̂ij(s, m, µ2
F , µ2

R) =
α2

s(µ2
R)

m2 {f (0,0)
ij (ρ) (2.6)

+ 4πα(µ2
R)[f

(1,0)
ij (ρ) + f

(1,1)
ij (ρ) ln(

µ2
F

m2 )] +O(α2
s)},

where the fk,l
ij are partonic scaling functions that depend only on ρ=4m2/s, calculated to

NLO [61]. According to the factorization theorem, the hadronic p+p cross section for charm

production, written in terms of σ̂ij, is:

σQQ̄(s, m2) =
∑

i,j=qq̄,g

∫
dx1dx2f

p
i (x1, µ

2
F )fp

j (x2, µ
2
F ) σ̂ij(s, m, µ2

F , µ2
R) (2.7)

where x1 and x2 are the fractional momenta carried by the colliding partons, and fp
i are the

proton PDF’s. The total cross section depends only on the quark mass and the renormaliza-

tion scales µR and µF but not the kinematical quantity pT . The heavy quark is considered

massive in this calculation and is therefore not an active flavor. Using m=1.5 GeV, fixed

scales of µF =µR=m, and nlf light flavors, the predicted NLO total charm cross section at

the RHIC energy of
√

s=200 GeV is [60]

σ
NLOnlf

cc̄ = 301+1000
−210 µb. (2.8)
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Figure 2.5: NLO total charm cross sections [60] calculated with CTEQ6M parton densities,
compared to measurements from the ISR and RHIC. The dashed lines are the upper and
lower edges of the calculation’s band of uncertainty, as determined in Section 2.2.2. The
dotted line is a separate cross section calculation using m=1.2 GeV/c2 and µR=µF =m.

Figure 2.5 shows the energy dependence of the total charm quark cross section. Details are

provided in the figure caption.

Uncertainties in the total partonic charm cross section

Several factors contribute to the large charm cross section uncertainties evident in Equa-

tion 2.8 and Figure 2.5. The right panel of Figure 2.5 shows that the uncertainty band in

the total cross section grows broader with increasing
√

s, which corresponds to decreasing x

and increasing gluon contributions which are less well determined. Also, the relatively small

charm quark mass (compared to bottom) leads to a sizable factorization scale dependence

for the total cross section. For charm, it is also true that the strong coupling constant is

changes rapidly with the renormalization scale, as discussed in [60].

The same procedure has been adopted for evaluating uncertainties in both this FO NLO

calculation and the FONLL calculation (Section 2.2.2). By varying the parameters in the

calculation, an uncertainty band is established that is meant to encompass with a large prob-

ability the “true” theoretical prediction [20]. This procedure for evaluating the uncertainty

in the calculations is discussed in Section 2.2.2.
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The effect of higher order corrections on the partonic cross sections

It is notable that NLO corrections to LO calculations increase the total cross section by a

factor of 2 to 3, depending on the scales, mass, and parton densities, i.e. σNLO/σLO ∼ 2 to

3. The NNLO terms have been estimated to be of similar size to the NLO corrections, but

are diminished to a factor of less than 1 with the inclusion of next-to-leading log terms [62].

2.2.2 Heavy flavor cross sections using FONLL

The state-of-the-art (circa 2008) charm cross section calculation used for comparison to

experimental heavy flavor results in the field is the Fixed-Order plus Next-to-Leading-Log

(FONLL) result [20]. FONLL provides the heavy flavor single lepton pT spectrum, Ed3σl

dp3 ,

that can be directly compared to measurements, as well as the total production cross section

σcc̄. The authors write the factorized lepton production cross section schematically as

Ed3σl

dp3
=

EQd3σQ

dp3
Q

⊗D(Q → HQ)⊗ f(HQ → l). (2.9)

Here ⊗ denotes a generic convolution, D(Q → HQ) corresponds to the measured non-

perturbative hadronic fragmentation functions of heavy quarks (Q) into heavy hadrons (HQ)

as extracted from e+e− data, and f(HQ → l) involves the lepton decay spectrum, which

implicitly accounts for the branching fraction of hadrons to leptons. FONLL includes a fixed-

order NLO result [61,63] and also the resummation of larger perturbative terms proportional

to αn
s logk(pT /mHQ). Since FONLL is the principle theoretical calculation used for direct

comparison to the experimental work of this dissertation, as well as the model used to convert

the single muon spectra to a charm quark cross section, further details of the implementation

of FONLL will be discussed here.

Implementation of FONLL

The discussion has previously alluded to the fact that for heavy quark production in pQCD,

an additional scale, namely the mass mHQ of the heavy quark alters the perturbative series

organized around a single scale expansion. The fixed-order NLO calculation [61, 63] that

has been available now for 20 years uses the fact that the mass of a heavy quark acts as an

infrared cutoff on collinear singularities [55]. This permits one to express the cross section

as a power series in the strong coupling constant evaluated at a renormalization scale close

to the heavy quark mass. This works well when the quark mass is the only relevant scale for
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the problem, as for the total heavy quark production cross section in Section 2.2.1.

However, for larger momenta (pT & m), there is no single characteristic scale for the prob-

lem, and the perturbative series no longer converges with the use of either m or pT as the

value of the renormalization scale, µR, and factorization scale µF . For these larger pT values

convergence of the series is spoiled by the emergence of large logarithms of the ratio pT /m

at all orders in the perturbative expansion [64]. The logarithmic terms in the pT expansion

are classified as either α2
s(αs log pT /m)k, which is referred to as leading-logarithmic or LL,

and α3
s(αs log pT /m)k, which is referred to as next-to-leading logarithmic, or NLL.

The FONLL calculation is a formalism that combines the existing fixed-order NLO cal-

culations, referred to as FO, and all logarithmic terms summed to NLL, i.e. FO + NLL =

FONLL. An explanation of the sundry details of the FONLL approach can be found in [64],

but there is one important theoretical detail to outline here that is crucial to the successful

combination of the different FO and NLL calculations. The FO approach uses the MS renor-

malization scheme, which treats the heavy quark as massive. This means that for charm

quark calculations there are three light flavors (nlf=3) for the running αs coupling, and

charm should not be used in the PDF evolution. The NLL resummed calculation (for pT �
mHQ) makes use of a different renormalization scheme in which the heavy quark is included

as an active flavor, nlf=4. In order to combine the FO and NLL calculations, a change of

scheme is implemented in the FO calculation that changes nlf=3 to nlf=4 to match the NLL

calculation. One this is done the FO and NLL match exactly to order α3
s.

Parameters in the FONLL calculation

The FONLL calculation has as physical parameters the heavy quark mass and the coupling

αs, as well as the unphysical renormalization and factorization scales µR and µF . The central

values used for the scales are µR=µF =µ0=mT =
√

p2
T + m2. The parton densities are included

as a non-perturbative input. The QCD scale for five flavors, Λ(5), is 0.226 GeV, which is

the value taken from the CTEQ6M parton densities. The central value for the heavy quark

masses are 1.5 GeV/c2 for charm and 4.75 GeV/c2 for bottom.

Fragmentation and lepton decay spectra in FONLL

Heavy quark fragmentation is implemented within the FONLL formalism that merges the

FO + NLL calculations [65]. The NLL formalism is used to extract the non-perturbative
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fragmentation effects from e+e− data. The decay of the D and B mesons to leptons uses

spectra measured by CLEO at the Cornell Electron-positron Storage ring [66] at
√

s=10.5

GeV. The pT spectrum from this measurement is fit and used to represent all charm hadrons.

The final FONLL lepton spectra is obtained by convoluting this D → e spectra and the

calculated parton-model b → c spectra. The resulting spectrum is normalized using averaged

D meson branching ratios, namely BR(D → e) = 10.3 ± 1.2%.§ This value is calculated for

electrons but is used for the muon spectra. The averaged BR difference between electrons and

muons is not expected to be large and is certainly small when compared to other uncertainties

in both the calculated and measured lepton pT spectra.

Results from FONLL

Figure 2.6 from [20] plots the pT spectrum for experimental results from the PHENIX and

STAR collaborations circa 2004-2005 along with the uncertainty band of the FONLL calcu-

lation. The FONLL bands include contributions from D → e, B → e, and B → D → e.

The total cc̄ cross section from FONLL is:

σFONLL
cc̄ = 256+400

−146 µb. (2.10)

Systematic evaluation of the theoretical uncertainties

Uncertainties in the FONLL calculation at RHIC energies originate from five sources [67]:

1. The effect of higher order terms is estimated through the variation of the scales µR

and µF as described previously. For charm this effect is the dominant uncertainty,

contributing a factor of ≈3 at low pT , decreasing to ≈50% at higher pT .

2. Variation in the mass of the heavy quark. For charm, the contribution to the total

uncertainty is only relevant for pT ≤ 2-3 GeV/c2. Figure 2.7 shows the uncertainty

bands as functions of pT derived from variations in the scales, mass, and combined

variation of scales and quark mass.

3. Non-perturbative fragmentation has effects of ≈10-20% at low pT with smaller effects

at larger pT . If properly implemented, fragmentation should not be a large source of

uncertainty relative to other sources.

§using a D chemistry of 30% BR(D± → e) = 17.2% and 70% BR(D0 → e) = 6.9%
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Figure 2.6: FONLL differential cross section compared to RHIC data [20] (2004-2005 exper-
imental results).
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Figure 2.7: Uncertainties in NLO and FONLL charmed hadrons vs. pT by variation of quark
mass and normalization/factorization scale values [67].

4. Uncertainties in the parton distributions, as shown in Figure 2.3, are ≈10-20%, based

on the global fit analysis performed by the CTEQ group [52].

5. Uncertainty in the FONLL calculation of lepton spectra. The uncertainty in the decay

of D’s to leptons is not directly addressed. Tests in B production by the FONLL

author show that the uncertainty of the lepton decay is “fairly negligible” [68]. It

likely that even in D production the lepton decay uncertainty is probably washed out

by other, much larger uncertainties, since in this case the D decay spectra are fairly

well measured experimentally [66].

Extensive efforts are taken by the FONLL authors to estimate the theoretical uncertainties

associated with the calculation. Based on the discussion in the previous list, the largest two

sources of uncertainty are used in establishing a theoretical uncertainty band, while smaller

uncertainties estimated from the heavy-quark fragmentation and PDF’s are not explicitly

used as estimators. While a central value is predicted for both the total and differential

cross section, emphasis for comparisons to measurements is placed on the uncertainty band

obtained from the calculation as in Figure 2.7.

The sensitivity of the cross section to variation in the scales µR, µF , the mass m, and

the PDF’s can be used to estimate the uncertainty in the cross section due to the absence
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of higher order terms. Using the definition µR,F = ξR,F µ0 = ξR,F mT , the scales are varied

independently using seven sets: {(ξR, ξF )}={ (0.5,0.5), (0.5,1), (1,0.5), (1,1), (1,2), (2,1),

(2,2)}, and the mass is varied from m=1.3 GeV for the upper bound to m=1.7 GeV for the

lower bound. Because of the strong variation on the lepton pT spectrum for different scale

choices (see Figure 5.41), the envelope of all variations is used to define the upper and lower

uncertainty band. The uncertainties for each of the seven sets of scale choices is added in

quadrature with the upper and lower mass choice in the following way:

dσmax/min

dpT

=
dσcent

dpT

+/−

√(
dσµ,max/min

dpT

− dσcent

dpT

)2

+

(
dσmHQ,max/min

dpT

− dσcent

dpT

)2

(2.11)

The final upper and lower FONLL bounds consist of the total envelope determined in Equa-

tion 2.11 for all choices of scales and mass. The uncertainty bands determined by Equa-

tion 2.11 are usually plotted when compared to measurements, such as in Figure 2.6. When

making FONLL comparisons to data, it is important to keep in mind the non-gaussian na-

ture of the uncertainty bands. The central curve only represents the central portion of a

nearly flat probability band that contains (estimated from experience [43]) a 80-90% proba-

bility of containing the “correct” prediction [60]. While this discussion is primarily focused

on charm production, Figure 2.8 shows the rapidity distributions for 200 GeV p+p FONLL

for both bottom and charm. This plot highlights the large uncertainties associated with

charm relative to bottom.

How is FONLL different from NLO?

Comparisons of the total charm cross sections from the FO NLO and FONLL calculations

(Equations 2.8 and 2.10) show good agreement within rather large uncertainties. At this

point, it is worth summarizing the difference between the two calculation schemes, especially

since they both make use of the same NLO partonic cross sections and have adopted a similar

procedure to evaluate uncertainties in the calculation. The following list is adopted from [21],

which highlights the differences in terms of total cross sections.

1. Total cross sections: FONLL total cross sections are obtained from integrals over the

pT and y distributions. The NLO total cross sections are obtained from partonic cross

sections.
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Figure 2.8: FONLL dσ/dy distributions for bottom and charm [20]. The solid curve corre-
sponds to the central FONLL charm prediction. The dashed curves indicate the upper and
lower theoretical uncertainty bounds. The much larger theoretical uncertainty associated
with the charm cross section is readily evident.

2. Concerning αs: In FONLL αs(ξR, mT ) and pT are the relevant scales, with αs decreasing

with increasing pT . In NLO αs(ξR, m) is fixed (m not mT ), and mHQ is the relevant

scale. Incidentally, fixing αs in FONLL increases the total cross section by about 15%.

3. Number of active flavors, nlf : In FONLL for pT � mHQ, the heavy quark is considered

a light, active flavor. For pT ∼ mHQ the fixed-order calculation is modified through the

use of a different renormalization scheme from nlf=3 to nlf=4 for charm. The fixed-

order NLO calculation always treats the heavy quark as heavy, so for charm nlf=3 and

for bottom nlf=4.

Due to the sensitivities to several parameters in the calculations associated with the “light-

ness” of the charm quark, there is no single “best” calculation choice for charm production.

Rather different approaches work better in different circumstances. In an ideal case where

total charm quark production could be measured down to pT =0, the NLO calculation based

on the total partonic cross section is possess little dependence on unphysical parameters

(µR, µF ). For comparisons to experimental quantities at larger pT � mHQ, where the quark

mass of charm or even bottom is insignificant, the FONLL calculation is the most rigorous

calculation available for direct comparison to data. However, for low pT (at or below mHQ),

for comparison to measured pT spectra, theoretical uncertainties severely cloud the issue.

The single most important choice in the NLO and FONLL calculations is that of nlf , which
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strongly affects the calculation of the value of the coupling, αs. Another important unsettled

issue is the gluon density at low x, which is not well constrained.

How FONLL is used in this dissertation work

Numerous FONLL and NLO calculations have been generously made available by the au-

thors, Matteo Cacciari and Ramona Vogt. Lepton pT spectra, rapidity distributions of

quarks, mesons, and leptons are all used in the course of this analysis. Calculations using

different scale and mass choices were provided, allowing the study of how the variation in

the calculation’s parameters affected the central curve prediction (Figure 5.41).

2.2.3 PYTHIA

PYTHIA is a Monte Carlo high-energy physics event generator that produces full event

collisions from a variety of incoming particles in a wide range of energies. Heavy quark pro-

duction is implemented through multiple processes in PYTHIA. The leading order processes

qq̄ → QQ̄ and gg → QQ̄ are included, as are the processes referred to as “flavor excitation”

and “gluon splitting” [69]. Heavy quarks present in the initial parton distributions at the

Q2 scale of the hard interaction can lead to flavor excitation processes, such as Qg → Qg.

PYTHIA also considers heavy quark production via the process of gluon splitting, g → QQ̄.

It is known that as the center of mass energy,
√

s increases the relative size of leading or-

der processes decreases. To account for missing higher order terms, PYTHIA implements a

“K-factor” that arbitrarily increases/decreases heavy quark production, effectively allowing

PYTHIA to be “tuned”.

PYTHIA is a very useful tool for studying physics processes and fully simulated p+p events

(for example) with the full complement of secondary observed final states. However, rather

than use a “tuned” PYTHIA that does not calculate all relevant diagrams, the availability

of full NLO calculations (such as FONLL) is preferred when comparing to measured double

differential cross sections (i.e. pT spectra). The question of PYTHIA vs. NLO pQCD is not

simply a question of LO + K-factor versus NLO. PYTHIA organizes its separate heavy flavor

production calculations depending on the number of heavy quarks present at the production

vertex : leading order pair creation has two, flavor excitation has one in the parton distribu-

tion, and gluon splitting has none. Alternatively, NLO calculations are organized according

to initial state (gg, gg, qg) [21]. Flavor excitation and gluon splitting are subclasses of NLO

diagrams for gg and gq, but since these diagrams are included but not other interfering NLO

52



contributions, PYTHIA tends to give larger cross sections.

The previously published PHENIX single muon result [70] made explicit comparisons to

PYTHIA and used it to extract the integrated charm cross section, dσcc̄/dy. While PYTHIA

is not used for any explicit comparisons or cross section derivations in this work, compar-

isons of this dissertation’s result to the previous single muon measurement and PYTHIA 6.2

can be found in Appendix B. When running PYTHIA heavy quark calculations, only one

heavy flavor is calculated at a time, MSEL parameter 4 for charm and 5 for bottom. If the

relative mix of charm/bottom is to be studied, “minimum bias” PYTHIA is run with the

MSEL parameter set to 2. For charm, specifying MSEL=4 produces heavy quarks in every

event which is “more efficient” for computer resources, while MSEL=2 calculations produced

heavy quarks more infrequently (as in reality) and requires several days of running to ac-

quire equivalent statistics. Comparisons between charm distributions determined in these

two different ways showed differences of ≈30% in spectral shape and overall normalization.

This is due to processes that result in a heavy quark that are not included in the processes

explicitly discussed in this section.

Figure 2.9 shows the results of a
√

s=200 GeV p+p PYTHIA simulation examining the

sources of single muons at 〈y〉=1.65 with pT >0.9 GeV/c, which corresponds to the PHENIX

muon arm acceptance. This PYTHIA is “tuned” as in [71] to match previously measured

charm results. This simulation shows that charm decays contribute ≈75%, of hard single

muons from the collision vertex in the PHENIX muon arm acceptance. Bottom contributes

11%, and all other sources of single muons are negligible except those from light vector

mesons (i.e. ρ, η, ω, and φ). Figure 2.10 highlights the expected dominance of charm in the

total yield of particles at a function of transverse momentum. A separate light vector meson

subtraction is not performed on the extracted single muon yield in this work, but based on

the calculation in Figure 2.10, it is expected that the overall single muon cross section (and

thus also the extracted charm cross section) would be reduced by ≈10%. The subtraction of

single muons from light vector meson sources will be performed for the final published single

muon spectrum.
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Figure 2.9: Sources of single muons with pT >0.9 GeV/c from PYTHIA for p+p 200 GeV
and 〈y〉=1.65.
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Chapter 3

Experimental Survey of Heavy Quark

Single Lepton Measurements

The existence of quarks as mathematical objects had been postulated in 1964 by Murray Gell-

Mann and George Zweig [72] and independently by Y. Ne’eman. This initial quark model

included three quarks, up, down, and strange, which accounted for most of the strongly in-

teracting particles that had been observed to that date. In a series of deep inelastic scattering

experiments in the late 1960s and early 1970s, experimental physicist saw indications that

nucleons consisted of point-like constituent particles that could be the postulated quarks.

While the possible existence of a fourth quark, dubbed charm, had been bandied about

for several years, its existence was specifically postulated in 1970 by Glashow, Iliopoulos

and Maiani to account for the absence of observed flavor changing neutral currents, which

were otherwise anticipated in the theory of the weak interaction [73]. The observed narrow

resonance of mass 3.097 GeV/c in 1974 at both BNL and the Stanford Linear Accelerator

(SLAC) was quickly recognized as the discovery of the charm quark in a bound charmonium

state (cc̄). With this convincing confirmation of the quark model, contemporary physicist

had witnessed changes in the experimental and theoretical landscape that would guide much

of high-energy physics research well into the future.

The history of the charm quark, and then shortly after, the bottom quark, is an exten-

sive subject. The primary focus of this chapter is on measurements of heavy quarks that

are related to this work in two ways: 1) through the use of single leptons to measure charm

or bottom production, and 2) those measurements of charm or bottom that motivated the

development of the heavy quark pQCD calculations discussed in Chapter 2, which have
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emerged in the last five years to become the state of the art calculations to which nearly all

measurements are compared.

The experimental technique and primary assumptions used in the measurement of heavy

flavor single leptons, for both electrons and muons, draws upon a long history that dates

from the early to mid 1970s. While single leptons have long been used to measure charm

quark production, single “direct” leptons were recognized as having interesting origins, even

if the exact origins were not clear. As in [56], it is natural to loosely divide the charm

and bottom measurements into historical generations in the following way: Generation I,

1974 to ∼1985; Generation II 1985-1995; Generation III, 1995-2005, and the current set of

measurements at RHIC. Apart from the final “generation” at RHIC (which is not a purely

“high-energy” physics collider), this chronological division falls naturally along the advance-

ments in both the collider facilities and detector technologies. This listing is not meant to

be entirely comprehensive, but is meant to touch upon highlights from each “era”.

Generation I (1974-1985): Early single lepton measurements at Fermilab and

CERN

In the early to mid 1970s Fermilab and CERN pioneered the measurement of single leptons

from heavy flavor—even before heavy quarks had been experimentally confirmed. At Fermi-

lab a series of fixed-target experiments were conducted using proton beams on targets such

as beryllium. At CERN, the Intersecting Storage Rings (ISR) collided proton beams that

provided for a series of single lepton measurements.

In 1974, before the charm quark discovery, a Fermilab experiment [39] that used p−Be col-

lisions at 300 GeV measured both single “direct” electrons and muons to search for parents

of observed “direct” single leptons. Understanding the unknown origin of these direct single

leptons served as a primary motivation for the measurement. Possible candidates for the

parents of the single leptons were listed as: 1) virtual massive photons, 2) “light” vector

mesons (ρ, ω, φ, ...) produced with large transverse momentum, 3) intermediate bosons

(W±, Z0), 4) charmed particles, and 5) heavy leptons. Virtual “massive photons” refers to

processes in which quarks interact electromagnetically, obtaining large transverse momenta

through the exchange of virtual “massive photons”. The quarks possess this large momenta

in intermediate states between the absorption and emission of these “massive photons”. The
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Figure 3.1: 1974 FNAL measurement of single muons [39]. The left figure plots the yield
of muons versus decay path and is used to estimate muon contributions from light hadron
decay. The right plot is the invariant cross sections as a function of pT per nucleon for
“direct” muons near 90◦ in the center of mass system.

light vector mesons had been known since the mid 1960s, and before the advent of the Stan-

dard Model they were identified as massive vector bosons that coupled to isospin.

This experiment in 300 GeV p−Be collisions employed two key experimental methods whose

general principles are still being used in single lepton measurements at RHIC thirty years

laters. The left plot of Figure 3.1 shows muon yield versus decay length which identifies con-

tributions from light hadron decays. This plot is a progenitor of the z-vertex distributions

(see Chapter 5) used in this single muon analysis to determine the fraction of tracks that are

muons that result from light hadron decay. In the companion measurement of electrons, the

two largest background sources from γ conversion in the material and π0 Dalitz decay were

experimentally understood and estimated by inserting a series of foils of known thickness into

the beam and plotting the yield of electrons as a function of foil thickness. This permits the

determination of the electron signal due only to “prompt” sources. This approach is echoed

in the current approach in PHENIX to estimate electrons by adding additional convertor

material. The muon spectra measured from this experiment is shown in the right plot of

Figure 3.1.
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Figure 3.2: ISR e/π ratios vs.
√

s [74].

At the ISR single electrons were also measured [74]. This long paper concludes by say-

ing, “the origin of the single electrons is undertermined and, as such, presents a challenge to

both experimentalists and theorists.” They were also (perhaps) hinting at the existence of

charmed mesons when they state that based on their findings, the single electron yield can

“be explained by a particle of mass m > 0.800 GeV/c2 which decays to e+e− pairs.” The

e/π ratios measured in [74] are plotted as a function of
√

s are shown in Figure 3.2. Inter-

preting this plot a posteriori, the charm signal from single electrons extrapolated to higher

energies indicates an increasing charm cross section that would make electrons at RHIC “a

good measure of charm production.” [75].

Four months before the publication of the first charmed meson measurement in August

1976 [76], an April 1976 paper by Buchholz et al entitled “Measurement of Direct Muon

production in the Forward Direction” [40] highlights some interesting experimental tech-

niques (this is the experiment mentioned in Chapter 1). Building on the ISR results that

measured lepton production for pT >1.0 GeV/c and x ≈ 0 which reported constant yields

in the ratio µ/π of 10−4, this Fermilab result extended the ISR results to intermediate x (≈
0.3) and low pT (< 0.4 GeV/c).

This experiment determined the ratio of direct muons to pions by varying the effective
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Figure 3.3: Corrected (muon flux/ion chamber) versus inverse target density. The intercept
corresponds to the direct-muon (i.e. from charm) signal per incident proton. Additional
details are found in the text [40].

density of the uranium target. As shown previously in Figure 1.7 in Chapter 1, pions pro-

duced in the initial collisions will decay into muons with the property that the decay muons

will travel an average distance that is inversely proportional to the density of the target.

Figure 3.3 shows the corrected muon flux versus inverse target density. By knowing the

shape of the hadron pT yield, the slope of the muon yield versus density is used to determine

the pion flux. The vertical intercept in Figure 3.3 corresponds to an extrapolation to infinite

density target which would remove the π, K→µ decay daughter contamination and provides

the direct-muon signal per incident proton.

The ratio of µ/π at very small pT was observed to be comparable (10−4) to that observed at

the ISR at larger pT . Since the π cross section was known to grow at low pT , the constant

µ/π ratio indicates a similarly large total cross section for direct muons—regardless of their

ultimate source. With a successful technique in hand to remove the muons resulting from

light hadron decay, the next largest background component contemplated in this experiment

was due to light vector meson decay (ρ, ω, φ) and was estimated from 1970s contemporary

sources to be less than 10% of the observed muon yield. Present day (after 2002) estimates

of “direct” muons from light vector mesons are estimated to be of comparable size [71].

Positive flux was not measured due to the use of an incident proton beam which made the

separation of π+’s from the abundant secondary protons impossible.
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Beginning in 1976, a slew of additional charm measurements at the ISR at CERN with
√

s=52-63 GeV ushered in a brief era of confusion concerning charm production cross sec-

tions. Using a variety of beams, targets, energies, and observed final states, many experi-

ments measured conflicting charm cross sections that varied wildly by more than a factor of

five. In the 1987 review of heavy flavor production in hadron-hadron interactions [77], the

author states:

With these conflicting data it is impossible to draw any precise conclusion

on the charm cross section at ISR energies. Let me just point out that these

experiments were performed several years ago and a number of aspects of charm

production are now better understood... It is unlikely that this question will ever

be settled at the ISR since the accelerator is now closed down. Fortunately, we

can soon expect reliable measurements from several experiments at the FNAL

accelerator...

Meanwhile, as a side note, the bottom quark was discovered in 1977 at Fermilab by the E288

experiment [78].

Generation II (1985-1994): heavy flavor at the SPS and fixed-target at FNAL

After the rush of charm measurements in the late 1970s and early to mid 1980s, some of

which have been mentioned here, increasing attention was paid to bottom quark production

due to the increased energies of new accelerators at the SPS and the Tevatron and also the

realization that bottom, not charm, with its larger mass, would provide more precise tests of

QCD predictions. Figure 3.4 is meant to serve as a summary plot for several measurements

made during this period. Measured cross sections for charm (top points) and bottom (lower

points) are placed with NLO pQCD calculations bands [57,61] for different mass settings. The

UA1 collaboration measured bottom production in the late 1980s and early 1990s [79,80] at

the CERN SPS (pp̄ collisions) at
√

s=546 and 630 GeV that were in good agreement with the

then recently completed NLO (α3
s) calculations [81]. The particulars of these measurements

made in this period is not entirely relevant for the purpose of this dissertation, so we proceed

directly to the minor saga of bottom production in pp̄ collisions.
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Figure 3.4: Charm and Bottom cross sections circa 1995 [82]. Despite the obscuring effect
of the logarithmic vertical axis, the measured cross sections for both charm and bottom
can be seen to agree with theoretical expectations, within the sizable theoretical uncertainty
bands from NLO pQCD calculations. The relative size of the theoretical uncertainty band
for charm is significantly larger than for bottom.
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Generation III (1995-2005): Selected charm and bottom measurements at the

Tevatron

Beginning in 1992 early bottom measurements by both D0 and CDF at the Tevatron ranged

from tenuous agreement with theory to large disagreements. As discussed in [81] and [83],

these measurements were in apparent disagreement with the existing UA1 results. Probably

spurred by the Tevatron Run I D0 and CDF results, fixed target charm meson and baryon

cross sections measurements at FNAL were published in 1996 from data taken in 1988. These

measured cross sections are reported to be larger than with existing pQCD calculations but

in agreement with existing experimental and theoretical uncertainties [84].

By the year 2000, the reports of an experimental excess in bottom production were well

known. Adding to this, in June 2000 D0 published forward rapidity measurements in bot-

tom production in the range 2.4 ≤ y ≤ 3.2 (Figure 3.5) [85]. The cross section from b decay

in this region was shown to exceed existing NLO pQCD calculations by a factor of four.

By 2002 CDF measured the B+ total and differential cross sections [86] and had found a

disagreement of a factor of 2.9 ±0.2 ±0.4 relative to existing NLO calculations. However by

the next year, CDF’s measurement of charm mesons, Figure 3.6, at |y |<1 [87] proved to be

higher than theoretical calculations by only 100% at low pT and 50% at high pT —a clear

improvement. And most importantly they were now compatible within the non-negligible

uncertainties on both data and theory. Subsequent measurements in RUN II (2004 and later)

at the Tevatron do not contradict the finding that NLO pQCD was adequately describing

the data.

What had happened? Three theoretical developments (and one experimental) led to a con-

vergence of the measurements and theory that is observed today concerning heavy flavor

production at the Tevatron [65,81,83].

• Resummation of logarithmic terms, the birth of the FONLL calculations added 20%

to theoretical cross sections.

• New Parton Distribution Functions from improved global fits provide an increase of

∼10-20% in theoretical cross sections.

• A change in the treatment of non-perturbative fragmentation also added about 20%

to theoretical cross sections.
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Figure 3.5: D0 forward angle, single muon bottom measurement a factor of 2.9 ±0.2 ±0.4
above then existing NLO calculations [85].
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Figure 3.6: CDF charm meson measurement [87]. The dark shaded band is an 2003 version
of the FONLL calculation. See text for additional details.

• Although the published Tevatron measurements themselves have not changed, if one

were to consider a “renormalization” of the Tevatron Run I using Run II measurements,

a reduction of the central data points by ≈25% (within the uncertainties in the Run I

results) might be appropriate.

As an aside, the top quark was verified at the Tevatron in 1995.

Is this what the future was supposed to look like?... The RHIC single lepton

charm measurements

The prospects for a charm measurement in heavy-ion collisions at RHIC via single electron

measurements were considered several years before the first collision [75]. Experiments in

the 1970s had shown that the yield of direct single leptons from the semi-leptonic decays

of charm particles were at a level of e/π levels of ∼10−4 for pT >1.3 GeV/c. As shown

in the ISR charm data in Figure 3.2, the cross section for charm (or the heavy-flavor e/π

ratio) increases with
√

s, so the signal/background is expected to improve both for p+p and

heavy-ions at 200 GeV at RHIC. This led to expectations that single electron measurements

at RHIC should provide clean charm measurements not only for p + p collisions, but for

heavy-ion collisions such as Au+Au as well. This prescient statement proved to be mostly

true.

Figure 3.7 shows a recent comparison of RHIC single electron results. STAR and PHENIX
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disagree by a factor of two, and the STAR D measurements average a factor of five above

FONLL, albeit with large errors. At the time of this writing, this disagreement between

the two experiments has not been settled. Within the existing experimental and theoretical

uncertainties the PHENIX result is consistent with the FONLL calculation, at a fit to con-

stant ratio of about 1.7 relative to FONLL central values. Comparing just the STAR and

PHENIX results and ignoring FONLL, the discrepancy is thought to be a “normalization”

issue, since the difference is largely independent of pT . Plots of RAA, where a normalization

issue cancels out when dividing the proton reference spectra into the heavy-ion measure-

ment, show agreement between STAR and PHENIX measurements. The possible origin of

the normalization difference is not currently understood.

Since the STAR/PHENIX discrepancy will be addressed again in Chapter 6, some experi-

mental details are provided for context. PHENIX measures single electrons with two separate

central arms, each with 90◦ azimuthal acceptance and pseudorapidity coverage of |η | ≤ 0.35.

Electrons are measured in the central arms using combined information from an electro-

magnetic calorimeter and a ring imaging Cerenkov detector. The measurement of single

electron and muons from heavy flavor is performed through the statistical subtraction of

background sources, with the remaining yield attributed to open heavy flavor decays. For

single electrons, the primary background sources have been directly measured [19]. A full

GEANT based background “cocktail” is generated to estimate all sources of backgrounds.

Additionally, the ratio of conversion electrons is altered by the addition of a thin layer of

conversion material between the vertex and detector for a portion of the run period. The

relative increase in conversions provides a direct measurement of this key background and

serves as an independent cross check to the cocktail approach [26]. The Ph.D. dissertations

of Yifei Zhang [90] and Xin Dong [91] provide the details of STAR’s methodology for mea-

suring heavy-flavor single electrons.

Figure 3.8 shows the extracted total charm cross sections plotted for different collision en-

vironments compared to the NLO total charm cross section discussed in Section 2.2.1. The

STAR and PHENIX points are internally self-consistent, while the difference between the

experiments remains at approximately a factor of two. The contribution of heavy-flavor sin-

gle muons measured by PHENIX at forward angles is discussed in terms of these results in

Chapter 6. Apart from an unexpected mea culpa by either experiment or a striking new re-

sult, it is likely that the existing difference in charm results will persist for several more years,
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(solid blue band).

Figure 3.8: Measured total charm cross sections for different collision species at RHIC for
both STAR and PHENIX. Plot taken from [89].
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until perhaps the installation of upgrade detector capabilities in both STAR and PHENIX

sometime after 2011-2012.

Looking backwards before looking forward again

In the excellent review article by Tavernier in 1987 [77], the motivations for studying charm

production (and bottom as well) in hadron-hadron interactions were listed as:

• “Charm production in hadron-hadron interactions is obviously a legitimate research

subject in its own right.”

• “It is hoped that the mass of the charmed particle provides the high mass scale that

makes perturbative calculations in the framework of QCD meaningful. If this is the

case, charm production is a useful probe of the hadron structure and possibly even a

useful testing ground for QCD.”

• “Our ability to predict the production of charmed particles will indicate how well we

can predict the production of the hypothetical strongly interacting particles which are

expected in several recent theories (gluinos, squarks, etc.).”

• “The study of charm has a considerable “practical” importance. Lepton production∗

in hadron-hadron interactions is one of the most useful probes of fundamental pro-

cesses. This was once more dramatically illustrated by the recent [1987] discovery of

the intermediate bosons, which were discovered by observing leptonic final states in

hadron-hadron interactions. Heavy flavor production is an important source of leptons.

A knowledge of the characteristics of heavy flavor production is essential for evaluat-

ing the background in many important reactions. In addition, lepton production by

charmed particles will be the most important source of charged leptons or neutrinos

for secondary beams in the next generation accelerators. Already in the present accel-

erators Ds decay is the most important source of τ neutrinos.”

Twenty years after this list was written, it is fair to say that charm production measurements

have addressed, in part, some of these items. The mass scale provided by the charm quark,

as shown in Chapter 2 is considered to provide a sufficiently high mass scale to permit

the application of pQCD. However, it is also true that the mass scale is indeed, just “heavy

enough”, and as a result there remains sizable uncertainty associated with pQCD predictions

∗including single leptons!
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of charm. It is certainly true that the larger mass scale provided by the bottom quark permits

more precise theoretical calculations that is able to serve as true “precision” tests of QCD.

Initial discrepancies in bottom (not charm) production at the Tevatron in the late 1990s

where measurements exceeded theory by a factor of 3 to 4 somewhat fed the discussions of

“other” physics contributions playing a role in the disagreement [92]. Subsequently, through

modifications in the theoretical calculations and re-evaluation of the measurements, the

discrepancies decreased significantly, to less than a factor of two and within the uncertainties

posted by both experiments and theoretical calculations. So despite precision to a factor of

two, the ability of pQCD to describe heavy quark production is not in doubt. Ongoing

experimental upgrades at RHIC and with the beginning of the LHC era should provide

increasingly precise measurements against which theoretical progress, including the next

generation of NNLO calculations, can be benchmarked.
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Chapter 4

The PHENIX Experiment

This section provides general descriptions of all the experimental apparatuses used in the

measurement of single muons, from the Relativistic Heavy Ion Collider (RHIC) which pro-

vides the collisions, to the PHENIX detector system which measures the collision products,

to a description of the specific PHENIX detector subsystems involved in the measurement

of heavy flavor single muons.

4.1 RHIC

The purpose and basic goals of RHIC were described in Chapter 1. This section provides

some additional details of the accelerator. To measure muons resulting from the decay of

heavy flavor quarks, we first need heavy quarks. These are provided in particle beam col-

lisions at RHIC, located at Brookhaven National Laboratory (BNL) on Long Island, New

York [93] [94]. RHIC is the world’s first high-energy heavy-ion collider, building upon the

existing Alternating Gradient Synchrotron (AGS) accelerator complex which now serves as

an injector to the RHIC rings. The AGS, which has played a role in three Nobel prizes∗,

also separately provides ion beams for other research programs at BNL, such as the NASA

Space Radiation Laboratory.

RHIC is capable of accelerating nuclei from hydrogen (e.g. proton) to gold, Au, with a

maximum energy of 100 GeV per nucleon for heavy ions and a maximum of 250 GeV for

protons. In the case of Au, which has 197 nucleons (79 protons and 118 neutrons), the total

beam energy per Au nucleus is 19700 GeV. A quick calculation can put this collision energy

∗C.C. Ting 1976 for J/Ψ; J. Cronin, V. Fitch 1980 for CP Violation; L. Lederman, M. Schwartz, J.
Steinberger 1988 for νµ.
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in a clear day-to-day context... using mosquitoes. The kinetic energy of two mosquitoes

can be calculated using the familiar 1
2
mv2 formula: (2.5 mg) × (2.5 km/hr)2 = 1.2 µJ†.

An equivalent calculation of the energy in two colliding gold nuclei is then: 1.6×10−19 J
eV
×

197 × 200 GeV ∼ 6 µJ , which is the same order of magnitude as the mosquitoes [95]. The

head-on collision of just two individual Au nuclei has a macroscopically relevant energy; the

head-on collision of two such beams of Au nuclei produces an large energy density in a finite

volume that has an initial temperature roughly equivalent to 1012 Kelvin.

RHIC produces these collisions with two independent, super-conducting rings 3.8 km in cir-

cumference. Each ring has an independent source of ions, which permits the collisions of

unlike ion species. Two separate Van de Graaff generators serve as the first stage of accelera-

tion of heavy ions. Protons are obtained from the proton linear accelerator, referred to as the

proton linac. It is instructive to trace the path of both heavy ions and protons from origin to

collision. Figure 4.1 depicts the RHIC facility schematically. Gold ions of -1 charge originate

in the pulsed sputter ion source in the at the front of the Tandem Van de Graaff, the ions are

partially stripped of electrons with a foil, retaining a +32 charge, and are accelerated to an

energy of 1 MeV per nucleon by the time they exit the Van de Graaff. The gold beam travels

up the transfer line to the Booster Synchrotron which accelerates the ions to an energy of 95

MeV per nucleon. The ions exit the Booster and pass through the stripper achieving a +77

charge state. The ions are injected into the AGS in 24 bunches, which accelerates the ions

to 10.8 GeV per nucleon, the RHIC injection energy. The ions are rebunched from 24 to 4

bunches in the AGS and pass through another stripper in the AGS-to-RHIC Beam Transfer

Line achieving the fully stripped charge state of +79. The ions are then injected into the

RHIC rings one bunch at a time and accelerated to their maximum energy of 100 GeV per

nucleon in RHIC’s accelerator rings. Since the RHIC magnets are superconducting, they

must be cooled to a stable operating temperature of 4.6 Kelvin, or -451◦ Fahrenheit. The

magnets are used to steer the beams around the rings that are brought to collision at the

interaction points of the different experiments.

Figure 4.2 shows screen captures from the RHIC beam intensity monitor fastidiously watched

by the PHENIX shift crews. These particular screen shots were chosen from this author’s

shift periods. The upper plot in Figure 4.2 is taken from the 2005 p+p 200 GeV run, and the

lower plot is taken from the 2007 Au+Au 200 GeV run period. While the particular details

†Mosquito speeds have been estimated to be even higher with a tail wind, though of course it is the
relative velocity that is relevant to the calculation.
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Figure 4.1: RHIC accelerator complex
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Figure 4.2: Example of time RHIC luminosity time dependence plots. The vertical axes
show the RHIC beam intensities for protons (top) and gold ions (bottom) as a function of
time. The time axes differ between the two plots obscuring the comparison of the beam
lifetime of Au and protons.
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of the plots are a little hard to distinguish from these screen shots, some details learned from

time spent on shift at PHENIX concerning the behavior of the beams are worth mentioning.

First, and of no real surprise, the maximum intensity of a proton beam is significantly higher

than that of a gold beam, close to a factor of 50. Second, the decay of the particle beam

intensity, which very approximately follow an exponentially falling distribution with an ex-

tended tail, is more rapid for the gold beams than for the proton beams due to intra-beam

coulomb effects. Third, the implementation of “stochastic” cooling beginning in the 2007

Au+Au run was able to significantly extend the lifetime of a gold ion beam, which amounts

to essentially changing the decay constant on the beam’s exponential lifetime and maintains

a larger interaction rate for a longer period of time. Figure 4.3 details the RHIC run periods

and the PHENIX recorded luminosity and data sets.

In 2000 when RHIC recorded its first collisions, four detectors were operational: BRAHMS,

PHENIX, PHOBOS, and STAR. The Solenoidal T racker at RHIC (STAR) detector em-

ploys a cylindrical Time-Projection Chamber (TPC) 4m in both diameter and length inside

a solenoidal magnet. The TPC provides large acceptance, approaching 4π particle tracking

capability, and is aided by several other sub-system detectors, including the Silicon Vertex

Detector and Barrel Electromagnetic Calorimeter. The Barrel Electromagnetic Calorimeter

provides photon and electron identification and energy determination capabilities. [94]

PHOBOS is a near table-top size detector that possesses a two-arm magnetic spectrome-

ter and a central detector and a series of ring detectors. The high-speed and high-resolution

micro strip detector elements provide the detection of charged hadrons and leptons in se-

lected solid angles.

The BRAHMS detector measures particles at forward and mid-rapidity with its two-arm

magnetic spectrometer that are moveable to different settings. As of 2007 the two smaller

detector collaborations BRAHMS and PHOBOS are no longer actively taking data.

4.2 The PHENIX detector

The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) [96] was named

such since it “rose from the ashes” of four other detector proposals for RHIC. The names

of these abandoned PHENIX proto-detectors will someday be lost to history, so they are

listed here: TALES, SPARC, OASIS, and DIMUON. It is worth noting that the proposed
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Figure 4.3: RHIC runs, species, energy, PHENIX sampled luminosity. The single muons
measured in this analysis correspond to the Run 5, 2005 p-p entry. PHENIX has sampled a
factor of four more p + p collisions since 2005 that are not yet analyzed.
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DIMUON experiment and the previously discussed R&D efforts [42] were the progenitors of

what became the PHENIX muon arms.

The “mixed” origins of the PHENIX detector (Figure 4.4) explain in part its novel hybrid

design consisting of two pairs of “arms”, referred to internally as the central arms and muon

arms. There is a collection of global subsystem detectors which provide event characteriza-

tion, such as collision centrality and vertex information. These detectors also play a vital

role in the PHENIX event trigger system which is discussed Section 4.5. The data analyzed

in this analysis was recorded in 2005, at the beginning in the fifth year of physics running

at RHIC. By this time the PHENIX detector was a fully mature experiment well described

in existing literature [96–100]. So, instead of attempting a fully comprehensive description

of the PHENIX detector systems, the focus is instead placed on important details of the

detectors relevant to the detection of heavy flavor single muons.

PHENIX coordinates and acceptance

To facilitate subsequent discussions of the detector geometry and details of the single muon

analysis, the general layout of the PHENIX detector is described, including two general co-

ordinate systems employed by PHENIX. The PHENIX experimental hall sits at the eight

o’clock position on the RHIC ring, where the beam lines cross with approximate headings

of north and south (see Figure 4.1). During the summer or other long RHIC shut-down

periods, the experimental hall is opened to permit maintenance on the detectors, and one

can go down and stand next to the beryllium beam pipe‡ in the interaction region, also

referred to as the interaction point (IP). The IP resides at the origin, (0,0,0), for PHENIX

coordinate systems. For both Cartesian and cylindrical coordinate systems the beam line

corresponds to the z-axis with North being the positive direction. The IP is the center of

both the upper and lower images in Figure 4.4 (in between the MVD and BB(C) labels). In

the lower image of Figure 4.4 the north muon arm is on the right and the South muon arm

is to the left. The positive x-direction points into the page, and the positive y-direction is up.

Cylindrical coordinates (θ, φ, z) are often used. The polar angle θ is defined relative to

the beam axis z, such that θ=90◦ is perpendicular to the z-axis. The azimuthal angle φ

is 0 at the x-axis (west). The descriptions of the detectors that follow will use cylindrical

‡The beam pipe can easily be punctured by debris thrown from the top of the experimental hall by air
conditioner installers
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Figure 4.4: The PHENIX detector circa 2005. Details are discussed in the text.

77



120

-120

0

0.0-2.0 2.0

f
(a

ng
le
)

Muon

Muon

Electron
+ Photon15

7.
5

Hadron

Rapidity

AcceptancePH ENIX
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coordinates. For the relativistic particles measured in the PHENIX muon arms (pT >1.0

GeV/c), the pseudo-rapidity variable η is essentially equivalent to the rapidity variable, y.

For a full definition of the variables y, η, and their relationship to the polar angle θ, see

Appendix A or [18]. Figure 4.5 illustrates the PHENIX acceptance in φ and y. Smaller

polar angles correspond to larger y. The muons arms full azimuthal acceptance at forward

(or larger) rapidity is shown, as is the rapidity acceptance of the central arm detectors with

partial φ acceptance.

4.3 The PHENIX central arms and global detectors

The top and bottom images of Figure 4.4 provides two separate perspectives of the PHENIX

detector, each highlighting a different arm. The top picture in Figure 4.4 provides a South

side beam-line view of the central arm. The central arm consists of an east and west arm that

each cover 90◦ in azimuth. The central arms reside in a magnetic field provided by the central

magnet. In this region surrounding the IP, the magnetic field is parallel to the beam. The

central arm consists of quasi-concentric layers of various detectors. As of 2005, the detector

subsystems in the central arms include the Drift Chamber, Pad Chamber, Time Expansion

Chamber for tracking, Ring Imaging Cherenkov detector, Time-of-Flight detector, and the

Electromagnetic Calorimeter for particle identification, as well as those sub-systems being

added in the upgrades program [94].

78



bbcz_wide
Entries    1.499985e+09
Mean    1.636
RMS     19.06

Event Collision Z (cm)
-40 -30 -20 -10 0 10 20 30 40

5

10

15

20

25
610×

bbcz_wide
Entries    1.499985e+09
Mean    1.636
RMS     19.06

Figure 4.6: 200 GeV p + p event collision z-vertex distribution as determined by the BBC
(2005).

PHENIX also employs a set of detectors for event characterization, such as the collision

vertex, collision centrality, and reaction plane orientation. Determination of the collision

centrality and the reaction plane are not relevant for p + p collisions, though additional in-

formation can be found in [97]. However, the determination of the event vertex is extremely

important in the single muon analysis, as many of the quantities examined in the course

of the analysis are plotted as direct functions of the event z vertex. The event vertex de-

termined by the BBC for this work is shown in Figure 4.6. As the distribution shows, the

range over which the collisions are provided by RHIC is quite large, with an RMS of 19

cm. The Beam-Beam Counter (BBC) serves as PHENIX’s vertex detector, as well as the

minimum-bias trigger.

The two (North and South) BBC detectors (labeled as BB in Figure 4.4) reside at far forward

angles, 3.0 ≤| η |≤ 3.9, and detect charged particles with full azimuthal acceptance. The

BBC is designed to operate in both p + p and Au + Au collision environments. Each BBC

is assembled from 64 hexagonally shaped quartz Cherenkov radiators instrumented with a

photomultiplier tube (PMT) and arranged in a cylinder coaxial with the beam. The arrival

times of particles on either side of the collision vertex are measured with a resolution of about

52 ps, and the average value is used to determine the event start time which then permits

the determination of the collision vertex position, zvtx. For central Au + Au collisions each

PMT will detect about 15 charged particles; for p + p collisions there are only a few charged

particles produced in the total event. Due to differences in the total charge detected in the
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BBC for different collision environments, the determined collision vertex resolution varies

with collision species. For Au+Au collisions the vertex resolution is about 0.5 cm, while for

p+p the resolution is approximately 2 cm. The PHENIX Level-1 (LVL1) trigger (Section 4.5)

requires a minimum number of fired PMT’s in each BBC and |zvtx |< 30 cm [97].

4.4 The Muon Arms

The PHENIX Muons Arms [100] consist of two independent spectrometers at both forward

and backward directions of the interaction point, corresponding to 1.1 ≤| η |≤ 2.4 for the

North arm and 1.2 ≤| η |≤ 2.2 for the South arm. Each spectrometer is designed with

sufficient geometric acceptance (one steradian), momentum resolution, and muon identifi-

cation capabilities to permit the study of vector meson production, the Drell-Yan process

(via muon pairs), and heavy quark production (through both muon pairs and single muons).

The muon arms, augmented with anticipated upgrades, will also play an important role in

the RHIC spin program through the detection of single high pT muons (pT > 20 GeV/c)

resulting from Z and W particle decays produced in the collision of polarized protons. For

the 2005 PHENIX muon arm configuration, Figure 4.7 shows the x range covered by the

muon spectrometer [101]. The North arm with its slightly more forward acceptance can

probe down to a x of about 0.13, while for the south the value is approximately 0.24.

Each muon arm is comprised of a muon magnet and two subsystem detectors that work in

concert to measure muons: the muon tracker (MuTr) which resides inside the muon magnet,

and the muon identifier (MuID) which is located immediately downstream of the muon

magnet backplate (also called yoke). The MuID and MuTr possess separate instrumentation,

electronic, and signal readout which are combined later to track particles passing within the

acceptance of the PHENIX muon arm and determine the penetration depth for muon/hadron

seperation. Particles emerging from a collision event at the interaction point (z=0 cm) must

first penetrate through about 80 cm (∼5λI) of absorber material before entering the region of

the muon magnet and reaching the first detector layer of the MuTr. The next three sections

provide successive descriptions of the muon magnet, the MuTr subsystem detector, and the

MuID subsystem detector.
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4.4.1 The Muon Magnets

The two PHENIX muon magnets house both the north and south Muon Tracker subsystems

and use solenoid coils to produce radial magnetic fields. The muon magnets were designed

in order to enclose the entire tracking chambers to maximize muon acceptance (full azimuth

and ∼25◦ in θ) while simultaneously minimizing the effect on the RHIC circulating beams.

The magnetic field is “reasonably” uniform and is mapped to a precision of 1%. The radial

magnetic field’s integral is approximately proportional to the polar angle θ. Charged parti-

cles follow helical trajectories, moving in φ with approximately constant θ. Both magnets

with their unique “lampshade” shape can clearly be seen in Figure 4.4. Also noticeable in

the figure is the difference in the north and south muon magnets (and also the MuTr). The

north muon magnet’s position is fixed and covers the full length between the PHENIX cen-

tral arm and the front of the Muon Identifier. The south muon magnet is 1.5 m shorter and

can be moved to allow access to the PHENIX central arm detectors. Both arms have similar∫
B·dl, but the additional length and flatter piston angle give the north muon magnet better

theoretical acceptance for measurements of φ and Υ mesons. The muon magnet backplates,

also referred to as magnet yokes, serve as the first absorber layer of the Muon Identifier and

have a thickness of 30 cm in the north arm and 20 cm in the south arm. The front z locations

of the north and south magnet backplates are 630 cm and -480 cm respectively.

Magnetic field maps for both the PHENIX central and muon magnets are conducted us-

ing a surface mapping method that provides a calculation of the magnetic field based on

measurements performed at points on the surface of the magnet. Hall probes are used to

measure several points along radial lines on the magnet’s interior surface. The integrated

magnetic field strength (
∫

B·dl) along a line at 15◦ is 0.75 Tesla-meters in the south magnet

and 0.72 Tesla-meters in the north magnet. In both arms the average transverse momentum

kick from the magnets is 0.2 GeV/c.

4.4.2 The Muon Tracker (MuTr)

The basic layout of the muon tracker is represented in Figure 4.8. Both the north and south

Muon tracking chambers consist of three stations of cathode strip chambers for measuring

the trajectory of particles in a magnetic field. The strength of the magnetic field is sufficient

to permit momentum and charge sign determination. The MuTr stations are in the shape of

octants, as seen in Figure 4.8, with the station number (1,2,3) and diameter increasing with

distance from the interaction point. The largest tracking station is Station 3 with octant
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chambers about 2.4 m wide and long.

The MuTr determines the momentum of charged particles in a standard fashion by com-

bining the bend of a charged particle in a magnetic field and precise trajectory information

using the basic principle provided in the Lorentz force law. The magnetic field in the MuTr

volume is essentially radial and the particles traverse the volume at relatively low angles

relative to the beam line of about 20◦. For a charged particle entering the magnetic field the

component of the velocity parallel to the magnetic field is unaffected, while the component of

the velocity perpendicular to the magnetic field will be affected causing the particles motion

to bend in the perpendicular direction. For this perpendicular component, the momentum

of the particle is given by:

p = q ·B ·R (4.1)

where q its charge, B the magnetic field strength, and R is the radius of the induced circular

motion. As a charged particle passes through the MuTr volume, each of the tracking stations

measures a position point along the particle’s arc as it bends. A particle’s momentum can

be determined to the extent that both R and B are known. The MuTr essentially measures

R in 3-dimensions in a high particle multiplicity environment.

Tracking stations 1 and 2 each contain 3 chamber “gaps”, and station 3 contains 2 “gaps”.

Each chamber gap consists of two cathode planes on either side of an anode wire plane. The

anode wires are instrumented in each half-octant, each covering a segment of φ acceptance.

One plane of cathode strips runs radially (perpendicular to the anode wires), while the second

plane has cathode strips at stereo angles that range between 0 and ±11.25 degrees relative

to the perpendicular strips. The perpendicular cathode strips are capable of providing the

highest resolution φ measurements. Each strip is 1 cm wide, and the distribution of charge is

fit across multiple strips, ultimately providing position resolution in the bend plane of about

100 µm. The stereo angle cathode strips provide crude two-dimensional resolution which

aids in the rejection of false cathode strip hits, generally referred to as “ghost” hits. For the

purposes of read out cathode strips serve as the most basic unit of the MuTr. The chambers

are operated with a gas mixture that is 50% Ar, 30% CO2, and 20% CF4 and at a typical

voltage of 1850 V.

Except for the area lost due to the support structure, the MuTr stations have full azimuthal

acceptance (φ), and a θ acceptance that ranges from 10◦ to 37◦, which corresponds to
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octants (not depicted).
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Table 4.1: MuTr gap positions. Distances are to the front of the gap.

Arm Station Number of gaps z (cm) Rad. Length % X0

North 1 3 180 < 10
North 2 3 347 < 0.1
North 3 2 612.5 < 10
South 1 3 -180 < 10
South 2 3 -300 < 0.1
South 3 2 -460 < 10

1.1≤| η |≤ 2.4. This angular acceptance is shown in Figure 4.5. Table 4.1 lists the po-

sitions of the different MuTr chambers and their relative radiation lengths. In order to

measure the particle bend with maximum resolution, the amount of material in Station 2 is

minimized, with ≤ 0.1% radiation length. The amount of material in all three MuTr stations

amounts to about 0.2 X0 (radiation lengths).

The MuTr chambers must contend with secondaries from the collision that can degrade

the inherent 100 µm resolution capability or even cause incorrect momentum determination.

The impact of likely collision-related backgrounds on momentum determination has direct

bearing the measurement of single muons and is discussed further in Chapter 5. Additional

information and references concerning the design, construction, and electronics of the MuTr

can be found in [100].

4.4.3 The Muon Identifier (MuID)

Once a charged particles passes through the Station 3 of the MuTr, it reaches the muon

magnet backplate which serves as the first absorber layer of the MuID. Figure 4.4 shows the

basic design of the MuID which has five alternating steel absorber (gray) and instrumented

sensitive (red) layers that permit the separation of muons from hadrons.

MuID absorber allocation

Table 4.2 lists the z-positions and preceding absorber layer thickness of the different MuID

layers. The choice of the total amount of steel absorber and the thickness of the absorber

layers in the MuID was determined by two primary designs goals that address 1) restricting

hadron contamination in the muon sample, and 2) the desire to measure low momentum
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muon pairs, for instance for φ meson detection. The logical sequence for the total amount

and placement of steel in the muon arm is:

1. The proximity of the first absorber material relative to the collision vertex determines

the free-decay path length for hadrons (as in Figure 1.7) which fixes the amount of

muons from hadron decay. Ideally, the absorber is placed as close as possible to the

collision vertex. In PHENIX the closest absorber is 41 cm from z=0 with a collision

point that is distributed according to that in Figure 4.6, which results in an irreducible

Gap 4 µ/π ratio of 1×10−3.

2. The total depth of steel in the front absorber, which sits between the collision point

and the MuTr stations, is necessarily limited by the tolerable momentum degradation

caused by multiple scattering. The balance struck between the two countervailing

issues of the required level of hadron rejection and momentum degradation places 79

cm of steel absorber (∼ 5λI) between the vertex and before the first MuTr tracking

station.

3. The total remaining amount of steel is determined by choosing a hadron punch-through

level that is 1/4 the size of irreducible decay muon level fixed in the first step. The

factor of 1/4, or 2.5× 10−4 provides more than an order of magnitude reduction in the

muon pair background (J/Ψ). The front absorber provides about 10−2 π rejection, so

the total amount of steel needed to reach 2.5×10−4 µ/π separation is 90 cm. Since the

muon magnet backplate is 30 cm thick in the north arm (20 cm in the south arm) an

additional 60 cm (or more...) of steel is required in the MuID layers.

4. In order to measure low momentum (pT∼ 1GeV/c) φ, ρ, and ω’s in the muon arms,

MuID Gaps 1 and 2 were allocated 10 cm of preceding absorber.

5. The remaining 40 cm of steel is placed before the remaining two MuID gaps in both

arms for µ/π separation. The total amount of steel in the South arm is 10 cm less than

the North arm, which means it will have slightly larger punch-through hadron level.

Muons and non-interacting hadrons penetrating the successive layers of steel experience

ionization energy loss inside the absorber material. Muons and light hadrons entering

the MuID are relativistic and behave essentially as minimum ionizing particles (MIP’s)

with energy loss described by the Bethe-Bloche parameterization [15]. MIP’s undergo

approximately 0.15 GeV of energy loss per 10 cm of steel which translates into about

0.9 GeV of energy loss in just the 60 cm of MuID steel.
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Table 4.2: MuID gap positions. Front and back are defined relative to the interaction point
at (0,0,0). The absorber width is for the preceding absorber layer.

Arm Gap Front z (cm) Back z (cm) Absorber width (cm)
North 0 686.96 704.24 30 (backplate)
North 1 728.46 745.74 10
North 2 768.76 786.04 10
North 3 815.86 833.14 20
North 4 861.36 878.64 20
South 0 -686.96 -704.24 20 (backplate)
South 1 -728.46 -745.74 10
South 2 -768.04 -786.04 10
South 3 -815.86 -833.14 20
South 4 -861.36 -878.64 20
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Additional MuID shielding

Shortly after the first collisions were recorded in PHENIX, the occupancies observed in the

MuID where approximately twice that expected from Monte Carlo (GEANT 3) simulations

[102]. Investigation uncovered that the simulations where missing material. After this issue

was resolved, it was determined that the primary source of the backgrounds observed in the

MuID were particles emanating from the beam pipe at nearly perpendicular angles 7 to 9

meters downstream from the collision vertex. In addition to this, another unexpected source

of backgrounds was determined to be due to the beam “scraping” on the steering magnets

inside the tunnel before entering the interaction region. This phenomenon deposits energy

not from the direction of the collision vertex but from behind the detector. Improved beam

steering and collimation, as well as the addition of steel shielding in the MuID square-hole

(after RHIC Run 2) and in the beam tunnel (after RHIC Run 3) have alleviated but not

completely removed both of these background sources.

MuID gap instrumentation and read out

As shown in Figure 4.10 each MuID gap is instrumented with six overlapping panels. Each

MuID gap was constructed with the same size panels to reduce total production costs, though

in principle the more shallow panels could have been smaller, as seen by the 37◦ gap 0 ring in

Figure 4.10. The detector technology in each of the MuID panels are commercially available

plastic streamer tubes operated in proportional mode, referred to as Iarocci tubes. Depicted

in Figure 4.9, the Iarocci tubes are 8.4 cm wide, ∼1 cm thick, and extend the entire width

of a segmented MuID panel. The inside of the tubes are circulated with a gas mixture of

anode wire

9mmx9mm
     cell

PVC
jacket

cathode
profile

13mm

83.5mm

Figure 4.9: MuID two-pack cross section
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92% CO2 and 8% i-C4H10 (isobutane).

Isobutane serves to quench electron avalanches in the tubes, allowing operation at higher

voltages and gain without sparking. For ideal operations the isobutane level would be even

higher except for safety concerns. Limitation of the gas mixture to a maximum of 8% isobu-

tane keeps the gas from being inherently flammable even in the presence of oxygen. However,

the possibility of a MuID chamber leak of the heavier-than-air isobutane is a potential safety

hazard in the experimental hall. To reduce this hazard a secondary volume of N2 (∼40

m3) outside of the tubes but inside the MuID panels is separately circulated to maintain

gas below a flammable level near the MuID read-out electronics, as well as providing the

secondary benefit of keeping the chamber electronics dry.

As shown in Figure 4.9, a single tube possesses eight channels each with a relatively thick

100 µm anode wire strung the length of the tube. For readout all eight wires in a tube are

coupled together, and each tube is logically OR’d with a second tube to form a “two-pack”.

Two-packs serve as the most basic MuID detector element that is read out and used for

track reconstruction. Figure 4.9 also illustrates that the tubes in a two-pack are offset by

half a cell. The combination of the half-cell offset and logical OR’ing of the two-pack tubes

significantly increases the efficiency of a single layer of Iarocci tubes [102]. A two-pack with

one operational tube is approximately 70% efficient and >90% efficient with both tubes

operating. Each high-voltage chain serves approximately 20 tubes. A total of 3170 two-

packs reside in each of the MuID arms. Each panel in a MuID gap, depicted in Figure 4.10,

contains one layer of horizontal and one layer of vertical two-packs, providing 8.4 cm segmen-

tation for both x and y positions. When coupled with the MuTr tracking capabilities, this

level of segmentation provides the granularity needed to match the MuID information with

sufficient background rejection and track reconstruction in both p+p and heavy ion collisions.

Each tube in a two-pack belongs to a different high-voltage supply chain. In the event that

a single high-voltage power supply fails only one tube in a two-pack will be disabled. The

expected resistance from a given high-voltage chain is estimated using the setup in Figure 4.11

which depicts the current algebra for a chain of N tubes with n broken wires [103]. The

expected resistance for one MuID HV chain is:

Rn(GΩ) =
1 GΩ

(1 + n · 1.0
0.4

)
(4.2)

89



Figure 4.10: Approximate schematic drawing representing both a north and south MuID gap
as seen from the South side. The panel numbering progresses clockwise, around the square
hole through which the beam pipe passes. The circles describe the angular acceptance from
10 to 37 degrees for the shallowest gap (0) and the deepest gap (4). The massive size of the
MuID (more than 10 meters across) is also shown.

90



Figure 4.11: Simplified MuID circuit diagram. HV is supplied along the top line. See text
for details.

Each MuID tube is connected to a HV chain through a 400 MΩ “current limiting” resistor.

The tubes themselves can be considered an infinite resistor, unless a wire in a tube breaks

which would then short the chain. The 400 MΩ resistor prevents multiple wires from dis-

abling an entire HV chain and permits the determination of the number of broken wires by

examining the read-out current. The MuID tubes store charge much like a capacitor, so in

order to prevent the tubes from holding the current after HV is disabled, the 1 GΩ resistor

is added in parallel to server as a bleeder resistor. The value of 1 GΩ was chosen to be as

large as possible while still allowing discharge in an acceptable length of time. The Iarocci

tubes are operated at voltages of 4200-4500 V. With the reasonable assumption of linearity§,

the expected current draw from a high-voltage chain can be determined using:

In(µA) = V · (1 + 2.5n) (4.3)

where V is the normal operating voltage of 4.4 kV . For the case of zero broken wires, this

results in an expected current of 4.4 µA. In practice, especially as the Iarocci tubes age, some

number of broken wires is unavoidable. When a tube breaks a wire the reported current will

increase by the discrete amounts indicated in Equation 4.3.

A charged particle passing through the gas in the tubes will ionize the gas and deposit

charge on the anode wires with some latent drift time that depends on the location in the

tube and the operational voltage. Each of the 6140 two-packs must be read out for every

§Over the entire course of the operational voltage some non-Ohmic effects are observed, but in the
operational regime Ohm’s law works reasonably well. The non-ohmic effects are observed as the hit rates
get “high” which invalidates the assumption of infinite resistance of the Iaorocci tubes.
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beam crossing, which occurs at 106 ns intervals. Given the large size of the MuID detector

(10m × 13m cross sectional area) and the large dimensions of the experimental hall requiring

signal propagation up to 30 m, timing of the readout presents a challenge. The signals from

the two-packs are amplified in-panel and sent to a Readout Card (ROC). The ROC’s process

the analog signal and digitize each two-pack as either a hit, 1 or no-hit, 0. The ROC’s also

synchronize the data and provide buffering of the hit information for up to forty beam cross-

ings. All channels are synchronized in a staged process using a series of programmable delays

and multiplexers. The MuID hit information is preserved if a trigger condition is met. The

MuID is one of just five of the ∼fourteen PHENIX subsystem detectors to participate in the

triggering system. Additional details concerning MuID readout electronics and construction

can be found in [100].

4.5 Event triggering

The event rate and occupancy of the detector varies greatly in the various colliding systems,

from a few tracks per event in p + p collisions, to 10% of all detector channels in central

Au+Au collisions. In order to operate in these wide ranging conditions, PHENIX possesses

two levels of event triggering, denoted as level 1 (LVL1) and level 2 (LVL2).

Figure 4.12 outlines the basic readout process from a collision to the data collection process

(see Section 4.6). The PHENIX LVL1 system [99] processes every beam crossing, which

occurs every 106 ns (from the 9.4 MHz RHIC beam clock) and generates an accept/reject

decision within ∼40 beam crossings. The LVL1 trigger is useful for rejecting empty beam

crossings (non-events) and uninteresting events.

The MuID digitizes the detector response in real-time, while the MuTr stores the analog

detector response and digitizes after receipt of a LVL1 trigger accept. Once the LVL1 trigger

issues an accept for an event, the information from the different subsystems is stored in a

LVL1 event buffer that can hold up to five events. Depending on the number of events in

the LVL1 event buffer, the event is then digitized and transferred from the Read-out-cards

(ROC’s) to the Front-end-modules (FEM’s). The PHENIX standard conversion period is 80

clock-ticks (beam-crossings). Once the data is on the FEM, the readout process to the Data

Collection Modules (DCM’s) (see Section 4.6) is performed. For those events that satisfy

the LVL1 trigger conditions, LVL2 trigger algorithms provide an increased level of event

rejection by using fast-reconstructed events to identify potential rare process events. The
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Figure 4.12: LVL1 readout stream schematic depicted on an axis defined by the number
of beam crossings. The ∆t corresponds to the potential delay in conversion based on the
number of LVL1’s in the 5 event buffer. The Dead for X period prohibits a second LVL1
accept within X number of beam crossings.

single muon analysis makes use of the LVL1 trigger but not LVL2, so additional discussion

of LVL1 follows.

4.5.1 LVL1 triggers

The LVL1 trigger system consists of two components: Local Level-1 (LL1) and Global Level-

1 (GL1). The LL1 communicates directly with the associated subsystem trigger detectors

and processes the different trigger algorithms. Five of the ∼14 PHENIX detector subsystems

participate in the LVL1 trigger. The GL1 takes the LL1 information and combines them

to generate a LVL1 accept/reject. When the LVL1 algorithms issue an accept decision, a

“dead for X” beam crossings is imposed for trailing events, where X is some number of beam

crossings. A second LVL1 accept cannot be issued during this period. “Dead for X” has

two important effects. Firstly, this allows the tracking chambers (MuTr and Drift Chamber)

that take more than one clock-tick to collect their signal fully. Secondly, any “events” due

to noise which may have durations of several clock ticks are avoided.

The single muon triggers used in this analysis require a so-called minimum bias trigger

response from the BBC detector, referred to as the BBCLL1, and some combination of hits

in the MuID layers. A programmable combination of subsystem detectors, in this case the

BBC and MuID, is referred to as a particular physics trigger. There are on the order of ∼25

different physics triggers used by PHENIX.

The high event rates at RHIC, especially in p + p collisions, the limited rejection power of

a particular physics trigger, and the maximum data acquisition throughput (or bandwidth)
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will in some cases combine to not allow all physics triggers that generate a LVL1 accept to

be recorded. Rather, the LVL1 triggered events that are actually preserved are referred to as

scaled trigger events. This “pre-scaling” of events categorizes triggers into three types: raw,

live, scaled. Raw triggers are events that satisfy a particular physics trigger condition, such

as the combined BBC & MuID trigger. An event that generates a “raw” trigger when the

LVL1 is not “dead for four” is said to possess a “live” trigger. The live trigger is compared

against a programmable scale-down test that restricts every n+1 live LVL1 triggers, where

n is the so-called pre-scale or scale-down factor.

4.5.2 Local Level-1 Muon trigger implementation

Two LL1 muon triggers are used in this analysis: the Muon 1-Deep and Muon 1-Shallow.

The muon LL1 trigger algorithm, implemented separately for horizontal and vertical MuID

layers, employs combinations of MuID hits, called symsets, defined in terms of a MuID Gap

0 hit. The symset logic for the M1D and M1S triggers is depicted in Figure 4.13. For the

purpose of the LVL1 trigger and for a given MuID gap and orientation, the various two-packs

for the six different MuID panels are logically combined to form a single “logical” tube span-

ning the length (width or height) of the MuID. A symset is defined for every logical MuID

tube at Gap 0 by projecting from a z-vertex position of (0,0,0) cm through the Gap 0 tube

position to the Gap 4 position. The corresponding symset is then those tubes that lie along

the ray from Gap 0 to Gap 4 (corresponding to tubes 0-4B in the figure). Due primarily to

multiple scattering in absorber material and to a lesser extent z-vertices differing from z=0,

the symset definition includes those tubes adjacent to the central symset tube row (rows A

and C in the figure).

For every event the LL1 algorithm checks the hit pattern of every symset for the entire MuID.

If the hits in the MuID satisfy either the 1-Shallow and/or 1-Deep symset logic shown in

Figure 4.13, the LL1 will issue an accept. The LL1 decisions for both the 1-Shallow and

1-Deep are combined with the BBCLL1 in the GL1 decision for the final event accept/reject

decision, after which the scale-down test is applied before the event may be recorded. Since

the combined Muon and BBC triggers: 1-Deep LL1 & BBCLL1 and 1-Shallow & BBCLL1,

are the actual trigger decision for event accept/reject, they will be subsequently referred to

as simply Muon 1-Deep (M1D) and Muon 1-Shallow (M1S). As implemented for Run 5, the

M1D is a subset of the M1S trigger set based on the logic of Figure 4.13.
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(a) LL1 1-Deep muon trigger symset.

(b) LL1 1-Shallow muon trigger symset.

Figure 4.13: Muon Level-1 trigger logic for Run 5, courtesy of John Lajoie [104].
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4.5.3 Level-1 triggers used in this analysis

In total there are three triggered data sets are used in this analysis:

• The minimum bias (MB) data set is triggered solely by the BBCLL1. After selection of

good runs and a vertex cut of |zvtx| < 25 cm, there are 1.02×109 (1.12×109 ) recorded

MB events in the North (South). Correcting for the BBCLL1 trigger pre-scales, there

are 3.76×1010 (4.91×1010) events in the North (South). The scale-down corrected MB

distributions are used to normalize the muon track into invariant yields used in single

muon analyses.

• The M1D triggers provide a data set of of events containing an enriched sample of

tracks penetrating to gap 4 of the MuID. The M1D trigger was not scaled down in

Run 5.

• The M1S data set contains an enhanced sample of shallow penetrating tracks, defined

to be gaps 2 and 3 in the MuID. Study of the flux of stopped hadrons in these shallow

gaps allows for the estimation of the number of punch-through hadrons contaminating

the sample of muon candidates in gap 4. The M1S trigger was only implemented for a

fraction of the total run period. The total number of scaled-down BBC triggers for the

M1S data set is 5.54×108. For the runs used in this analysis, none of the M1S triggers

are scaled down.

4.5.4 LL1 muon trigger rejection factors

The purpose of a dedicated physics trigger is to select events of specific physics interest. The

effectiveness of a rare process trigger is gauged by its selectivity or rejection factor relative

to the minimum bias trigger. The trigger rejection factor (R.F.) is defined as:

R.F. =
∑

i

total eventsi

triggered eventsi

(4.4)

where i is a sum over runs, such as shown in Figure 4.14.

For the charmonium di-muon analysis in Run 5, which has a production cross section of

about 1% of that for heavy flavor single muons, the di-muon trigger provided a rejection

factor of ∼3000 in the North arm and ∼13000 in the South arm. In contrast, the rejection

provided by the M1D varied between about 300 in the North arm and 500 in the South arm.
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The rejection provided by the M1S triggers was even lower.

The PHENIX data acquisition system possess a finite bandwidth that is shared by the

multiple trigger streams. Triggers with low rejection factors will fire more often, and therefore

consume more of the total bandwidth. In order to prevent these triggers from reducing the

duty-factor of the data acquisition system, referred to as the “live time”, trigger pre-scales

are applied that directly scale down the number of triggered events that are recorded for

analysis. The low rejection factor of the M1S means that a large scale-down factor is applied

to the trigger or even that the trigger is removed altogether from the trigger scheme. The

limited number of M1S triggered events available from the Run 5 data is one direct limitation

in the analysis’s ability to measure single muons at larger pT since the hadron background

is estimated by comparison of the data selected with the M1S trigger.

4.5.5 How biased is the Minimum Bias Trigger?

Particle production is discussed in terms of invariant yields (N) from inelastic particular

collisions, for instance p + p collisions. Ideally, yields are formed from the true number of

produced particles divided by the true number of inelastic reactions. However, experimen-

tally only a fraction of the true number of produced particles are actually measured in just

a fraction of the true number of inelastic events. The PHENIX minimum bias trigger, the

BBCLL1, has been determined to sample about 23.0 ± 2.2 mb of the total 200 GeV p + p

(a) North M1D trigger rejection factors vs. run (b) South M1D trigger rejection factors vs. run
number

Figure 4.14: Muon trigger rejection factors versus run number.
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inelastic cross section of 41.8 mb (∼ 55%). The efficiency, or trigger bias, of the BBC,

εBBC , was determined by examining events with taken with the non-MB trigger that have

tracks. This was done using π’s at mid-rapidity. For these events, the BBC was found to be

0.79±0.02 efficient. To obtain an invariant yield (See Appendix D), the measured yield of

particles must be corrected in the following way to obtain the true yield of particles within

the PHENIX min-bias acceptance:

N true = Nmeas · σpp
BBC

εcc̄→µ
BBC

(4.5)

where σpp
BBC is 23.0 mb (0.55×41.8 mb) and εcc̄→µ

BBC is 0.79. Simulations in the muon arm have

previously indicated that for charmonium the εBBC is the same as that for the central arm.

The efficiency εBBC has not been explicitly checked for single particles in the muon arm, but

the true value for εBBC is not expected to vary much from the current value. The BBC trigger

bias effect is insignificant for heavy ion collisions due to a larger number of charged particles

being produced which increases the overall efficiency of the BBC. Both σpp
BBC and εBBC are

applied to the measured yield of single muons to convert them to invariant differential cross

sections.

4.5.6 Trigger emulation and the need of a “pseudo-emulator”

A swapped trigger fiber causes a problem

It was discovered after Run 5 that a trigger fiber for two MuID HV chains was swapped in

the last gap of the North arm, resulting in an “extra” inefficiency in the affected area for the

M1D trigger. The region affected is approximately 1/3 of Gap 4’s vertical chains. The MuID

gaps possess two sensitive layers, so this suggests that approximately 1/2 · 1/3 ≈ 18% of

the North Gap 4 area is subject to this trigger inefficiency. However, this effect is mitigated

significantly by the inclusion of Gap 3 in the M1D trigger, as shown in Figure 4.13(a).

The Run 5 p+p di-muon analysis determined the swapped fiber to have caused an addi-

tional 6% trigger inefficiency. For single tracks, as opposed to dimuons, the effect should be

less pronounced. However, in the implementation of the hadron cocktail we suffer this ex-

pected effect triply. In the matching of simulated hadrons to data, the data will have tracks

missing in Gap 4 due to the swapped fiber (single effect), and simulation will be biased high

relative to data since it does not implement the swapped cable (double effect). Additionally,

the acceptance and efficiency corrections applied to the extracted single muon yield, which
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are based on simulated muons, will not correct for this effect, leaving the North arm lower

than expected (triple effect). This effect is correctable using a properly implemented trigger

emulator.

The trigger emulation software available in the offline code is an exact implementation in

C++ translated directly from the FPGA code used in the actual LL1 trigger. During data

acquisition, the trigger algorithm takes all of the MuID hits and maps them into all possible

symsets to test for a trigger condition being met i.e. for a given event the MuID hits satisfy

the symset logic shown in Figure 4.13. However,the trigger emulator was regrettably not

included in the Run 5 p+p data production.

Emulating a trigger emulator

Since the LL1 trigger emulator information is not directly available at the analysis stage,

an analysis software trigger psuedo-emulator was constructed to check the approximate effi-

ciency of both the LL1 M1D and M1S triggers. The pseudo-emulator is implemented using

basic hit information in the MuID and the trigger logic in Figure 4.13. The pseudo-emulator

is adjusted to match the performance of the true trigger emulator through comparisons with

simulations, to include the swapped fiber region in the North arm Gap 4 which affects the

M1D triggered data. All tracks used in the analysis of the data and hadron cocktail are

then subjected to the psuedo-emulator conditions. The implementation of the trigger emu-

lator allows us to correct for the global trigger inefficiency as well as the specific North arm

Gap 4 M1D problem, eliminating it as a source of systematic uncertainty in the analysis.

The rest of this section is dedicated to describing the implementation of the pseudo-emulator.

The hit locations for the last gap of the MuID are unfortunately not available for use in

the final analysis stage, but they do contain the layer by layer MuID hit information, as well

as the road slopes (dx/dz and dy/dz) and the Gap 0 x and y hit positions. The following is

a listing in the logical order of the implementation of the pseudo-emulator:

1. Symsets employ a single tube at Gap 0 and three tubes at all subsequent gaps. A ray

projected to z=0 from the Gap 4 tube A (or C) through tube 0B defines the maximum

amount of deflection tolerated between Gap 0 and Gap 4 for the symset to fire (see

Figure 4.13(a)). The offset between 1.5 tube widths in Gap 4 and 0.5 tube widths in

Gap 0 account for an 18 cm (9.0 cm · 1.5 + 9.0 cm · 0.5) differential in x (or y) between

Gap 4 and Gap 0 (a distance of about 175 cm) . For a given track, the MuID road slope
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and Gap 0 (x or y) hit position is used to project to z=0. The expected maximum

differential allowed over the distance from Gap 0 to z=0 (a distance of 675 cm) is 71.4

cm. The dx/dz and dy/dz MuID road slopes of a track are used to separately check

x and y offsets at z=0. Tracks with extrapolated offsets exceeding 71.4 cm could not

have satisfied a symset condition and would not have fired the M1D trigger.

2. In addition to the z=0 offset condition, the reconstructed track must also satisfy the hit

requirements described by the logic shown in Figure 4.13(a). There is a maximum of

two hits per gap, one for each orientation. The track must have at least 3 out of 5 fired

symset layers, including a least one fired symset layer in Gaps 0 or 1 and separately

Gaps 3 or 4.

3. For those tracks with a Gap 4 position falling inside the swapped trigger fiber region,

the Gap 4 vertical hit is zeroed out. The trigger hit condition for these tracks is still 3

out of 5 gap layers, except that only one sensitive layer (instead of 2) is active at Gap

4, and any existing detector inefficiencies in the horizontal chains will directly result in

the trigger conditions not being met. This is the origin of the trigger bias introduced

by the swapped trigger fiber.

The efficacy of the described pseudo-trigger emulator is determined through comparison in

muon simulations with the actual LL1 trigger emulator performance. In simulations where

the true emulator decision is available, the pseudo-emulator demonstrated that it rejects

more tracks than the true emulator. At the same time the amount incorrectly accepted by

the pseudo-emulator is less than 0.1%. Application of the pseudo-emulator to both the data

and hadron cocktail, as well as the acceptance & efficiency muon simulations, eliminates the

muon trigger bias as a source of systematic uncertainty and is automatically accounted for

in the final corrections.

Table 4.3 details the rejection factor of the pseudo-trigger emulator for both M1D and M1S

as a function of arm. As expected, there is an extra loss of efficiency in the North arm Gap

4 due to the swapped trigger cable previously described.

4.6 PHENIX data acquisition system

The PHENIX data acquisition system (DAQ) [98, 99] consists of several different compo-

nents. The DAQ is interfaced through the Run Control (RC) graphical user interface which
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Table 4.3: Pseudo-trigger emulator efficiencies for both data and hadron cocktail.

data
M1S - Gap 3 M1D - Gap 4

North 99.9 89.9
South 99.8 95.1

hadron cocktail
North 99.1 88.4
South 98.9 93.3

coordinates the components of the DAQ and allows for the coordinated starting and stopping

of data collection. The data collection process is initiated when a LVL1 accept is sent to the

subsystem front end electronics through the timing system which synchronizes the read-out

electronics of various detector subsystems. The RC then instructs the FEM’s to send the

data to the data collection modules (DCM) which collect, package, and zero-suppress the

data to reduce the overall data volume. The Event Builder (EvB) receives several parallel

data streams from the DCM’s and assembles the various fragments into complete events.

LVL2 triggering is performed at this stage. The data is then sent to the data loggers to be

recorded onto disk. The data is broken into run numbers which are incremented sequentially

approximately every hour or when experimental conditions require a start/stop of the DAQ.

This allows for correction keyed on run number to be performed at the analysis stage to

correct for any changing experimental/detector conditions, such as detector calibrations and

efficiencies, gas flow problems, or electronics problems.

4.7 PHENIX software and computing

The standard computing environment in PHENIX is LINUX and the tcsh interactive shell.

A standard set of environment variables are provided to link to PHENIX software. PHENIX

software is rebuilt continually. There are several build types, of which three are relevant for

this analysis: pro, ana, new. The pro build is the gold-standard of PHENIX software that it

performed rarely and for the purpose of official data reconstruction or simulation projects.

Ana builds are performed nearly weekly and remain available for use over a long term. Since

several months can pass in between pro builds, ana builds provide a source of stable PHENIX

libraries, especially when compared to new builds. The new builds are attempted daily and

incorporate all of the latest versions of code checked into the code repository. New builds
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operate on a 4-day cycle: new.1, new.2, new.3, new.4. The new pointer is rotated daily with

the oldest of the four new builds being replaced.

PHENIX uses a CERN ROOT [105] based analysis code environment. The data is recorded

by the DAQ into runs that consist of several PHENIX Raw Data Files (PRDF’s) for a

single run. Each PRDF is processed to reconstruct tracks. The reconstructed data is stored

in reduced data volume formats for later physics analysis. Figure 4.15 shows a schematic

representation of multi-step data flow in PHENIX from collisions to physics measurement.

4.8 Muon spectrometer track reconstruction

The current PHENIX muon arm software framework was developed in 2003 after the first

two years of PHENIX operation. The tracking algorithm is written entirely in C++ and has

been developed to cope with large hit multiplicity environments found in heavy ion collisions.

With the reduced particle multiplicity and the corresponding detector occupancy in p + p

collisions, the same tracking algorithm is essentially applied in the p+p case. The MuID and

MuTr combine to form a “reconstructed” track in the muon arm, with composite information

on: momentum, spatial position, penetration depth in the MuID steel, and collision vertex

position (which also uses BBC information). This combination of hit information from two

separate subsystem detectors begins in the MuID.

4.8.1 Road finding in the MuID

As previously discussed, the most basic unit of the MuID detector readout used in the track

reconstruction algorithm is the two-pack, which for a given event is either on (“hit”) or off

(“not hit”). Adjacent hits in the MuID are grouped into clusters, and these clusters can be

combined across the MuID gaps for each tube orientation (horizontal or vertical) into one-

dimensional linear “roads” that project back toward the collision vertex region. Counting

from 0, the algorithm is seeded using Gap 1 hits and attempts to form roads from hits that

extend in both directions in the MuID. With the lack of a magnetic field in the MuID, and

despite the effects of multiple scattering, the most likely path through the MuID steel layers

is a straight line. The one-dimensional roads are fit using a straight line and are then paired

with roads of opposite orientation to from a two-dimensional MuID road which contains the

position and direction information from the MuID that is included in the track reconstruc-

tion process.
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Figure 4.15: PHENIX data flow for the Run 5 PHENIX single muon analysis.
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There are various conditions that the paired one-dimensional roads must satisfy. To form

a two-dimensional MuID road, the depth of the one-dimensional roads of opposite orienta-

tion are not permitted to differ by more than one gap. Each one-dimensional road must

contain hits in at least two gaps, and paired one-dimensional roads cannot differ in total

hits by more than 2. The minimum depth for a full MuID road is Gap 2 and cannot have

more than two gaps that lack hits preceding the final gap in the road. Under these various

constraints, the gap depth of a full MuID road is determined by the deepest hit from either

paired one-dimensional roads. Further details concerning the MuID road-finder algorithm

are discussed in [106]. To reduce the combinatorial background in the next step of the muon

arm reconstruction, the MuID roads seed the track finding algorithm for the MuTr.

4.8.2 Track finding in the MuTr

The most basic unit of the MuTr is a cathode strip which will “fire” if enough ionization

charge is deposited when a charged particle passes through the detector volume. On average

a single particle will fire from one to three adjacent cathode strips, which are combined into

a MuTr cluster. For high occupancy events it is possible that two particles will fire cathode

strips that will lead to overlapping clusters. This particular issue potentially plays an im-

portant role in the analysis, particularly at high pT (Section 5.4). MuTr gap coordinates are

derived from sets of fired cathode strips from a particular MuTr gap. Since the cathode strips

are oriented at stereo angles to one another, two cathode strips within a gap can provide

a two-dimensional position information. Each MuTr station (1,2, or 3) contains either two

or three gaps (Table 4.1) that are separated by just a few centimeters. Coordinates from

each gap within a MuTr station corresponding to the two or three space points over the few

centimeters of thickness of a particular MuTr station. Once these space points are fit with

a straight line they are referred to as MuTr stubs.

A schematic description of the muon arm track finding algorithm is now presented, with

additional details available at [107, 108]. The MuTr track finding algorithm begins by at-

tempting to match MuTr Station 3 stubs with all potential roads at the MuID Gap 0. Once

a match between a MuID road and Station 3 stub is made, the algorithm then attempts to

proceed to Stations 2 and 1. Once the track as been formed from stubs in each of the three

Station, the matched MuTr track and MuID road now possess all available information from

the muon arm. The MuTr tracks are also projected through the front absorber material to
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Figure 4.16: An event display for a single MuTr octant showing fired cathode strips in blue,
MuTr stubs in pink, and a reconstructed MuTr track in red. As shown, each octant is
instrumented as two half-octants.

obtain the position, direction, and momentum of the particle at the collision point [107].

Figure 4.16 is a portion of the muon arm reconstruction event display highlighting fired

cathode strips (in blue) and the corresponding MuTr stubs for each station. The individual

gaps within a particular MuTr station are too close together to be properly displayed in this

figure.

4.9 MuID efficiencies

MuID two-pack efficiencies are determined using two different methods, the Data Method,

which is the primary method, and the High-Voltage (HV) Method [103] which provides

some level of cross check. These efficiencies are implemented for simulations in the GEANT

3 based detector response. The Data Method uses reconstructed roads from collision data

that pass certain quality cuts. These roads are used to examine the efficiency for each

two-pack orientation. The HV Method examines the high-voltage log files to determine the

expected efficiency based on current draw, number of broken wires, etc. The HV method

cannot detect problems with the low-voltage supplies that power the electronics or issues

with the front end electronics or sagging voltage supplies (a problem experienced due to aging

of the power supplies with slow variation of some internal resistors in the HV power supplies).

The performance of the MuID in Run 5 was quite stable (Appendix G). Therefore, for

the purpose of simulations the MuID two-pack efficiencies are determined by averaging over
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all runs. While this is in large part a valid approximation, the single muon analysis, rela-

tive to the di-muon analysis, is especially sensitive to fluctuations in efficiency in the MuID

gaps. In the Monte Carlo detector response implemented in simulations for single muon

background subtraction and acceptance corrections, additional checks are required to en-

sure parity between simulation and actual MuID performance. These checks are discussed

subsequently in Chapter 5.
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Figure 4.17: Event display of for a full muon arm reconstruction.
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Chapter 5

The Single Muon Analysis

5.1 Analysis overview

The analysis for the measurement of heavy-flavor single muons in PHENIX presented in this

chapter establishes what will serve as the standard approach for the measurement of heavy-

flavor via single leptons [26,74,88] until future upgrades change the PHENIX muon detection

capabilities. An inclusive yield of potential single muons is identified, and estimates of all

“background” yields from various sources are statistically subtracted with excess attributed

to the semi-leptonic decay of heavy flavor mesons.

The heavy flavor single muon yield is extracted from the sample of inclusive single muon

candidates, which are defined as tracks successfully reconstructed to the last gap of the

MuID (Gap 4) shown in Figure 5.1. Due to the significant amount of absorber material

(pion rejection > 250:1) between the vertex and deepest MuID gap (Gap 4), the PHENIX

single muon analysis suffers from relatively few independent background sources, namely the

light hadrons π±, K±, their decay daughters, and to a much lesser extent, K0
s , K0

L, p, and

p̄. After the application of all track selection cuts optimized for heavy flavor single muons,

the fraction of background tracks in the pool of single muon candidates in the MuID Gap

4 remains large, with a background-to-signal ratio of approximately 3:1 over all pT . For

the purpose of this analysis these physical background sources are categorized in two ways:

muons from hadron decay and punch-through hadrons. The relative flux of these particles

and heavy-flavor single muons in the PHENIX muon spectrometer is depicted in Figure 5.1,

which shows a schematic cross-section of the detector as a function of penetration depth

relative to the collision vertex at z=0 cm.
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Figure 5.1: Schematic depiction of the relative flux of particles in the muon arm as a function
of distance from the collision point [70]. Further details are discussed in the text.

Muons from hadron decay

As Figure 5.1 shows, the initial flux of light hadrons is the single largest source of particles

in the PHENIX muon arm. The decay lengths, cτ , for the π’s (780 cm) and K’s (371 cm)∗

are long compared to the flight path from the collision vertex to the first absorber mate-

rial in the muon arm at z=41 cm (Figures 1.8 and 5.1). More than 99% of the these light

hadrons reach the first absorber without decaying and are absorbed; however, the initial flux

is sufficiently larger than that of heavy-flavor single muons such that this small fraction of

hadrons decaying into muons is an important source of background tracks. Having decayed

into muons, these particles will penetrate all of the steel absorber layers in the detector and

be identified as heavy-flavor single muon candidates. These muons from hadron decay are

the single largest integrated background source and statistically dominate all tracks for pT

< 3.0 GeV.

The fraction of π’s and K’s decaying into muons increases linearly with total flight path

(as shown in Figure 1.7). This analysis considers particle tracks originating at −25 ≤ z ≤ 25

cm, which is a subset of all particles emerging from the relatively wide collision vertex distri-

bution (Figure 4.6) measured by the BBC. For particles entering into the north muon arm

(z >0) and for this selected z-vertex region, hadrons have as little as 16 cm (from z= 25

∗For comparison, the muon decay length is 658.6 meters
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cm to 41 cm) and as much as 66 cm (from z= -25 to 41 cm) of “free” flight path. Hadrons

are not all immediately absorbed at the front face of the absorber at z=41 cm, rather they

are absorbed with a probability that is approximated by an exponential, 1−e
−L

λAbs. beginning

at z=41 cm. This extends the average effective flight path a few more centimeters into the

front absorber, which is 79 cm thick corresponding to ∼5 λI assuming an average† λI=16

cm. The number of muons from hadron decay remains relatively constant after this first ab-

sorber due to the absorption of the parent hadrons. A negligible background source may be

attributable to hadrons that have survived multiple λI of absorber material before decaying

into a muon (and neutrino) somewhere after the first absorber material; however, this source

of background is implicitly handled in the background estimation method used in this anal-

ysis. The characteristic linear vertex dependence measured in the muon candidate z-vertex

yields can be used to calculate this background component and is used as one constraint to

the light-hadron background estimate.

Punch-through hadrons

Despite the exponential-like probability for hadrons to interact in steel, some small fraction

of the total hadron yield will penetrate through the 1.5 m of steel and be detected in the

deepest MuID gap [41]. Since these hadrons may have originated at the primary collision

z-vertex, they exhibit no characteristic linear z-vertex dependence as observed for muons

from hadron decay. These punch-through hadrons are indistinguishable from heavy flavor

muons originating from D and B meson decay with cτ ’s on the order of ∼120-500 µm and

secondary vertices 800 µm from the initial collision vertex [15], which is well below the res-

olution of the PHENIX vertex detector.

As the PHENIX muon arms possess no direct means for characterizing the hadron punch-

through yield in the last MuID gap, Monte Carlo simulations are needed to estimate this

background component. The shallow MuID Gaps 2 and 3 assist in the punch-through back-

ground estimate since they can be used to select stopped shallow hadrons that have un-

dergone a nuclear interaction and stopped before reaching MuID Gap 4‡. The capability

to measured unidentified stopped hadrons serves as a crucial secondary constraint in the

light-hadron background estimate, which is performed using Monte Carlo so-called “hadron

cocktail” simulations.

†The nominal interaction length for iron and copper are λFe
I =16.7 cm and λCu

I =15.3 cm [70].
‡Additional details of the shallow hadron selection are discussed in Section 5.3.2.
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Implementing a hadron cocktail in the muon arms

The estimation of physical background sources is performed using a data-constrained hadron

cocktail GEANT-3 [109] Monte Carlo simulation with the full PHENIX detector geometry.

Light hadron measurements do not exist at the muon arm forward rapidity acceptance, leav-

ing these sources of backgrounds not well constrained. The hadron cocktail implemented in

this analysis takes a prescribed mix of pions and kaons as input and fully propagates them

through GEANT and the muon arm response-reconstruction software chain. The hadron

cocktail is normalized to the observed hadron yield in the next-to-last MuID gap (Gap 3).

The ability of the hadron cocktail to accurately estimate the hadronic flux observed in the

muon arms is verified by a simultaneous comparison of the Gap 2 hadron yields and the Gap

4 z-vertex distributions.

Modification of the input pT spectra along with modifications of the steel hadron inter-

action cross section employed by GEANT provide the sufficient degrees of freedom needed

to produce a reliable hadron background estimate. This estimate is judged against three pri-

mary conditions which apply to hadron simulations which are normalized to Gap 3 stopped

hadron yields observed in data. The three conditions are: 1) the input pT spectra for pi-

ons and kaons lie in between the measured spectra at y=0 and y=3, 2) the Gap 2 stopped

hadron flux matches that observed in data, and 3) the z-vertex distributions match between

simulation and data for those tracks resulting from the decay of light hadrons in the vertex

collision region.

The single muon twelve-step program

The analysis procedure is now outlined in a step-by-step fashion. The basic procedure

is applied independently to each arm using the same software/analysis framework. This

procedure is repeated for each individual hadron cocktail estimate that is generated from

different FLUKA/GHEISHA cross section settings.

1. Admit we were powerless over single muons—that our backgrounds had become un-

manageable.

2. Determine for data the Gap 2 and Gap 3 stopped hadron yields by applying track

selection criteria optimized for shallow gap hadron yields. Determine for data the in-

clusive yield of Gap 4 muon candidates by applying track selection criteria as described

in Section 5.2.5.
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3. Run a version of the hadron cocktail. This consists of selecting a particular hadron

shower code (FLUKA or GHEISHA) and a particular scale value for the steel hadron

interaction cross section. The hadron simulations require several weeks to complete

using computer farms at Brookhaven (BNL) and Oak Ridge National Laboratories

(ORNL). All hadron cocktail simulation files are then copied to the local ORNL HER-

ANS cluster, aggregated, and reconstructed using standard PHENIX muon reconstruc-

tion code to produce simulated single muon data files. These are processed using the

same analysis code used to analyze the data.

4. The output from the hadron cocktail is compared at Gaps 2, 3, and 4 to data. These

yields are uncorrected yields, meaning no acceptance and efficiency corrections have

been applied. However, fiducial acceptance cuts are employed to maximize consistency

of response of the detector between data and simulation (as in Figure 5.9). The hadron

cocktail pT yield is normalized to match data at Gap 3. This is accomplished through an

iterative alteration of the input pT spectra per pT -bin for the hadron cocktail particles

until simulation and data match at Gap 3. This is efficiently implemented by modifying

the relative “weights” of tracks.

5. Once the Gap 3 yields of hadron cocktail and data are adjusted to match by re-

weighting (to a ratio of 1), the yields in Gap 2 and Gap 4 are analyzed. The extent

of the match between the data and hadron cocktail distributions are quantified using,

χ2/NDF matching values that are calculated for the Gap 2 pT points and the Gap 4

z-vertex distributions. Details of the χ2/NDF calculation are described in Section 5.3.3.

6. For a fully tuned hadron cocktail package (matched at Gap 3), the input spectra for

kaons and pions determined by tuning to match MuID yields can be checked against

measured hadron spectra at y=0 and y=3 (as in Figure 5.18(a)).

7. Once the Gap 2 pT and Gap 4 z-vertex hadron cocktail yields are considered to suc-

cessfully match data (determined using a χ2 calculation as described below in Sec-

tion 5.6.2), the resulting Gap 4 hadron flux prediction is used as an estimate of the

light hadron backgrounds in the inclusive muon candidate sample.

8. A small background source not fully reproduced by the hadron cocktail but observed

in pδθ distributions (discussed in Section 5.4 is subtracted). The subtraction is made

by a two-component fit of both data and simulation pδθ distributions, with a relatively

larger fraction of this background present in data. This background source is referred

to as N2c.
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9. The hadron cocktail background estimate, Nc, and the two-component fit background,

N2c, are subtracted from the inclusive muon candidate yield, NI by: Nµ = NI−Nc−N2c.

10. The remaining yields are attributed to an excess of single muons from heavy flavor

decay, Nµ. This quantity is acceptance and efficiency corrected using values determined

from single muon simulations as described in Section 5.5.

11. Caveat lector : Since no single hadron package provides adequate matching for both

muon arms at all pT , multiple hadron cocktail simulations are run using different steel

hadron interaction cross sections for either FLUKA or GHEISHA. The results from

multiple hadron cocktails are used to extract the final single muon result as described

below in Section 5.6.2.

12. Having had a spiritual awakening as the result of these steps, we try to carry this

message to other PHENIX single-muoners, and to practice these principles in future

single muon analyses.

5.2 Raw data analysis

5.2.1 PHENIX data flow overview: from collisions to analysis files

The data used in this analysis was collected by PHENIX at RHIC from April 2005 through

June 24, 2005. The LVL1 triggered data production including the muon arms was performed

in Japan at the RIKEN PHENIX Computing Center, referred to as CCJ. A total of 263.2 TB

of raw data was transferred from BNL in New York to CCJ over an 80 day period. The aver-

age transfer rate was about 40MB/sec. The track reconstruction from the raw data, referred

colloquially to as “The Production”, used the PHENIX “pro.73” libraries. The Production

was completed in July 2006 with the transfer of the production files back to BNL completed

in August. The data flow from raw data files to the produced nanoDST’s was previously

shown in Figure 4.15. The refined data files used for this analysis are created using Muon

Working Group (MWG) track reconstruction and response software previously described.

The files used for the single muon analysis are derived from the production MWGMuon and

MWGMinBias nanoDST’s.

All production nanoDST’s were subsequently transferred back to RCF from Japan and

placed in HPSS file storage. The full set of Run 5 “MWG” and “MinBias” nanoDST’s,
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corresponding to 426 GB were stored at the ORNL HERANS computing cluster. Single

muon picoDST’s are produced from the nanoDST’s using the MWGpico package in the

MUTOO muon arm software framework located in the PHENIX code versioning system

(CVS) at: offline/packages/MWGpico. The nanoDST’s contain final reconstructed track

information, as well as other quantities of interest such as trigger information and detector

hit information.

5.2.2 Local analysis software framework

The nanoDST is a highly condensed data format but is still prohibitively large for quick

access and analysis. Two further steps are taken to condense the data. The MWGpico

software package is used to produced so-called picoDST’s. The size of just one single muon

picoDST file in conjunction with the large size of Run 5 data set containing muon and min

bias triggers translates into a set of picoDST’s that are ∼100 GB in size. This set of single

muon picoDST’s are then filtered in one additional step using locally developed analysis

software which preserved the minimal amount of physics information needed to accomplish

the analysis.

A single final analysis file, colloquially referred to as a “femtoDST”, is produced for the

data as well as for background simulations. The filtering step from picoDST to fem-

toDST also places loose z-vertex cuts (± 30 cm), as well as performing the good run list

check. The final condensed femtoDST has a size of ∼1 GB, per charge sign. It takes ap-

proximately 2 minutes to complete a final histogram filling analysis loop. The compiled

C++ code used to fill the femtoDST is archived in a code versioning system (CVS) at

offline/analysis/ETSMframework/.

5.2.3 Data selection and QA

This section describes the process taken to arrive at the Run 5 p+p single muon good run list.

There are four separate good run lists, M1D and M1S for each arm. Initial checks to remove

runs due to various issues such as: magnetic field status, run-control (DAQ) status, nominal

hit rates, calibration status, electronics status, shift-crew log status, and high-voltage status.

After this initial series of checks, the north di-muon run list consists of 642 runs, and the

south arm list contains 822 runs. The entire nanoDST data set for both muon triggers (files

labeled “MWG Muon”) and min bias (files labeled as “MWG MinBias”) are copied and

disk resident at the ORNL cluster. Single muon picoDST’s (comprised of one event based
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Figure 5.2: Distributions of average vertex collision and track production per run number.

ntuple and one track based ntuple) are then produced using the PHENIX CVS package

offline/packages/MWGpico. The single muon picoDST’s are filled using the M1D and M1S

trigger information.

The M1S triggered data set is included as a subset of the M1D runs, so the good run QA

performed is valid for both data sets. The runs including the M1S trigger were taken at

the beginning of the run period. The average BBC z-vertex as a function of run number is

shown in Figure 5.2(a). The plots shows that the BBC z-vertex remained very stable and

within a few centimeters of z=0 through for the entire set of runs considered in this analysis.

Figure 5.2(b) illustrates the average number of tracks per MB event per run number. Run

periods with large variations were excluded from analysis.

5.2.4 Forming inclusive muon candidate distributions, NI

Inclusive muon candidates, NI , are tracks reconstructed to the deepest MuID layer, Gap

4. In forming the invariant yields for both z and pT we divide by the BBC z-vertex event

distribution. Figure 5.3 shows the un-normalized and event normalized vertex distributions.

Appendix D describes this process.
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Figure 5.3: Panel (a) is divided by the measured BBC event vertex distribution (Figure 4.6)
to form Panel (b). The distinctive linear z-vertex dependence from the hadronic decay muons
is observed.

5.2.5 Track selection and acceptance

Optimization of analysis cuts using a known heavy flavor muon sample

This analysis optimizes track selection criteria using known heavy flavor single muons from

the Run 5 and 6 p+p J/Ψ LVL2 filtered data sets. These data were combined and analyzed

by applying the full set of di-muon analysis track cuts [110] on the di-muon invariant mass

distributions.

Tracks residing within 2σ of a gaussian fit to the di-muon mass peak (shown in Figure 5.4)

constitute a known and relatively clean sample of muons resulting from charmonium decay.

For tracks within the selected mass region, distributions of all relevant single muon analysis

variables are analyzed and compared to single muon simulations. This benchmarks the sim-

ulated single-particle distributions against known heavy flavor single muons. As an indicator

of the excellent degree of agreement between single muon MC and data, Figure 5.5 illustrates

the observed pδθ distributions for both the di-muon and single particle simulations. Due to

statistical limitations, the heavy flavor single muons in the di-muon sample reach a pT of

only 3.0 GeV/c. Muon track selection criteria is then determined for pT < 3.0 GeV/c using

this data sample. Based on the strong agreement between the single muon simulations and

the observed heavy-flavor muons, single muon simulations are used to determine optimized

track selection criteria for pT > 3.0 GeV/c.
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Figure 5.4: Di-muon invariant mass distribution of unlike-sign track pairs (black) and like-
sign background (red). Tracks residing in the fitted region (black line) provide a relatively
clean sample of heavy flavor single muons (from the J/Ψ) and are used for track selection
optimization.

Definition of analysis variables

1. BBC z-vertex - z vertex of the event collision as determined by the BBC detector.

2. Number of MuTr hits - As described in Section 4.4.2, the MuTr consists of three

stations per arm, can have up to 16 hits per arm. Stations 1 and 2 each have three

layers and Station 3 has two layers. A gap consists of an anode plane sandwiched

between two continuous cathode planes. In a gap, one cathode plane is straight and

the other is rotated relative to the first at stereo angle. Overlap of the cathode planes

in a given station’s gap are readout to provide the space point “hits”. There are a

maximum of six hits each in Stations 1 and 2, while Station 3 has a maximum of four

hits.

3. RefRad - This variable is the projected radial offset of the track associated MuID road

at z=0. The value is calculated from the separate ∆x and ∆y offsets at z=0 using√
∆x2 + ∆y2. The offsets are obtained by extrapolating to z=0 the one-dimensional

slope in either x or y of the MuID road through the Gap 0 hit position (n.b. specifically

referred to as refX, refY in the software).
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Figure 5.5: pδθ from di-muons compared to single-particle single muon simulations. Six 500
MeV bins of pT up to 4.0 GeV are shown: di-muon data red crosses and single-particle single
muon simulations in black circles.
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4. Road Slope - Slope of the MuID road determined from the 2D-road. A minimum

slope is taken to ensure the MuID square hole is avoided.

5. DG0 - “Distance at Gap 0”, or DG0, is the difference between the MuTr track projec-

tion and the MuID road projection at MuID Gap 0. The units of DG0 are centimeters.

6. DDG0 - DDG0 is the angle between the MuTR track project and the MuID road

projection at MuID Gap 0. The units of DDG0 are degrees.

7. pδθ - pδθ measures the extent of deflection due to multiple scattering that a track

undergoes in the pre-MuTr absorber. The 19 cm of copper and 60 cm of steel, which

lie at 41 cm ≤ z ≤ 120 cm between the collision vertex and the first MuTr station,

induce significant radiative energy loss and multiple scattering [111]. See Figure 5.6

for a pictorial representation of the definition. The scattering angle δθ is defined for

this analysis in the muon arms as:

δθsta1 = cos−1

(
~Psta1 · ~Rsta1

Psta1 ·Rsta1

)
(5.1)

where Rsta1 is the position vector and Psta1 is the momentum vector at MuTR Station 1.

The z-component of the position vector is the z position at station 1 minus the z-vertex

position. The scattering angle, δθ, is scaled by the average of momentum of the track

at Station 1 and the projected momentum at the vertex, P̄ = Pvtx+Psta1

2
. Scaling the

Figure 5.6: Definition of pδθ analysis variable. The product of a particle’s multiple scattering
angle and a momentum should remain constant for all momenta.
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scattering angle by the total momentum should ensure that the distribution remains

approximately a gaussian with constant width in all pT bins, since angular deflections

fall as 1/p. The constant gaussian of the pδθ distribution is useful in characterizing

the purity of the single muon track sample. The pδθ cut is taken from a gaussian fit

with a mean µ ≈ 0.07 and σ ≈ 0.05. It strongly rejects those tracks which have been

assigned an improper momentum due to tracking difficulties associated primarily with

high local occupancies in the MuTR stations. Improper momentum assignment to a

track manifests itself in pδθ values outside the expected constant gaussian form (Figure

5.27). This cut also significantly eliminates those tracks that result from the decay of

a hadron inside the muon arm, specifically the MuTR, which can result in incorrect

momentum association.

It is worth noting, for historical reasons, that P̄ · δθ can be defined in more than

one way: P̄ · δθPvtx was also defined in [70] using not the projected position and mo-

mentum vector from the vertex, but the momentum vector at MuTR Station 1 and

the momentum vector at the vertex: as P̄ · δθPvtx = cos−1
(

~Psta1·~Pvtx

Psta1·Pvtx

)
. Both definitions

of the pδθ variable should be equivalent. Some brief tests established that the cuts did

perform similarly in rejecting background, but some level of difference was seen. This

difference was not fully explored or documented.

8. δz - As the single hadron cocktail cannot exactly reproduce the pδθ distributions

(further discussed in section 5.4) observed in data (Fig. 5.27), this difference between

MC and data must be fully understood. The δZ cut originated because it satisfactorily

rejects those tracks exhibiting pathological pδθ values. δZ is defined as the difference

between the event vertex, as determined with the BBC with a 2 cm resolution, and

vertex provided by the muon reconstruction code track fit. Those tracks which show

large differences between the event z-vertex and the track fit vertex correlate strongly

with those tracks possessing the large pδθ values that the hadron cocktail does exactly

reproduce.

9. Near-side z-vertex - Restricting the z-vertex acceptance to tracks with z-vertex

closer to the arm being considered increases the signal/background at low pT by prefer-

entially eliminating muons from hadron decay (Figure 5.7). In Figure 5.7, the inclusive

muon track distribution is merged with a cartoon portrayal of the relative background

contributions within the accepted z-vertex region. D1 and D2 correspond to the com-

ponent of tracks due to muons from hadron decay in the z-vertex acceptance. The
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Figure 5.7: Schematic of particle yields, including the “Decay triangle” using the z-vertex
distribution from Figure 5.3(b).

fraction of tracks that result from hadron decay drops to essentially zero after one

absorption length, λabs, in the front steel that begins at z= 41 cm. By fitting the z-

vertex distribution and extrapolating the fit to this point at approximately z ≈57 cm,

the vertex independent components due to to punch-through hadrons P1, and heavy

flavor muons µ1 can be estimated. The linear distribution holds relatively well for

pT <2.5 GeV/c and can be used to estimate the D1 + D2 components, as was done

in [70]. However, the relative mix of µ1 and P1 is not easily identified and requires a

simulation to disentangle each component.

Application of analysis cuts

Analysis cuts are placed on a track by track basis. The track selection criteria for the

accepted η bin 1.4 ≤ | η | ≤ 1.9 is discussed below. Some selected criteria are implemented

with pT dependence. For simplicity of presentation, the exact pT dependent values uses are

not listed here for all variables.

1. BBC z-vertex: −25 < z < 25 cm for all pT , except for pT < 1.75 GeV/c the “near-

side” z-vertex cut using only the 25 cm nearest the arm in question. For the north

arm the cut is 0 < z < 25, and for the south arm the cut is −25 < z < 0. The effect

of the near-side cut is to improve the overall signal to background level by reducing

the amount of hadron decay muons preferentially to that of heavy flavor muons, since
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relatively more hadron decay muons occur in the z-region farther from the detector

due to decay kinematics.

2. Number of MuTR hits: > 12.

3. RefRad:
√

x2 + y2 < 100 cm.

4. Road Slope:
√

(dx
dz

)2 + (dy
dz

)2 > 0.21, ensures that the tracks possess a minimal angle.

5. DG0: South arm: DG0 < 20 cm. North arm: DG0 < 15 cm.

6. DDG0: Angle (in degrees) South arm: DDG0 < 10 degrees. North arm: DDG0 < 9

degrees.

7. p̄· δθsta1: < 0.2 , referred to commonly as pδθ.

8. δz: < 2 cm.

9. Trigger emulator software is run on data and simulations, as described in section 4.5.6

10. Acceptance cuts are also placed using the ROOT class TCutG. This is described in

the next section (5.2.6).

Figure 5.8 shows the inclusive muon spectra with different cuts applied. Basic cuts refers

to basic η acceptance cuts and MuTR > 12 hits. The figure illustrates qualitatively that

the application of the successive cuts is successful in reducing the overall background levels.

The pδθ cut is demonstrated to have the most dramatic affect at reducing background tracks

with increasing pT .

5.2.6 Matching MC and data response by restricting acceptance

The match between Monte Carlo (MC) and data is of the utmost importance in this analysis.

Ultimately, the hadron cocktail Monte Carlo is tuned to match track distributions observed

in data is used as a background estimate. The extent to which the MC matches data serves

as a direct source of systematic uncertainty in the final result. In running simulations the

“true” hardware performance is implemented during the response and reconstruction stages

of the simulations. However, differences in detector acceptance remain due to the imperfect

implementation of actual hardware conditions during the specified run period in the MC.

Another source of difference between MC and data is the use of a single run number for the

hadron cocktail estimates. The PHENIX muon code accesses the hardware settings for a
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(a) Inclusive muon candidate distribution with an ordered application of track selection
cuts. pδθ applied first.

(b) Inclusive muon candidate distribution with an ordered application of track selection
cuts. pδθ applied last.

Figure 5.8: Sequential implementation of cuts to inclusive yield.
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single specified data run (corresponding to about one hour of real data taking). Because of

the large hadron rejection provided by the 10 λI of steel, extended (weeks) of CPU time is

required to calculate a single hadron cocktail with the needed Gap 4 statistics out to a pT of

5.0 GeV/c. Therefore, a single “good” run is specified for the hadron cocktail reconstruction,

since several different (seven in this analysis) hadron package estimates are performed for

this analysis.

To minimize the effect of the run to run variation in the detector acceptance in the data that

is hard in practice to accomplish in simulations, separate fiducial geometric acceptance cuts

are place on both the data and simulations. To ensure optimal matching, MC simulations

are run and the hit patterns in the detector are checked against data. In the MuID, which

consists of 5 gaps with 2 sensitive layers per gap, Gap 4, 3, and 2 hit patterns in x,y are

examined requiring 10, 8, 6 hits respectively. The requirement of all hits exposes any areas

of discrepancy between the MC response and that observed in data. The MuID run per-

formance is very stable, but for one period of runs a high-voltage chain was disabled which

affected ∼10% of the total acceptance in x,y. Since the efficiencies implemented in the MuID

are done using values averaged over the entire run period, this area is excluded to eliminate

any MC/data discrepancy. Likewise, for the MuTr the hit distributions are examined for

each MuTr station with full hits required. In addition to small areas of disagreement in the

overall response of different MuTr octants, the edges between octants tend to have differences

between the response and data. These edge areas are removed for both MC and data using

very narrow φ-angle restrictions.

Figure 5.9 shows an example of how these fiducial geometric cuts are implemented. The

plot is of the x,y hit positions of tracks in the north MuTr Station 3. Similar distributions

are studied as described for all MuID and MuTr detector layers. This allows for the maxi-

mization of agreement between data and simulation, even if simulation uses very few (even

a single) run number to specify the detector response function. The largest negative aspect

of this approach is the relatively large reduction in statistics (upwards of 30%) these cuts

impose. This analysis is not statistics limited in the specified pT region 1.0-5.0 GeV/c, and

thus, this loss of statistics is acceptable.

The φ and radial hit position distributions are compared using the hadron cocktail. Ex-

amine all three MuTr stations and Gaps 2,3,4 of MuID. Acceptance is restricted to specific

radial and φ regions for both MC and data to maximize agreement in the tracks accepted
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Figure 5.9: x,y distribution of hits in the MuTr Station 3 requiring 16/16 layers fired MuTr
layers. This condition causes the large empty areas. 13/16 hits are used in the analysis and
such large areas are not observed for this case. The areas inside the red regions are those
rejected by the fiducial cuts to match MC and data hit distributions.
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for analysis. Figure 5.10 and Figure 5.11 show comparisons of MC hadron tracks normalized

to to data in both r and φ based on the hit position in Gap 0 of the MuID. The rms of

the ratio of the MC/data for these distributions form one of the components used in the

determination of the systematic uncertainty in the Acceptance×Efficiency correction, σAε

(Table 5.8).

5.3 The hadron cocktail background estimate

Hadrons, predominately pions and kaons, along with their decay daughters dominate the

flux of particles from the vertex into the muon spectrometer. As discussed in the analysis

overview at the beginning of the chapter, a hadron cocktail consisting of π’s and K’s is used

to estimate the light hadron decay and punch-through components of the inclusive muon

candidates.

Previous efforts at PHENIX single muon analyses used linear fits of the z-vertex distributions

to estimate the yield of muons from light hadron decay. In order to estimate the hadron-

punchthrough component, two approaches had been attempted: 1) a data-driven generator

calibrated using GEANT simulations as in [70] or, 2) a purely data-driven method using

unidentified hadrons measured in the shallow MuID Gaps 2 and 3 in order to extrapolate

the hadron punch-through yield to Gap 4. The first method suffers from rather large sys-

tematic uncertainties due to the discrepancy of 50% between the two default hadron shower

packages FLUKA and GHEISHA. The second purely data-driven method was explored for

this analysis but discarded due to its unphysical extrapolated punch-through hadron esti-

mates.

Part of the failure of the purely data-driven approach is attributed to the effects observed

in [42], where pions were demonstrated to have substantial penetrating power into steel ex-

ceeding the naive expectation of exponential absorption of hadrons in steel. This effect can

be seen in Figure 5.13. The right plot is for 8λI of material. A total momentum of 8 GeV/c

corresponds to an equivalent pT of ∼ 3 GeV/c in the muon arm, which is the approximate pT

where the punch-through hadron component begins to dominate the total background frac-

tion. For this momentum, the fraction of pion events having hits after 8λI is 0.07, whereas

a naive exponential absorption would provide e−8 ≈ 0.0003. This is understood by recalling

the difference between nuclear interaction and nuclear absorption, i.e. λI 6= λabs. A pion

that interacts strongly can have secondaries that inherit a large enough fraction of the initial
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Figure 5.10: North φ distributions for data and MC using MuID Gap 0 x,y hit positions.
Black points are data and red points are simulation.
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x,y hit positions. Black points are data and red points are simulation.
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momentum to continue to penetrate a significant distance into the absorber. This effect

invalidates the assumption of extrapolating the hadron yield to Gap 4 assuming exponential

absorption based on observed Gap 2 and Gap 3 stopped hadron yields.

5.3.1 Method for “tuning” the hadron cocktail to match data

The hadron cocktail originates as a predetermined admixture of single pions and kaons with

the prescribed NLO pT spectra. These input hadrons are propagated through the entire

GEANT/ response/ reconstruction chain for a particular hadron interaction package cross

section setting. The resulting reconstructed hadron tracks are then compared to data and are

“tuned” to maximally match the stopped hadron pT spectrum in the next-to-last MuID gap,

Gap 3, as in Figure 5.12. This is accomplished by adjusting both the overall normalization

factor and the initial hadron pT spectrum per pT bin. In essence, the input or “thrown”

pT shape is adjusted for each hadron package cross section setting so that the reconstructed

hadron cocktail match data at Gap 3. Once the hadron cocktail is tuned at Gap 3, the

extent of the hadron cocktail match to data is examined in:

1. the preceding MuID gap, Gap 2. A χ2/NDF is calculated between data and hadron

cocktail.

2. the MuID Gap 4 z-vertex distribution. A point-to-point χ2/NDF is calculated for each

z-point (10 per pT bin) between data and hadron cocktail using the mean z difference

between data and hadron cocktail in each pT bin.

3. the adjusted input hadron pT spectra are compared to existing measurements at mid

and far-forward rapidity to ensure that the input hadron spectra falls within expected

global values.

Additional details of these items are discussed in the following sub-sections.
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Figure 5.12: MuID Gap 3 hadron cocktail pT spectra normalized to data yield. The upper
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Figure 5.13: FLUKA and GHEISHA hadron packages compared to RD10-45 data [42]. See
text for discussion.

5.3.2 Generating hadron cocktail input

Formation of a hadron cocktail background estimate faces two immediate problems: 1) the

hadronic backgrounds yields are not directly measured in the muon arm rapidity window,

2) the inability of the available GEANT hadron shower packages to properly predict the

passage of hadrons through large amounts of steel, with predictions for the muon arm ulti-

mately differing by a factor of 2.

Ultimately, the hadron cocktail is matched to observed yields in the MuID Gap 2, 3, and

4. The simplest approach for an input spectra would be to generate a spectra flat in pT

and proceed with the re-weighting scheme to match to data. A large amount of steel exists

to simulate, and only ∼1 per 1000 thrown tracks survives. This introduces a large ineffi-

ciency in any large scale hadron simulation project. Before this analysis, the muon arms

were plagued by a particular background source, hadrons decaying inside the MuTr volume.

This background is due primarily to particles which have lower momentum and decay with

the daughter particle carrying through to the last gap of the MuID. The kink in the particle

trajectory can cause the particle’s momentum to be improperly determined. The particle

spectra in the muon arms is approximately exponential (more like a power-law) where a drop

of approximately five orders of magnitude from a pT of 1.0 to 5.0 are observed. Decays from

high pT particles decaying in the MuTr are suppressed by several orders of magnitude relative
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Figure 5.15: Thrown vs. reconstructed
pT for the hadron cocktail spectra
weighted by pT , with pδθ cut applied.
The large number of improperly recon-
structed tracks high pT are eliminated
by the pδθ cut.

to low pT particles. However the decay of low pT particles that are improperly assigned a

larger momentum will have a large effect on the total number of tracks assigned to high pT

bins.

In order for the hadron cocktail to properly reproduce all physical sources of background

in the muon arm, it is necessary to generate a sufficient number of low pT hadron cocktail

particles which have a chance of decaying and being incorrectly reconstructed. As shown in

Figure 5.15, the effect of newly developed analysis cuts (primarily pδθ and δZ) has substan-

tially reduced this background fraction in higher pT bins to the point where it is justified to

“cheat” a little to throw flatter spectra than the true power-law shape observed for pions

and kaons. An additional weight of p3
T allows us to generate sufficient high pT tracks from

the hadron cocktail while at the same time still producing orders of magnitude more of the

low pT particles needed to realistic produce backgrounds in the muon arm.

However, several difficulties exist in the characterization of the hadron flux into the muon

arm. No measurements exist of identified or unidentified hadron spectra for p+p collisions

at a rapidity of 〈y〉=1.7. While the measured rapidity evolution of the pT spectra is not

known, several models exist which provide a description of hadron spectra at 〈y〉=1.7. An

NLO pQCD prediction has been obtained for the entire muon arm acceptance 1.0 ≤ | η | ≤
2.4 and is used as input for the hadron cocktail [112].

132



An untuned hadron cocktail consists of the following components:

1. pion and kaon yields drawn from a NLO pQCD prediction

2. full GEANT simulation that takes the appropriate mix of π’s and K’s from the theo-

retical prediction

3. full response and muon software reconstruction (optionally embedded in min bias data)

GEANT input particle distributions are generated by sampling spline fits of the NLO yields

of pions and kaons. The NLO pion and kaon invariant cross sections are converted to particle

yields in the following way:

d2N

∆η ∆pT

≈ Anorm · 2π 〈pT 〉 · E
d3σ

dp3
(5.2)

where Anorm is the constant cross section-to-yield conversion. Since it is only the shape of

the hadron spectra that is used to generate input particles, the actual value of Anorm is ir-

relevant in this context. Theoretical predictions are provided for seven pseudo-rapidity bins,

each with a width of 0.2 in η bins.

There is an inherent systematic uncertainty associated with the choice of K/π ratio used

for the cocktail. The two obvious choices to use is that measured by PHENIX in the central

arms. Another option is to use the ratio as reported by the NLO Vogelsang calculations for

pions and kaons at 〈y〉=1.7. Figure 5.16 shows both the PHENIX and the NLO K/π ratios.

Figure 5.17 shows the K/π ratio from the NLO calculation as a function of pT . The ratios

for for each slice of pseudo-rapidity (each 0.2 units of η wide) for which the NLO calculation

was made. The ratio’s asymptote decreases as the rapidity slice increases. The NLO ratio

is about 50% lower than the K/π ratio measured by PHENIX.

The role of the hadron interaction packages

The implementation of a scale factor for the steel cross section, allows the ability to “tune”

both FLUKA and GHEISHA such that each package’s hadron yields maximally match the

observed yields in three gaps of the MuID, Gaps 2, 3 and 4. Since there is ∼10 λI of steel

in the flight path from the collision vertex to the deepest gap of the MuID, the use of a

full GEANT based monte carlo (MC) “hadron cocktail” with parameterized hadron input is
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Figure 5.16: K/π values obtained from
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quired to increase the K/π ratio to that
observed by PHENIX at y=0 [112] .
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Figure 5.17: K/π ratios as a function
of pT for η from 1.1(dashed line) to 2.3
[112]. These ratios are below that ob-
served in PHENIX y=0 measurements.

necessarily dependent on the specific hadron interaction package’s ability to accurately prop-

agate the hadrons through steel. Unfortunately, it has already been established that neither

hadronic interaction package available in GEANT, FLUKA and GHEISHA, properly esti-

mate hadronic interactions, with differences of a factor of two observed for both packages [42].

In terms of just the general output of the hadron cocktail, two primary differences are

observed concerning FLUKA and GHEISHA. All comparisons made here are for equivalent

simulation inputs. Figure 5.18 compares some of the properties of the hadron cocktail to

global data measurements.

1. The overall flux of particles propagated for GHEISHA is approximately half of that ob-

served for FLUKA. FLUKA tends to reproduce the particle flux measured in the MuID

better than that of GHEISHA. Somewhat at odds with this observation, GHEISHA al-

lows relatively more low pT particles below a pT of 1.5 GeV/c. This gives the GHEISHA

pT spectra a peak at this lowest pT .

2. GHEISHA tends to allow relatively more kaons than pions through to Gap 4 of the

MuID. This is observable in z-vertex distributions where for identical input K/π ratios,

the GHEISHA Gap 4 kaon distributions exceed those of pions by 10 to 20 % (with the

amount of kaons increasing slowly with pT ), where as in FLUKA the number of pions

and kaons are approximately equal for all pT .

The differences are dealt with in the analysis by adjusting the overall GEANT hadron in-

teraction cross section of steel separately for FLUKA and GHEISHA. Changes for the steel
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cross section on the order of 5% can change the overall response of the interaction package

by much more than 5%. This is a key step in matching the cocktail for both FLUKA and

GHEISHA to data. This subject is discussed in section 5.3.2.

Hadron cocktail and data yields in Gap 2

The distribution of particles stopping in a shallow MuID gap, such as in figure 5.19, is com-

prised of those particles ranging out (MIP-like peak) as well as those particles that undergo

a strong interaction (the tail). These particles show a characteristic “stopping peak” when

plotted as a function of total momentum (or longitudinal momentum). The broad tail of

these distributions is comprised of hadrons that have not been reconstructed to the next

gap, suggesting a nuclear interaction in the next absorber layer. Hadrons can then be pref-

erentially selected by imposing a cut after the stopping peak and retaining the tracks in the

distribution’s tail.

After implementing full acceptance and track quality cuts, including a pz cut for Gap 2 and

3 to select stopped hadrons, and after normalizing the yields of the hadron cocktail to data

in Gap 3, the Gap 2 hadron cocktail pT spectra is compared to that of data (figure 5.20).
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z-vertex yields in Gap 4

After normalization of the yield of the hadron cocktail to data in Gap 3 as a function of pT ,

Figure 5.21 shows the subsequent Gap 4 z-vertex distribution of the hadron cocktail and

data, for which each panel is an individual pT bin. The black points are the inclusive data,

of which the heavy flavor signal is a component. The blue points show the total estimate of

the hadron cocktail, which is a sum of pion and kaon source particle components. The Gap

4 yield of particles originating from pions is roughly equal to that of kaons, despite the fact

that kaons constitute less far less than half of the total input particles. The excess of data

over hadron cocktail is an indication of the presence of the single muon signal.

Modifying the steel cross section in GEANT

The previous sections have described the basic approach for taking a particular hadron

cocktail version and tuning the input hadron pT spectra in Gap 3 to maximize the match to

observed data distributions in Gaps 2 and 4. As discussed in section 5.3.2, neither default

hadron shower code (FLUKA or GHEISHA) do an adequate job of matching the particle

yields observed in the MuID arms. An approach is taken to modify the material interaction

cross sections for both FLUKA and GHEISHA to explore to what extent MC can be made

to better match yields observed in data. The final χ2/NDF analysis of an assortment of

hadron packages with different settings is described in section 5.6.2.

The CERN libraries (a.k.a. cernlibs) used at the GEANT simulation step are modified

(Appendix F) to allow a hadron interaction “switch” at the GEANT interface command.

The hadron cross section of material, by far and away dominated by steel in the muon arms,

are scaled absolutely by percentage by the “switch” command. For example, “switch 9700”

would scale the cross section by 0.97 from the default value of 1.0.

A single cocktail data set corresponds to a single hadron interaction cross section setting

for a given hadron package. This analysis currently uses seven such cocktail data sets, which

are listed in Table 5.1. Figure 5.22 compares the different hadron package yields after nor-

malization to Gap 3 data. A variation of approximately ±20% is observed for all packages

considered in Table 5.1. Not all hadron packages predictions are used to extract the signal.

The final process for determining which packages are used is described in Section 5.6 using

the calculations described in the next section.
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Figure 5.21: MuID Gap 4 z-vertex spectra comparison of hadron cocktail and data.
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Table 5.1: Hadron package and steel cross section settings. The numbers indicate the scale
value in percent of the hadron interaction cross section (100 is default). Increasing (de-
creasing) the FLUKA (GHEISHA) cross section reduces (increases) the resulting number of
hadrons relative to the default setting.

FLUKA GHEISHA
107 97
106 95
105 93
103

5.3.3 χ2/NDF evaluation of the hadron cocktail

After forcing the match of data and hadron cocktail gap 3 pT distributions, the extent of

the hadron package’s ability to match both the Gap 2 pT and Gap 4 z-vertex distributions

is determined by calculating a χ2/NDF value for both distributions. The Gap 2 χ2 values

are calculated for each pT point according to the following formula:

χ2
Gap 2(pT ) =

 N cocktail(pT )−Ndata(pT )√
(σcocktail

Gap 2 )2 + σ2
Gap 3 match + (σdata

Gap 2)
2

2

, (5.3)

where N cocktail and Ndata are the minimum bias normalized invariant yield pT distributions

with the associated statistical uncertainties denoted by σ’s. A χ2/NDF value is calculated

for each pT bin using the Gap 4 z-vertex distributions. A point-to-point χ2/NDF determined

from the z-vertex distributions relative to the mean difference between the data and cocktail

points is calculating using the following equation:

χ2
Gap 4(pT ) =

N z−bin∑
i

 δzi − δzi√
(σ2

δzi
+ σ2

δzi
)

2

(5.4)

where the sum is over i z-bins per pT bin, δzi is the difference between data and cocktail for

the ith bin, and δzi is the mean difference between the data and cocktail for all z bins in a

single pT bin. It should be noted that σδzi
� σδzi

in the denominator of Equation 5.4, so

the inclusion of δzi has a negligible effect on the calculated χ2 values.

The Gap 2 and Gap 4 χ2/NDF values are summed to determine which package provides
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the best combined Gap 2 and Gap 4 match to data. The final determination of hadron pack-

age background estimates used to determined the heavy flavor single muon yield is described

in Section 5.6.2.

5.4 Non-hadron cocktail high pT background estimate

The observation and likely origin of a high pT single track background

This section describes a secondary background component other than the primary hadron

cocktail that is used in the determination of the heavy flavor single muon yield. The pδθ

distributions (Section 5.2.5) are used as an indicator of track purity since the distribution of

the product of the multiple scattering angle δθ and the momentum p should have a constant

width for muons. In Figure 5.23 the square (red) points in show the “raw” pδθ distributions

binned in pT . The clear multiple scattering peak observed at low pT expected to remain

constant for all pT gives way to an increasing fraction of spurious pδθ values, defined to be

those tracks with pδθ > 0.2. Importantly, the hadron cocktail, which is intended to be the

primary estimator of backgrounds in the analysis, fails to reproduce these raw pδθ distribu-

tions. In the initial phase of this analysis, the failure of the hadron cocktail to reproduce the

square (red) distribution in Figure 5.23 cast strong doubts on the viability of the analysis

for pT ’s above about 4.0 GeV/c which exhibit significant anomalous pδθ behavior.

Examination of these high pT , high pδθ tracks eventually revealed a large discrepancy be-

tween the event collision vertex measured by the BBC and the event vertex returned by

the muon track finding algorithm (the so-called refit Z). Labeling this difference “δZ” (Sec-

tion 5.2.5), its distribution is plotted in Figure 5.24 and is characterized by a gaussian peak

and non-gaussian tails.

By requiring |δZ|< 2 cm for muon track candidates the strong removal of tracks with large

pδθ values is observed and can be seen in in Figure 5.23 by the change in distributions from

the squares (red) to the closed circles (black). While it is perhaps not surprising that re-

quiring a common vertex between that measured by the PHENIX vertex detector and that

reconstructed, this quantity was not explicitly checked in single muon analyses prior to this

discovery. The di-muon analyses that constitute the largest muon analysis effort in PHENIX

do require a two-track χ2 vertex matching requirement. During the course of this work a

single track χ2 vertex match was implemented in the tracking algorithm but is not used in
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Figure 5.23: Distributions of event normalized pδθ for inclusive data tracks before and after
δz cut. The horizontal axes correspond to the pδθ variable of units GeV·radians. Particles
with pδθ > 0.2 are rejected in this analysis.
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Figure 5.24: Distribution of δz for muon candidate tracks for all pT . Tracks outside the
labeled cutoff are highly correlated with improperly reconstructed tracks, the fraction of
which increases with increasing pT .

this work. Future single muon analyses will benefit from this additional information.

The requirement of |δZ|< 2 cm is actually a rather crude matching requirement. This is

due to the inherent resolution of the BBC in p+p collisions, which is known to have a

resolution of 2 cm in p+p collisions. After the tracking algorithm completes the track recon-

struction in the MuID and MuTr, the track is projected from the shallowest MuTr station

(Station 1) through the initial 79 cm of absorber material to the vertex. This projection is

crucial in that it takes the momentum determined in the MuTr after the track has passed

through initial absorber material and estimates the track’s original z-vertex and momentum

at this vertex. It is the momentum from the tracking algorithm that is used in the analysis.

If the projected track position is off by more than 2 cm from the z-vertex measured by the

BBC (with an inherent resolution of 2 cm), the tracks exhibit non-physical pδθ values likely

due to incorrect momentum assigned by the tracking algorithm.

The incorrect momentum assignment by the muon tracking algorithm is likely due to the

phenomenon of high “local occupancy”. High local occupancy in this context is illustrated

in Figure 5.25. This figure shows a highly focused and selective view of the MuTr detector

from the muon event display. The individual trapezoids joined on one side are half-octants

that form a single octant. Each octant is taken from a MuTr station, with Station 1 on the

left, Station 2 the middle, and Station 3 on the right. The (blue) strips in each half-octant

correspond to fired cathode strips, and the barely visible (pink) circles represent the MuTr

stubs that are used in trying to match tracks within the MuTr stations. The (red) line
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crossing through all octants is the final reconstructed MuTr track. The large number of fired

cathode strips and the subsequent large number of stubs in Stations 1 and 2 are viewed in

a majority of the tracks examined that possess large pδθ and δZ values.

A full examination of all events that possess large pδθ and δZ values such as in the (red)

square distribution in Figure 5.23 is prohibited by size of the data scale. These events are

primarily seen at high pT and cumulatively represent several hundred tracks out of a pool

of several million. Moreover, these tracks are scattered across the entire data set, with on

average no more than one such event per raw data file. A full study of these events with

fuller detector information, which is significantly larger in size than the condensed data for-

mat used for the analysis, involves access to some large fraction of the total ∼250 TB of

data . It would require a reanalysis of the data which would take several hundred CPU

months. Simply put, resolving the issue is not readily accomplished. Alternatively, through

painstaking effort, several of these high pT events were sifted by hand and viewed in the event

display. The strong correspondence between high local occupancy such as in Figure 5.25 and

large pδθ was established. Further study of this issue will be conducted at a latter date to

explore possible modification to the tracking algorithm to reduce these aberrant tracks. For

the purpose of this analysis, the placement of δZ cuts satisfactorily removes the large pδθ

backgrounds for pT < 5.0 GeV/c, and the analysis is conducted within this pT range. As

mentioned, future effort will be placed on extending the analysis for pT >5.0 GeV/c.

Estimation high pT background by a two component fit of pδθ distributions

With the application of the δz cut, the hadron cocktail is highly successful in reproducing pδθ

distributions similar to that observed in data (which is dominated by hadron background).

The extent of agreement gradually diminishes as pT increases. At pT of about 3.0 GeV/c

the data begins to exhibit a non-gaussian tail that grows in prominence as pT increases. The

hadron cocktail also exhibits this non-gaussian tail but to a lesser extent than data.

While the pδθ cut placed on both the data and hadron cocktail removes the non-gaussian tails

which correspond to unphysical tracks. While the correspondence to high local-occupancy

and high pδθ does exist, the exact source of tracks with large pδθ is not known and therefore

can not be strictly eliminated by placing a cut on a particular variable. The phenomena in

the data that results in tracks with large pδθ is not, a priori limited to tracks strictly outside

of the pδθ cut implemented in this analysis. Expressing this in terms of the pδθ distribution
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Figure 5.25: High “local” occupancy event. The detector components display are, from left
to right, MuTr octants in Stations 1, 2 and 3. The reconstructed pT was determined to be
5.8 GeV/c, with a large δz=8.4 cm and pδθ=0.71. A total of 13 stubs are counted in MuTr
Station 1.
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Table 5.2: Additional two-component background fraction, N2c.

pT north arm south arm Approx. fraction of inclusive data
1.0-1.25 3.78e-9 1.7e-08 � 0.01
1.25-1.5 1.23e-8 3.1e-08 � 0.01
1.5-1.75 3.41e-8 7.1e-09 0.01
1.75-2.0 5.53e-9 4.27e-09 0.01
2.0-2.25 1.09e-8 3.4e-09 0.02
2.25-2.5 2.45e-9 2.3e-09 0.013
2.5-2.75 1.61e-9 1.5e-09 0.016
2.75-3.0 2.07e-9 1.3e-09 0.04
3.0-3.5 1.20e-9 9.6e-10 0.05
3.5-4.0 6.19e-10 3.5e-10 0.08
4.0-4.5 4.73e-10 1.9e-10 0.14
4.5-5.0 2.88e-10 1.4e-10 0.21

itself, it seems likely that the source of the non-gaussian tail “background” tracks will ex-

tend inside the pδθ peak inside the pδθ cut. Therefore, the extent of this background source,

dubbed the ”two-component” or N2c, which is not reproduced by the hadron cocktail, is

estimated.

Figure 5.26 shows the pδθ distribution for data shown in Fig. 5.27 along with a ”two

component” Gaussian plus linear fit. Exploration of the non-gaussian tail background in

the two-dimensional space of pδθ and δz indicates that the non-gaussian tail likely extends

into the peak in a linear fashion. This effect is completely negligible (� 1%) until pT >

2.5 GeV/c. The yield inside the peak is determined by fitting the non-gaussian tail in the

region outside the pδθ cut and extending the linear fit inside the pδθ cut (Figure. 5.26). The

area below the linear fit inside the pδθ cut region is labeled as a two-component fit back-

ground yield, N2c, and is taken as an additional source of background to be subtracted in

the extraction of the single muon yield as described in Equation 5.6 and listed in Table 5.2.

5.5 Acceptance × Efficiency corrections

The measured yield of single muons is subject to finite detector acceptance. The single

muon acceptance × efficiency correction factor is calculated for the combined reconstruction

efficiency, analysis cut efficiency, trigger efficiency, and restricted acceptance. The details of
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Figure 5.26: Two component fit of pδθ distributions per pT bin. The solid blue line is a
gaussian plus linear fit to the pδθ peak region. The solid red line is a linear fit of the non-
gaussian tail, and the dashed red line is a linear extension of the linear fit of the non-gaussian
tail. The region inside the peak (pδθ < 0.2 below the dashed red line is subtracted from
both the hadron cocktail and data. This estimated two-component yield, N2c, is subtracted
from data in equation 5.9.
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Figure 5.27: Event normalized yields vs. pδθ distributions for north arm data and hadron
cocktail. The excess of data over hadron cocktail inside the pδθ cut of 0.2 is the single muon
yield. The label indicates the pT bin in units of GeV/c. The units of pδθ for the horizontal
axis is GeV radians.
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the methodology and calculation are now described.

Since the measurement of heavy flavor single muons is accomplished through the statis-

tical subtraction of background quantities, each having potentially different acceptance and

efficiencies, care must be taken concerning how and when the acceptance and efficiency cor-

rections are made. The Run 2 single muon analysis subtracted separate corrected quantities

of 1) muons from light hadron decay, 2) punch-through hadrons, and 3) “other” background

tracks, such as those tracks created from particles decaying inside the muon tracker volume

whose decay “kink” leads to a reconstructed track with an inappropriately high pT .

In order to subtract individual corrected quantities, it must be known how to separately

correct the inclusive, decay, and punch-through components. However, all previous accep-

tance and efficiency corrections have been applied by using ratios of reconstructed muons to

thrown muons. This approach suffers from a few possible problems. Firstly, it is not known

to what extent it is valid to use simulated single muons to correct the muons from hadron

decay, which dominate the signal at low pT , as well as the punch-through harons, which

begin to dominate the backgrounds at higher pT . Secondly, some of track selection cuts have

exhibited some degree of z-vertex dependence. Since ostensibly the z-vertex distributions of

the separate background components are to be extracted by the subtraction of quantities as

a function of z-vertex, the z-vertex dependence of any track selection criteria would have to

be corrected for before any background subtractions can be made.

If instead of subtracting individual corrected background components, a holistic background

hadron cocktail can be shown to appropriately account for the different background com-

ponents in the inclusive track sample, an inclusive uncorrected hadron cocktail could be

subtracted from the uncorrected inclusive data sample. The remaining quantity is expected

to consist overwhelmingly of single muons from heavy flavor decays. This quantity can then

straight forwardly be corrected with single particle muon simulations.

Calculated acceptance and efficiencies

Single muons are simulated over a large portion of the total pseudorapidity acceptance η bin

1.1 ≤ | η | ≤ 2.1 for the analyzed region of 1.4 ≤ | η | ≤ 1.9 to account for “bleed-over” due

to finite detector resolution. Additionally, the simulated muons are thrown according to the
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Run 5 BBC z-vertex event distribution. The acceptance ×efficiency correction is calculated

as a function of pT and z-vertex using;

Aεµ(pT , z) =
Nreconstructed tracks passing cuts

Nthrown muons in η window
(5.5)

Those muons which additionally survive all track selection cuts listed in Section 5.2.5, in-

cluding kinematic and geometric acceptance, are considered and comprise the “numerator”

in Equation 5.5. All muons which were thrown within the η acceptance window are then

considered the “denominator.” Since the acceptance × efficiency is observed to not depend

on the z-vertex (as expected for muons) as in Figure 5.28, the acceptance × efficiency cor-

rections are applied as just a function of pT .

As shown in Figure 5.29, muons of realistic (approximately exponentially falling) pT spectral

shape are sent through the full PHENIX GEANT/ response/ reconstruction chain. Since an

exponentially falling muon spectra thwarts obtaining the statistics required for a meaningful

acceptance and efficiency at higher pT , separate muon simulations of realistic pT shape are

conducted for each pT bin, with the initial pT near the low end of the bin being examined.

Since the MuTR is estimated to achieve a momentum resolution of σp/p ≈ 5% in the studied

kinematic range [70], the initial pT for each pT bin must be thrown with increasingly lower

pT to account for the bin “bleed over”, those particles with an initial pT outside of the pT

bin being examined. The exponentially falling shaped spectra guarantee that bleed over

contributions are substantial from lower pT bins. The right column of Table 5.3 shows the

range of the thrown realistic single muon pT spectra, while the left column shows the pT

bin for which the corrections numbers are calculated from the right column muon simula-

tion. Due to momentum smearing in the response/reconstruction stage, muons are thrown

progressively wider on the lower pT side than what is used in the acceptance & efficiency

calculation to ensure the full acceptance for a given pT bin is accurately determined. Only

those particles both thrown and reconstructed inside the pT bin are used to determine the

final numbers, which are presented for both the north and south arm in the middle columns

of Table 5.3.

The consideration of the systematic uncertainty of the acceptance & efficiency calculations

are discussed explicitly in section 5.7.2. The acceptance & efficiency corrections are applied

per pT bin. At higher pT where the correction factor is essentially independent of pT this

approach does not introduce any additional bias. At the lowest pT bin where the correction
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factor is rising more sharply as a function of pT , and considering that the width of the pT bin

is 250 MeV wide, the application of a single acceptance & efficiency correction for this bin

may introduce some bias. The simplest correction to this would be to apply the acceptance

& efficiency corrections using a functional form derived from a fit of the correction values as

a function of pT .

Table 5.3: Average acceptance × efficiency corrections as a function of pT . These efficiencies
are based on single muon simulations of realistic pT spectral shape with all analysis cuts
imposed, e.g. acceptance, track quality, and trigger emulator, −25 ≤ z ≤ 25.

Corrected pT bin south north Generated pT range (GeV/C)
1.0 − 1.25 0.224 0.210 0.8 - 10.0
1.25 − 1.5 0.295 0.334 0.8 - 10.0
1.5 − 1.75 0.325 0.381 1.2 - 10.0
1.75 − 2.0 0.338 0.386 1.2 - 10.0
2.0 − 2.25 0.353 0.395 1.6 - 10.0
2.25 − 2.5 0.367 0.399 1.6 - 10.0
2.5 − 2.75 0.366 0.414 2.0 - 10.0
2.75 − 3.0 0.375 0.407 2.0 - 10.0
3.0 − 3.5 0.368 0.404 2.5 - 10.0
3.5 − 4.0 0.371 0.404 3.0 - 10.0
4.0 − 4.5 0.377 0.404 3.4 - 10.0
4.5 − 5.0 0.377 0.401 3.4 - 10.0

5.6 Methodology for signal extraction

5.6.1 Subtraction of backgrounds to obtain yield of single muons,

Nµ

The yield of heavy flavor single muons is determined with the following equation:

NH.F.µ(pT ) = NI(pT )−Nc(pT )−N2c(pT ), (5.6)

where NI is the invariant yield of inclusive muon candidates, Nc is the estimated yield of

tracks originating from hadrons estimated by a tuned MC, N2c is the estimated yield of

tracks determined from the two-component fit of the pδθ distributions.
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Figure 5.28: North arm calculated z-vertex dependent Acceptance × Efficiency (−25 ≤ z ≤
25) for 1.4 ≤ | η | ≤ 1.9.
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Figure 5.29: Momentum and rapidity smearing for muons considered in the acceptance ×
efficiency corrections. Distributions of pT and η are shown for simulated single muons using
PISA in the pT bin 1.0-1.25 GeV/c and η bin 1.4-1.9 for the original thrown distribution
(“Thrown in PISA”), reconstructed in the bin (“Reconstructed”) and the original distri-
butions for those particles reconstructed in the bin (“Reconstructed thrown”). Note: the
reconstructed tracks in this figure do not have the full geometric acceptance cuts placed on
them, otherwise the acceptance × efficiency correction could be derived by dividing the thin
solid line by the thick solid line.
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5.6.2 Extracting the central values of the single muon yield

The χ2/NDF is calculated for both the Gap 2 pT spectra and the Gap 4 z-vertex distribution.

The values for different hadron cocktails resulting from individual hadron packages and steel

cross section settings (such as GH97 or FL103 ) are plotted for comparison in Figure 5.30.

The solid red horizontal line in the plots corresponds to the 90% confidence level for the

particular χ2 calculation. For pT above ≈ 2.5 GeV/c several packages from both FLUKA

and GHEISHA provide adequate simultaneous hadron cocktail to data matching of Gap 2

and Gap 4 distributions. For this pT region ( > 2.5 GeV/C ), the average of all hadron

cocktail estimates that provide better than the 90% Confidence Level simultaneously for

Gap 2 and Gap 4 is used as the central value of the hadron background estimate. It is worth

noting that the improvement in the χ2/NDF values are due in part to the convergence of

the overall predictions of the different tuned hadron cocktail predictions, with variations in

the yields of each individual tuned prediction diverging less than 10% from the combined

mean of all cocktail yields. For pT above 2.5 GeV/c the observed linear z-vertex distribu-

tions due to the dominance of muons from hadron decay is waning. At the same time the

statistical uncertainties in the hadron cocktail yields are also increasing as less particles are

reconstructed with increasing pT due to the modified input power law spectral shape that

falls off nearly exponentially in pT .

For the low pT region, none of the single hadron cocktail packages provide adequate simul-

taneous matching of the Gap 2 and Gap 4 distributions. While several hadron cocktails

have fairly good Gap 4 z-vertex χ2/NDF values, the corresponding Gap 2 χ2/NDF values

show GHEISHA over predicting the Gap 2 yields by about 20% (causing very large χ2/NDF

values) and FLUKA under predicting the Gap 2 yields at roughly the 10% level (with less

extreme χ2/NDF values than GHEISHA) . Examination of the input spectra for different

tuned hadron cocktail predictions at low pT (Figure 5.31) illustrate the nature of the mis-

match between the different hadron shower packages (generated at y=〈1.65〉 as well as their

inability to fall inside the reasonable bounds of measured spectra at y=0 and y=3. Fig-

ure 5.31 shows that below pT ≈ 2.5 GeV/c FLUKA hadron yields tend to undershoot the

hadron spectra shown by GHEISHA. At even lower pT some of the FLUKA yields begin to

undershoot the measured hadron spectra at y=3, while the GHEISHA spectra overshoots

the measured PHENIX pion spectra at y=0.
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Figure 5.30: Single package hadron cocktail χ2/NDF for the north arm. The (red) horizontal
lines represent the 90% confidence level for the respective χ2 calculation.
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The approach taken for this analysis is that every combination of GHEISHA and FLUKA

hadron cocktail yields are averaged in this low pT region and the combined 50% FLUKA/50%

GHEISHA yields have their Gap 2 and Gap 4 matching χ2/NDF values calculated. Those

packages, whose input spectra fall inside the “reasonable” absolute boundaries provided by

the PHENIX y=0 and BRAHMS y=3 measurements and whose χ2/NDF values show the

best matching are taken as the best estimation of the background hadron yields at low pT .

Figure 5.32 shows the calculated χ2/NDF plots analogous to Figure 5.30. The combined

package Gap 4 matching and Gap 2 matching shows improvement, although the Gap 2

χ2/NDF values are large (10 to 11) which correspond to about a 10% mismatch from the

data in Gap 2. Since in these low pT regions the overall background source is dominated

by the Gap 4 yield of decay muons, the Gap 4 χ2/NDF matching is considered a more

important indicator of the overall background estimate. A 10% error in the Gap 2 yield is

expected to most directly reflect on the hadron punch through estimate in Gap 4, which is

negligible at the lowest pT compared to the decay muon yields.

The choice of using a 50/50 combination of FLUKA and GHEISHA in the low pT region is

not necessarily the best choice. So long as the input spectra lies inside the absolute bounds

of the y=0 and y=3 measurements, we cannot know with any great precision what the true

weights should be in mixing the GHEISHA and FLUKA estimates. The uncertainty on the

mixed package hadron yields are determined by varying the weights on the linear combi-

nation for 0.3 to 0.7 for each FLUKA and GHEISHA. The corresponding variation in the

yields for this range of weights is determined to be about 8%.

Before publication of these results, this aspect of analysis will be more thoroughly explored.

It is expected that using a gaussian functional fit anchored by the measured spectra at y=0

and y=3 can be used to more tightly constrain the overall input spectra which might require

a linear combination of FLUKA and GHEISHA with uneven weights.

5.6.3 Signal to background

As shown in Equation 5.10, the inverse of the signal to background ratio is a direct multiplier

in the determination of the systematic uncertainty in the single muon yield. The signal to

background for both north and south arm are shown in Figure 5.33.
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Figure 5.32: Two-package averaged hadron cocktail χ2/NDF. The horizontal (red) lines for
both figures represents the 90% confidence level for the given χ2/NDF.
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As mentioned in Section 5.2.5, a near-side z-vertex cut is placed on the lowest three pT

bins. The significantly larger amount of hadron decay muons at large z distances from the

detector means that the near-side z-cut provides approximately a 50% increase in the S/B

in the lowest pT bin. This cut was applied to the three lowest pT bins, which has the effect

of raising the S/B values closer to the (approximately) asymptotic value between 0.4 to 0.5

observed in Figure 5.33. The improvement allows for a significant reduction in the systematic

uncertainties, since the background-to-signal ratio is a direct multiplier to the uncertainty

on Nµ (Eq. 5.10).

The general trend of increasing S/B from low pT to mid pT in Figure 5.33 is expected as the

yield of the dominant low pT background source, namely of hadron decay muons, begins to

wane. The general value of about 0.5 S/B for pT above 2.5 GeV/c implies that the combined

backgrounds of punch-through hadrons and the diminishing amount of muons from hadron

decay equal the expected signal of heavy flavor muons (after all heavy-flavor muon tuned

analysis cuts have been applied). Beyond a pT of about 3 GeV/c, the S/B begins to drop as

the higher pT background estimated by the two-component fit (N2c) of the pδθ distributions

begins to increase, reaching a level of 15-20% in the highest pT bin 4.5-5.0 GeV/c. This is

best typified by the north arm curve, for the south arm experiences a 2σ level statistical

fluctuation in the 3.5-4.0 pT bin. The fluctuation observed in the south arm S/B in this

pT bin is due to an upward fluctuation in the south Gap 3 yield of about 10%. The Gap 3

yield is determined from the 1-Shallow triggered (M1S) data set. The M1S data set contains

about 1/10 the statistics of the 1-Deep triggered (M1D) data set. Since the hadron cocktail

is normalized to match the data yield at Gap 3, the hadron cocktail is normalized “too high.”

This results in an over-subtraction, a slightly lower south arm single muon yield, as well as

a reduced S/B which increases the associated systematic uncertainties. These effects can

be seen in Figure 5.34. If the M1D data set can be used instead for Gap 3 matching, this

problem should be eliminated due to the large increase in available Gap 3 statistics. The

systematic uncertainty associated with the statistical uncertainty in matching the hadron

cocktail to data would also be significantly reduced with the use of the M1D data set for

Gap 3 matching.

5.6.4 Comparison of north and south arm results

The double differential single muon cross section is calculated for both the north and south

arm using the following equation.
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Table 5.4: Combining north and south arm pT spectra systematic uncertainties.

Uncert. Norm. pt. to pt. uncorr. pt. to pt. correlated N/S correlated

σNµ , single muon yield uncertainties

Gap 3 match X No
Hadron package X Yes
Cocktail input X Yes

Gap 4 MuID eff. X No
2-component fit X Yes

σσµ , single muon differential cross section uncertainties

BBC Lum. X Yes
BBC trig bias X Yes

σAεµ , acceptance & efficiency uncertainties

MuTr X No
MuID X No

Run to run X No
Mom. scale X No

d2σµ(pT )

2πpT dpT dη
=

σpp
BBC

εcc̄→µ
BBC

· Nµ

Aεµ

(5.7)

The resulting spectra for both muon arms are plotted together in Figure 5.34. BBC nor-

malization systematic uncertainties of ≈10% are shown as a black band on the vertical axis.

The arm-correlated uncertainties are plotted separately as the grey band to the right of the

data points. Both of these types of systematic uncertainties are separated when comparing

the two arms in order to gauge the agreement between the arms. The systematic uncer-

tainty bands associated with non-arm correlated uncertainties are drawn about the north

and south arm points. The classification of the different uncertainties into normalization,

arm-correlated, and arm non-correlated are summarized in Table 5.4. Following PHENIX

data plotting precedent, the lone point-to-point uncorrelated systematic uncertainty is added

in quadrature with the statistical error bars on the data points. This is done for each arm

independently. The corresponding spectra and assortment of plotted uncertainties for north

and south show good agreement, providing a good level of cross check in the analysis method

since the measurement for each arm is each the result of an essentially independent analysis.
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Figure 5.34: Separate north and south single muon spectra.

5.6.5 Combining the arms into a single pT spectrum

Figure 5.35 shows the North/South combined single muon spectrum, and Table 5.5 presents

the central values with statistical uncertainties as well as the systematic uncertainties as

determined in Section 5.7.

The north and south arm measurements can be combined by averaging the central values, but

care must be taken to properly combine the systematic uncertainties. The total combined

arm systematic uncertainties, σN+S
2

, can be calculated by taking into account both correlated

and uncorrelated uncertainties with the following equation (see Eq. C.11):

σN+S
2

=

√
(σuncor

N )2 + (σuncor
S )2

4
+

(
σcor

S + σcor
N

2

)2

(5.8)

The derivation of this equation is given in Appendix C.5. The right term in the sum is the

average of the correlated errors for each arm. In principle the correlated errors are the same

for both arms. While the values do actually differ at some level due to different signal to

background values which result in numerically different uncertainty values, we argue it is

valid to average the two correlated errors which allows for the straightforward uncertainty
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Figure 5.35: Combined arm single muon spectrum.
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Table 5.5: Numerical values for Fig. 5.35: arm averaged PHENIX Preliminary heavy flavor
single muon (negative charge) pT double differential cross section and uncertainties.

pT Cross section Stat and pt. to pt. uncorrelated Sys. uncertainties
1.12 0.000352 6.63e-06 0.000135
1.36 0.000120 2.57e-06 4.15e-05
1.61 4.72e-05 1.31e-06 1.51e-05
1.86 1.97e-05 6.33e-07 6.65e-06
2.11 9.49e-06 3.82e-07 2.69e-06
2.36 4.67e-06 2.30e-07 1.20e-06
2.61 2.23e-06 1.36e-07 5.93e-07
2.86 1.09e-06 8.32e-08 3.10e-07
3.21 4.96e-07 3.39e-08 1.30e-07
3.72 1.43e-07 1.61e-08 5.04e-08
4.22 5.71e-08 8.38e-09 1.89e-08
4.72 2.47e-08 5.12e-09 7.62e-09

propagation suggested by Equation 5.8. The point-to-point uncorrelated uncertainties re-

main combined with the statistical uncertainty bars, as was done for the individual arm

measurements.

5.7 Systematic uncertainties in the pT spectra

Systematic uncertainties are applied to the single muon pT spectra in two stages. First,

the systematic uncertainties associated with the extraction of the yield of single muons are

discussed in Section 5.7.1. Second, the conversion of the single muon yield to an invariant

cross section involves a separate set of systematic uncertainties that are explicitly shown in

Section 5.7.2. The following shorthand notation for invariant particle yields is used:

Nx ≡
d2Nx(pT )

2πpT dpT dη
.

The details of the exact derivation of the equations are described in Appendix C.

5.7.1 Uncertainty on the yield of single muons, Nµ

A systematic uncertainty is associated with the extraction of the single muon yield:
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Table 5.6: Uncertainties in Nc and N2c. The individual components are added in quadrature
to assign the total values of FNc and FN2c .

FNc

Component north value south value
1. Gap 3 matching hadron cocktail to data f(pT ), from 1% to ≈ 20%
2. FLUKA/GHEISHA hadron package difference f(pT ), no more than 10%
3. Hadron cocktail input, including K/π uncertainty 7%
4. Gap 3 to Gap 4 efficiency matching 6% 9%

FN2c

1. Two-component fit and subtraction taken as 10% for all pT

Nµ = NI −Nc −N2c (5.9)

where NI is the inclusive muon candidate tracks as measured by the PHENIX muon spec-

trometer. Nc is the background yield estimate provided by the hadron cocktail as described

in section 5.3. N2c is the yield of particles comprising an additional high pT background not

estimated by the hadron cocktail (for further details see section 5.4).

The yield of single muons, Nµ, is obtained through the subtraction of two different back-

ground estimates from the inclusive muon candidate track sample, NI , as described in Equa-

tion 5.6. These yields are not acceptance and efficiency corrected. Since the inclusive yield

of candidate muons, NI , is simply the number of candidate muons reaching Gap 4 and sur-

viving analysis cuts, no systematic uncertainty is associated with this yield. The fractional

uncertainty§ on the extracted single muon yield, FNµ , can then be calculated through a

straightforward propagation of errors on Nc and N2c (see Eq. C.5 in Appendix C).

FNµ =

√(
FNc ·

Nc

Nµ

)2

+

(
FN2c ·

N2c

Nµ

)2

(5.10)

Uncertainties associated with the extraction of Nc and N2c are listed in Table 5.6.

§Fractional in the sense that they can be expressed in terms of a percentage.
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Table 5.7: Uncertainties in the single muon differential cross section, σµ. The individual
components are added in quadrature to assign the total value of σσµ

σσµ

Component Value
σNµ uncertainty in single muon yield as determined in Table 5.6

σσBBC
Uncertainty in σpp

BBC 9.6%
σεBBC

Uncertainty in BBC trigger bias 2.5%
σAεµ Acceptance and efficiency correction as determined in Table 5.8

5.7.2 Uncertainty on the single muon differential cross section

A systematic uncertainty is calculated for the single muon double differential cross section

from the following equation:

d2σµ(pT )

2πpT dpT dη
=

σpp
BBC

εcc̄→µ
BBC

· Nµ

Aεµ

(5.11)

where σpp
BBC is the cross section of the BBC trigger for p+p interactions and εcc̄→µ

BBC is the

efficiency of the BBC trigger for events in which a charm quark is created and decays into a

muon. Aεµ is the acceptance times efficiency correction factor for muons reaching Gap 4 of

the MuID (Section 5.5).

Once Nµ is determined, the systematic uncertainty on the single muon differential cross

section is determined by propagating uncertainties in equation 5.11.

σσµ =
√

σ2
Nµ

+ σ2
σBBC

+ σ2
εBBC

+ σ2
Aεµ

. (5.12)

Determination of σAεµ

As indicated in Table 5.7, the systematic uncertainty associated with the acceptance and

efficiency corrections is the quadratic sum of the four components given in Table 5.8. For

this uncertainty the same values are used for both arms.
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Table 5.8: Uncertainties in the acceptance and efficiency corrections. The individual com-
ponents are added in quadrature to assign the total value of σAε

σAε

Component Value
σMuTR φ-distributions for MuTR station data/MC comparison 8%
σMuID MuID Gap 4 efficiency uncertainty 4.5%

σrun to run Run to run variation 2%
σp−scale J/Ψ mass peak 1.5%

5.8 Integrating single lepton spectra for pT > 1.0 GeV/c

This section describes how the single lepton data is integrated, with the results shown in

Figure 6.6. The procedure is outlined with some detail since it is also used in the explo-

ration of the nature of the theoretical uncertainty ultimately assigned to dσcc̄/dy located in

Section 5.10.4.

5.8.1 General notes on the integration of the pT lepton spectra

All integrations performed in this analysis are over discrete arrays of finite bin width. The

points used in the integration of the data spectra is determined by the measured pT bins.

The integration of theoretical curves is determined strickly by the theoretical points made

available to me. Two classes of theoretical curves are used in this analysis. The first class is

comprised of the central, upper bound, and lower bound FONLL curves which are calculated

with a pT bin width of 0.05 GeV/c from infinity (around 10.0 GeV/c to zero). This first class

of curves are the theoretical calculations used to extract the integrated charm quark cross

section as well as the theoretical uncertainty component used in the determination of the

upper and lower systematic uncertainties on the charm quark estimate. A second set of “non-

standard” FONLL curves corresponding to a collection of different theoretical parameters

were obtained. These curves are used to explore the impact of theoretical parameter choices

on the predicted spectral shape and are discussed further in Section [refsec:vogtcurves].
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5.8.2 How much of the integrated cross section is sampled for

pT >1.0 GeV/c?

The single lepton pT spectra measured by PHENIX at both mid and forward rapidity is

measured above some lower bound in transverse momentum. The minimum pT sampled

in the muon arms is higher than that of the central arms (pT =1.0 GeV/c versus pT =0.35

GeV/c) due to the large amount of steel (more than one meter) in between the interaction

point and the deepest sensitive layer of the Muon Identifier. The PHENIX mid-rapidity

single electron analyses measure as low as pT = 0.35 GeV/c, while the single muon analysis

measures muons with a pT as low as 1.0 GeV/c. Due to the exponentially falling shape of

the curves, the total integral of the single lepton cross section is dominated by the low pT

portion of the curve. This effect is shown in Figure 5.36 which depicts a one minus the

cumulative distribution normalized to a total integral of one. The FONLL central curve at

〈y〉 = 1.65 is used to make the comparison because the points can be extended to pT zero.

An integral from infinity (which for all intents and purposes can be taken to be pT = 5.0

GeV/c) will contain 100% of the curve’s integral. To approximate the fraction of the total

lepton cross section sampled in the single muon measurement, we integrate over the pT region

1.0 to ∞ GeV/c, which amounts roughly to 6% (large, red dotted line in Figure 5.36). This

can be compared to the roughly 50% fraction sampled in the single electron measurement

from pT region 0.35 to ∞ GeV/c (fine black dashed line in Figure 5.36).

5.8.3 Integration of the lepton spectra

Two methods are used to cross check the integration of the pT binned spectra. Simpson’s

method and a piecewise fit over a sub-region of the pT spectra are used. Once the accuracy

of the fitting technique was verified to match the results obtained via Simpson’s method

(� 1% match), the fitting technique was used to integrate both the data and theory curves

using the same algorithm.

The numerical integration of the discrete spectra points is performed using Simpson’s rule

which uses smooth quadratic interpolation to perform integration:

∫ pb
T

pa
T

f(pT )dpT ≈
pb

T − pa
T

6

[
f(pa

T ) + 4f(
pb

T + pa
T

2
) + f(pb

T )

]
(5.13)
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Figure 5.36: One minus the cumulative integral distribution for FONLL central charm curve
[20]. This curve illustrates the fraction of the integrated pT spectra sampled from infinity
to some minimum pT The dashed (red) line corresponds to the single muon acceptance for
pT > 1.0 GeV/c and the dotted (black) line corresponds to the PHENIX single electron
measurement for pT > 0.35 GeV/c.
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Figure 5.37: Example of piecewise fit of exponential to a sub-region of the pT spectra. The
solid blue region illustrates the region used to estimate the integral in the given pT region.

where a and b effectively represent two successive pT bins. The choice of the term f(
pb

T +pa
T

2
)

is perhaps the only ambiguous aspect of this method. For functions that fall as steeply

as the power-law type functions, taking the average between the two data points may not

be sufficient. Using a fit over a sub-region of the data points and using the fit function to

provide the term f(
pb

T +pa
T

2
) results in a Simpson’s Rule integral estimate that matches the

integral obtained by an exponential fit over sub-regions of the data as described in the next.

This technique is verified by integrating with a piecewise exponential fit over sub-regions

in pT . The integrals of each of the pT bins are then evaluated and summed to provide the

total integral. Figure 5.37 illustrates an example fit. The fit is performed using a two pa-

rameter exponential function. For data where statistical errors are present they are used in

the fit procedure, where for the theoretical curves no errors are used in the fit. The choice

of fitting pT sub-regions is motivated by the difficulty in fitting a power-law pT spectra with

a single function over a large region in pT . Figure 5.37 shows the fit and integration for the

single electron 1.0 ≤ pT ≤ 1.2 region, which has larger statistical errors at pT ≈ 1.0 GeV/c

than at higher pT due to the lower converter run sampled luminosity used at low pT .

5.8.4 Statistical errors on the integrated lepton spectra

The statistical errors assigned to the integrated cross section are calculated by summing

the statistical errors of each data bin in quadrature. This summed statistical error can be

stated in terms of a fractional error. The same statistical fractional error is then assigned

to the value of the integral determined from the successive fit of pT bins, as described in the
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previous section. Other approaches to assigning the integral’s statistical errors such as using

the error associated with the integral (based on the fit function errors) were dabbled with

but ultimately abandoned due to possible bin-to-bin correlations in the error since each pT

point is used in up to three fits.

5.8.5 Systematic uncertainties of the pT > 1.0 GeV/c integrated

lepton spectra

The systematic uncertainties in the integrated lepton spectra are the sum of systematic un-

certainties for all pT bins included in the integration multiplied by the width of the particular

pT bin in question.

5.9 Methodology for the extraction of dσcc̄/dy |y=1.65

Results from this section are discussed in Section 6.2. dσcc̄/dy from heavy flavor single

leptons is determined using the following formula:

dσcc̄/dy =
1

BR(c → µ)
· 1

Ce/D

· dσµ

dy
. (5.14)

BR(c → µ) is the total muon branching ratio of charm. This number is fixed in the FONLL

scheme to be 0.103. Ce/D is a kinematical correction factor to account for the different in

the rapidity distributions of leptons and D mesons. dσµ/dy is the integrated cross section

of single leptons over all pT that is extrapolated from the lowest measured pT to 0 GeV/c

using a model (FONLL in this case). Details for the determination of dσµ/dy are described

in Section 5.9.1. The BR is determined from measured data, though the value used by

FONLL for this analysis differs slightly from the standard value¶, and Ce/D is determined

as described in Section 5.9.3.

For the single muon rapidity window of 1.4≤| y |≤ 1.9, the mean rapidity is 〈y〉=1.65.

The single muon pT spectra used in this analysis is combined from separate single muon

measurements at both forward and backward rapidity. While the single muons are measured

at both y=1.65 and y=-1.65 this combined spectra is used to determine a single value of

dσ/dy. As a convention we plot the y=-1.65 point as a solid point and the y=1.65 as a

¶See for instance [15].
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hollow point to serve as a reminder that the muons are measured in two rapidity bins but

the value is determined from a single source.

5.9.1 Extrapolating the measurement for pT < 1.0 GeV/c

This section describes the procedure used to integrate the single muon pT spectra at y=1.65.

This technique can be described using a single formula:

dσcc̄/dy |PHENIX
i = dσcc̄/dy |FONLL

i · ScaleFONLL
i (5.15)

where the ith FONLL case corresponds to a particular pT spectra obtained from a choice of

theoretical parameters‖. The FONLL pT spectra (in E d3σ
dp3 form), is fit to data to determine

the value of ScaleFONLL. The value of dσcc̄/dy |FONLL (taken from the distribution in Fig-

ure 2.8) for the particular FONLL case is then multiplied with the ScaleFONLL to determine

dσcc̄/dy |PHENIX . While the procedure is straightforward, for clarity we step through a

single example using a test FONLL case. The bottom component is currently ignored in

this analysis. Inclusion of the bottom component in this analysis will decrease the extracted

cross charm cross section by just a few percent based on some initial studies.

Determination of a particular scale factor, ScaleFONLL
i

The data (Fig. 5.35) and FONLL central charm points are plotted together in the top panel

of Figure 5.38. The basic spectral shape observed in the data approximately matches that

of FONLL charm, with the data curve lying roughly a factor of four above the FONLL

central charm prediction. The lower panel of Figure 5.38 shows the ratio of data to FONLL

charm , with a constant fit to the data to FONLL charm ratio, which in this particular

case corresponds to a constant factor of 4.22. The observed spectral shape agreement after

scaling is on the order of 10% over all pT , with 5% agreement for pT < 2.0 GeV/c. The final

scale factors used to to determine the charm cross section are listed in Table 5.9.

5.9.2 Procedure for determination of dσcc̄/dy at y=1.65

The invariant E d3σ
dp3 spectra of single muons is now converted to an integrated charm quark

cross section, dσcc̄

dy
|y=1.65. Theoretical curves dσ

dpT dy
are used to extrapolate the lepton spectra

for 0.0 pT < pmin
T , and the resulting integrated lepton spectra can then be used to determine

‖This includes quark mass, normalization and factorization scales, parton distribution functions, frag-
mentation schemes.
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Figure 5.38: Data (Fig. 5.35) and unscaled FONLL charm spectrum only (upper panel);
ratio of Data to FONLL with constant fit (lower panel). See text for additional details.
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Table 5.9: Derived FONLL normalization scales that fit the FONLL lepton spectra to data
for y=0 and y=1.65.

y central FONLL scale upper FONLL scale lower FONLL scale
0 1.44 0.80 2.43

1.65 3.57 1.77 7.11

dσ
dy
|y=1.65 for charm quarks.

The particular extrapolation technique from the minimum measured transverse momen-

tum, pmin
T , to zero can be performed a few different ways. The integration is performed over

pT , converting the dσ/(dpT dy) spectral distribution over a certain pT and rapidity window

to a single dσ/dy point which corresponds to the 〈y〉 of the rapidity window. The follow-

ing steps describe the particular extrapolation procedure performed in this analysis. Since

at this point the discussion assumes the identification of single muons, the experimentally

determined η is now equated to y.

1. The pT data points above a certain minimum is converted from an invariant differential

cross section, E d3σ
dp3 into a cross section of the form dσ

dpT dy
|pT >1.0 by multiplying each

point by 2π 〈pT 〉. For the single muon spectra used in this note, dy=0.5 since the

analysis measures muons with 1.4 ≤| y |≤ 1.9.

2. The dσ
dpT dy

|pT >1.0 is extrapolated to a pT of zero using a theoretical curve. Since the

spectral shapes of the data and theory show good agreement but with a sizable differ-

ence in overall normalization, the theory curve is fit to data to obtain a normalization

scale factor, Scaletheory.

3. For a particular theoretical Scaletheory · dσ
dy
|y=1.65 provides the predicted charm quark

cross section. The details of the fragmentation used in the calculation along with

the branching ratio of C to D is provided by the particular theoretical curve and its

corresponding value of dσ
dy

.

5.9.3 The rapidity broadening of leptons from D mesons

Relative to light quark fragmentation, heavy flavor quark fragmentation is harder, meaning

that the resulting heavy flavor mesons retain a large fraction of the momentum of the origi-

nal heavy quark [15]. Single leptons that result from the heavy flavor meson decay, such as
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Figure 5.39: FONLL lepton/D ratio vs. y [113].

D → Kµνµ for instance, share the momentum fraction with the sibling light hadrons (and

neutrinos). As a consequence of this indirect observation of heavy flavor mesons, the mea-

sured momentum of the single leptons is reduced relative to the parent D, and the rapidity

distribution of the leptons relative to the parent D is broader. While it is not experimen-

tally possible to compare these distributions from data, they can be made using FONLL

(or PYTHIA, etc.) as seen in Figure 5.39 [113]. For the mass scale of the calculation, the

electron and muon mass are negligible and are treated as equivalent “leptons”.

A clear broadening of the lepton rapidity distribution (solid line) relative to that of the D-

meson distribution (dashed line) is shown in the left plot. The ratio of lepton/D of the two

distributions, shown in Figure 5.39(b), shows that on average in this analysis’ rapidity region

of 1.4 ≤| y |≤ 1.9, electrons have a slightly smaller rapidity value than D’s in the same region

(black line at 0.965). To extract an integrated charm cross section from a single lepton pT

spectra in a particular rapidity bin, this kinematic factor, Ce/D=0.965 should be applied to

the final dσcc̄/dy value to account for the difference in the shape of the measured distribution

and the expected charm meson distribution. Due to the uncertainty in the generation of

leptons (which is based on electron spectra) in FONLL, this rapidity broadening correction

is not applied in the presented results, but this correction should be applied at some future

date.
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5.10 Systematic uncertainties on dσcc̄/dy

Two systematic uncertainties are considered for the dσcc̄/dy|y=1.65 points: data systematic

uncertainties and theoretical (FONLL) uncertainties. These two quantities are then added

in quadrature to represent the systematic uncertainty in the extracted dσcc̄/dy value.

5.10.1 Data systematic uncertainties

The data associated systematic uncertainty for dσcc̄/dy|y=1.65 is obtained from the single

muon pT spectrum systematic uncertainties as described in Section 5.7. These systematic

uncertainties are determined for the dσcc̄/dy|y=1.65 by fitting the upper and lower data

systematic uncertainty bounds of the pT spectrum with the FONLL central value spectrum.

The variation in the extracted fit scale value due to data systematic uncertainties amounts

to approximately 35%.

5.10.2 Theoretical systematic uncertainties

Both the FONLL dσlepton/dpT and dσcc̄/dy curves are provided with both upper and lower

theoretical uncertainty bands. As understood from a reading of FONLL papers, the un-

certainty bands take into account scale and mass variation. Other uncertainties such as

fragmentation and parton distribution functions (PDFs) are small in comparison to the

dominant scale and mass choice uncertainties. These theoretical uncertainty bands then

represent the envelope of upper and lower bounds achieved by varying the scale and mass

choice as described in [114]. While not strictly correct, these upper and lower uncertainty

bands are used in this analysis as corresponding to 1-σ errors. The choice of using the FONLL

uncertainty bands as 1-σ errors has been shown to be slightly more conservative than an

alternative approach explored in this analysis that uses different FONLL spectra “cases”

calculated from differing parameter sets. This side study is described in Section 5.10.4.

5.10.3 Total systematic uncertainty of dσcc̄/dy at y=1.65

The final systematic uncertainty used in the results is assigned by adding in quadrature both

the data and theoretical systematic uncertainties as determined in the previous two sections:

σsys.total =
√

σ2
data sys. + σ2

theo.sys.. (5.16)
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Based on the scale factors in Table 5.9 of the FONLL spectrum fit the measured single muon

spectrum (shown in Figure 5.38), the value for dσcc̄/dy|y=1.65 is determined to be 0.145 ±
0.0016 (stat.) +0.062

−0.072 (syst.) mb, or in terms of percentages the uncertainties are ± 1.1%

(stat.) +42.7%
−49.8% (syst.).

5.10.4 Exploring the theoretical systematic uncertainty by varia-

tions in FONLL parameters

Disclaimer: Any cross sections or plots derived in this section do not contribute directly to

any results presented in this dissertation. However, this section does present a study that

investigates the systematic uncertainty in the FONLL theoretical curves not taken directly

from the provided upper and lower systematic uncertainty bounds.

The upper and lower FONLL theoretical bounds on the central dσlepton/dpT correspond to

an envelope of spectra predictions resulting from a matrix of different FONLL calculations,

with each calculation “case” corresponding to a particular choice of calculation parameters.

The upper and lower theoretical bounds are constructed in this fashion primarily because

there is not a single “best” choice of parameters. Ultimately, the “best” choice to evaluate

a given FONLL parameter set with would be a precise measurement, the best currently

available being the PHENIX single electron measurement with systematic uncertainties of

about 10% averaged across all pT . Regardless, there still remains some uncertainty in pa-

rameter choices, particularly in the quark mass, a direct input to the calculation, as well as

the calculation scale choices (µR and µF ).

This unavoidable uncertainty in calculation parameter choices can be further understood

by taking the example of two different FONLL calculations resulting from two different scale

choices (all other parameters being the same for both). It is possible that the two scale

choices result in dσlepton/dpT curves that cross one another at some pT . It is possible that

neither of the theoretical spectra will match the data at all pT . One curve may best match

the data at high pT , while the other curve matches best at low pT . While not currently

available, it is possible that a higher order calculation beyond the existing FONLL (NLO

+NLL) would shed some light on the best possible choice of theoretical parameters to use to

provide a “best” single theoretical curve. The list of possible modifiable parameters in the

context of the FONLL calculation are listed in Table 5.10.
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Table 5.10: Modifiable parameters in FONLL with the range of upper and lower values used
in this study of 11 FONLL“cases”. Note: µ0 = mT =

√
m2 + p2

T .

parameter central value variation comment
quark mass 1.5 GeV 1.3 -1.7 GeV smaller mass → more produced

bottom mass 4.75 GeV 4.5 -5.0 GeV not included in current analysis
µF µ0 µF < 2µ0 require: 1/2 < µR/µF < 2
µR µ0 µR > µ0/2 require: 1/2 < µR/µF < 2

PDF CTEQ6M n/a not currently varied
Frag. Func. default n/a not currently varied

It is also important to distinguish between real physics inputs, such as quark mass, from

more artificial parameters such as the scale choices because each parameter may differently

effect dσ/dpT and dσ/dy. The mass choice matters less at high pT than at low pT , so pos-

sessing a measurement of only some region of pT will prohibit constraining the mass at all pT .

For a matrix of FONLL dσleptons/dpT curves at y=1.65, such as those listed in Table 5.11,

each of the cases will have a corresponding dσcc̄/dy. The same procedure using Equation 5.15

of scaling each FONLL spectra to fit data could be performed to arrive at a dσcc̄/dy for each

case. This would provide a comprehensive mapping of the associated systematic uncertain-

ties.

Some caveats on the curves used in this study

A basic assumption of this methodology is that each FONLL case would have a correspond-

ing ScaleFONLL and dσcc̄/dy |FONLL which are consistent with one another. The exact choice

of which FONLL cases/ parameter sets to used in the analysis was determined by Romona

Vogt, who provided the calculations in a private communication. Additionally, several cal-

culations were also provided by Matteo Cacciari through private communication to assist in

this analysis.

The dσlepton/dpT curves used in this study have a minimum pT of 0.25 (our request of

curves that extend to pT =0.0 GeV/c is pending). In terms of a cumulative integral plot this

corresponds to approximately 75% of the total integral in pT . In order to use these FONLL

lepton curves they must be extrapolated to pT =0.0 GeV/c in some way in order to produce

the needed dσlepton/dy curve that is used to obtain the dσcc̄/dy value. A central FONLL
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Table 5.11: FONLL “cases” at y=1.65. The derived dσcc̄/dy are plotted collectively in
Figure 5.42.

number Norm. scale to data dσlepton/dy (mb) dσcc̄/dy (mb) comments
0 3.58 4.09e-3 0.142 central, µ0, mc=1.5
1 6.87 1.44e-3 0.096 lower envelope bound
2 1.69 1.05e-2 0.172 upper envelope bound
3 5.04 2.67e-3 0.130 µ0, mc=1.7
4 2.41 6.33e-3 0.148 µ0, mc=1.3
5 2.17 5.52e-3 0.117 µR = µF = 0.5µ0

6 4.45 1.90e-3 0.082 µF = 0.5µ0, µR = µ0

7 1.79 1.01e-2 0.175 µF = µ0, µR = 0.5µ0

8 5.24 3.27e-3 0.166 µR = µF = 2µ0

9 3.27 5.56e-3 0.177 µF = 2µ0, µR = µ0

10 5.74 2.34e-3 0.131 µF = µ0, µR = 2µ0
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dσlepton/dpT calculation was obtained with ∆pT =0.05 GeV/c that extends to pT =0.0 GeV/c.

This curve is used to extrapolate all eleven test curves to zero. The integral below pT =0.25

GeV/c for the ith curve, denoted as NpT <0.25
i , is estimated the following way:

NpT <0.25
i =

fi(pT = 0.25)

f0(pT = 0.25)
·NpT <0.25

0 (5.17)

where fi is the value of the particular dσlepton/dpT curve, N0 and f0 denote the integral

and value of the central dσlepton/dpT curve, respectively. This approach is vulnerable to

differences in the shape of the different dσlepton/dpT curves below pT =0.25 GeV/c. If a 30%

error in the extrapolation of the integral for pT < 0.25 is possible, and the corresponding

fraction of the total integral for pT < 0.25 is approximately 30%, then the expected error

on the extrapolation is 9%. While an error of this size is not negligible, it is small enough

to proceed with this exploratory analysis with the expectation that additional dσlepton/dpT

curves that extend to zero will be obtained. It is also hoped that additional curves that

vary PDF and fragmentation functions can also be obtained. For the present analysis, three

theoretical parameters are varied, mass, µF , and µR, and even for these parameters the mass

is not varied for each choice of µF and µR. Nonetheless, this procedure will still be able to

explore some meaningful portion of the FONLL uncertainty phase space, since the parameter

choices presented correspond closely to those used by the FONLL authors to define the upper

and lower FONLL uncertainty bounds.

Results from the examination of 11 different FONLL cases

Figure 5.40 plots each of the FONLL dσlepton/dpT vs. pT (in units of GeV/c) distributions

relative to the central FONLL distribution. Each panel corresponds to a different parameter

set (with the curve number starting at zero in the upper left plot and increasing moving to

the right). The ratio of each curve relative to the central FONLL curve is shown in the lower

plot of each panel. The absolute variation in the normalization and shape of the pT spectra

is observed to vary by as much as a factor of 2.5.

The different FONLL dσlepton/dpT parameter sets are listed in Table 5.11.

Figure 5.42 shows the derived dσcc̄/dy for each of the FONLL parameter sets. The variation

in the distribution of these points corresponds approximately to the upper and lower FONLL

points (curves 1 and 2). Based on the pT spectral shape matching observed in Figure 5.41,
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Figure 5.40: Variation of the different FONLL dσlepton/dpT vs. pT (in units of GeV/c)
distributions relative to the central FONLL prediction.
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Figure 5.41: Upper panel: Each FONLL curve corresponding to a particular parameter set
(Table 5.11) is scaled according to the data matching normalization scale determined by fit.
The data is also plotted (blue points). Lower panel: The ratio of each FONLL case is plotted
relative to the central FONLL curve (red line). The ratio of the data to the FONLL central
curve is also plotted.

183



y 
-3 -2 -1 0 1 2 3 4 5

 /d
y 

(m
b)

cc
!d

0

0.05

0.1

0.15

0.2

0.25
PYTHIA
(ppg057 Case 1)

FONLL

curve 0
curve 1
curve 2
curve 3
curve 4
curve 5
curve 6
curve 7
curve 8
curve 9
curve 10
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taking the upper and lower FONLL bounds to serve as 1-σ uncertainty bands to the FONLL

central curve is determined to be a reasonable approach, if not absolutely rigorous.
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Chapter 6

Results and Discussion

There are two primary physics results from this research: 1) the heavy flavor single muon pT

spectra at y=1.65, and 2) the integrated charm cross section, dσcc̄/dy, calculated from the

measured pT spectra. These two single muon results address multiple issues in the context

of the RHIC charm program, which indeed follow-through on the goals and ideals listed in

Section 1.1:

• This research has produced a coherent framework for PHENIX to make single muon

measurements with substantially reduced and better understood levels of background.

It has opened the door to multiple PHENIX single muon measurements that are now

nearing completion. In addition, a robust, compact software and data format have

been developed to enable this analysis. This framework has now been adopted by

multiple colleagues within PHENIX. Analysis techniques developed in the course of

this research have been used for analyses of unpolarized p + p data, polarized p + p

“spin” results, Cu + Cu data, and Au + Au data. This research is the first PHENIX

analysis and the first dissertation (of a least several to come) to employ these extensive

developments. In the development of this analysis method, numerous pitfalls and

oversights in past methods were identified and remedied. Multiple technical notes

and internal presentations and maintenance of the code in a versioning system have

documented and archived these developments for colleagues.

• This measurement provides a test of pQCD calculations for charm production at for-

ward rapidity and large
√

s —a relatively unexplored region of phase space where

little other experimental data is available. Theoretical understanding of charm, and

to a lesser extent, bottom production is plagued by currently irreducible uncertainties
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√

s=200 GeV for electrons
of y <1.5 and muons of y >1.5 [115]. An analogous plot for open charm is one of the goals
of the single muon measurement.

due in part to renormalization and factorization scale dependences and uncertain-

ties in gluon parton densities. While charm rapidity cross sections are expected to

follow a Gaussian distribution, the exact nature of the total charm cross section is un-

known. The rapidity evolution for charmonium (J/Ψ) has been measured by PHENIX

at both mid and forward rapidity (Figure 6.1) [115]. The observed charmonium rapid-

ity distribution is not reproduced by a non-relativistic QCD model (dashed curve) or

a pQCD calculation (dash-dot curve) and is best described by a double Gaussian (dot-

dot curve) that is not well motivated theoretically∗. The charmonium cross section

represents roughly 1% of the total charm cross section. Also of great interest is the

rapidity distribution observed for the total charm cross section, which is better studied

through open charm measurements that constitute the bulk of the total charm cross

section. This research provides a test of the FONLL predictions, and has provided

useful feedback to a particular FONLL calculation framework.

• This measurement provides a further test with different techniques and observables to

address the current discrepancy between the measured charm cross sections of PHENIX

and STAR, which currently differ by a factor of two. The discrepancy has persisted for

several years over multiple measurements. The large uncertainties in the theoretical

predictions preclude theory from clarifying this issue, and the protracted discrepancy

has cast a pall, in general, over the charm measurements at RHIC. A PHENIX single

∗References to the specific models in the Figure can be found in [115].
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muon measurement with sufficiently small systematic uncertainties could help resolve

what has become by 2008 an experimental impasse.

• This single muon measurement in p + p collisions provides a critical baseline measure-

ment for heavy-ion collisions, such as Au+Au and Cu+Cu which explore “hot” nuclear

matter, as well as in asymmetric d+Au collisions which permit the study of so-called

“cold” nuclear matter effects. Future PHENIX single muon measurements in these

collision systems will form a nuclear modification factor, RAA, plots (see Equation 1.5

and Figure 1.6) using the p+p single muon spectra presented in this dissertation to

normalize the distributions. Deviations of RAA from unity in both hot and cold nuclear

matter for charm production will provide further insight into the nuclear environment

at RHIC.

• This single muon measurement can impose (still quite loose) constraints on recombi-

nation models. The potential suppression of the J/Ψ in a deconfined state of matter

(QGP) was one of the driving physics signals in the early RHIC program. To date,

experimental results have not provided a clear understanding of possible J/Ψ sup-

pression. In models [116, 117] for J/Ψ dissociation and recombination in heavy-ion

collisions, the magnitude of J/Ψ recombination is controlled by the total charm cross

section in p+p collisions.

• This research extends the pT reach of the first PHENIX single muon heavy flavor

measurement [70] from 3.0 to 5.0 Gev/c with significantly improved statistics (factor

of ∼100) and reduced systematic uncertainties (∼30% smaller).

The discussion is broken into two sections, first for the pT spectra and then for the integrated

spectra.

6.1 Single muon pT spectra in p+p collisions

After background subtraction and applying the necessary correction factors described in

Chapter 5, the invariant cross section, Ed3σµ/dp3, as a function of pT for 1.0 ≤ pT ≤ 5.0

GeV/c (Figure 5.35) single muons resulting from the semi-leptonic decay of heavy flavor

mesons is found. A comparison plot to the Run 2 single muon result can be found in Ap-

pendix B.

Figure 6.2 shows a comparison of the Run 5 p+p PHENIX single muon spectra (blue solid
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points) to a FONLL calculation [20] (solid black line) with 〈y〉=1.65 averaged over the bin

1.4 ≤ | y | ≤ 1.9. The charm and bottom components of FONLL are shown (dashed blue

and red lines, respectively). Systematic uncertainty in the data is represented with solid blue

bands, and in the lower plot, the FONLL uncertainty is indicated by the upper and lower

theoretical uncertainty bands (solid lines).

As discussed in Chapter 2, the central FONLL curve is determined by a certain parameter

choice for the renormalization/factorization scales and quark mass in the context of a NLO +

Next-to-Leading-Log pQCD calculation. The upper and lower theoretical uncertainty bands

do not represent Gaussian errors, rather the envelope of possible curves obtained through a

systematic variation of the quark mass and the renormalization and factorization scales. The

band represents an approximately flat probability region with a high probability of contain-

ing the correct calculation [43]. While the uncertainty band defined by the upper and lower

theoretical bounds are possibly more conservative than an expected 1-σ uncertainty on the

parameter choices. It should also be noted that the FONLL upper and lower limits exclude

variations due to fragmentation and parton distribution function choices, which are expected

to contribute relatively less theoretical uncertainty than the mass and scale choices [67].

In the comparison between the measured single muon spectra and FONLL shown in Fig-

ure 6.2, the data lies a factor of ∼3.5 to 4 above the central FONLL curve at low pT , with

the difference decreasing to a factor of two above for pT > 3.0 GeV/c, which happens to

correspond to the charm to bottom crossover region. While the single muon data points

lie clearly above the theory, the uncertainties in both the data points (30-40%) and in the

theory band (∼50%) are such that this single muon measurement is consistent with the the-

oretical calculation at almost a 1σ level. However, the size of the systematic uncertainties

preclude this single muon measurement from resolving the STAR/PHENIX single electron

discrepancy. The extent of the systematic uncertainties also do not allow this measurement

to constrain any of the pQCD parameter choices used in the FONLL calculation, such as

the charm quark mass or the renormalization or factorization scale choices.

The observed ratio in the lower plot of Figure 6.2 between the single muon spectra and

FONLL calculation is greatest for pT < 3.5 GeV/c. There are two possible reasons for the

increased discrepancy at pT <3.5 GeV/c, one experimental and one theoretical. Firstly, as

shown in the top panel of Figure 6.2, below this pT the contribution from charm dominates

that of bottom. While the theoretical footing of bottom production is quite solid, [81, 83]
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charm production retains large theoretical uncertainties. If one assumes that the bottom pro-

duction is sufficiently described in pQCD, fixing the bottom contribution and allowing the

charm contribution to change can accommodate some of the observed discrepancy, though

the size of the uncertainties on the data precludes drawing precise conclusions from such an

exercise.

The second likely reason for the increase in the difference between the single muon and

FONLL pT spectra at low pT is strictly related to the data analysis. With a signal/background

(S/B) ratio between 0.3 and 0.4 in this pT region, just a 10% underestimation of the true

background component will result in a mistaken increase of the extracted signal by about

one-third. This is the single greatest contributor to the systematic uncertainty bands shown

Figures 6.2 and 6.4, where the inverse of the S/B enters as a direct multiplier in deter-

mination of the final systematic uncertainties. While both explanations may contribute to

the observed difference between FONLL and data at low pT , the experimental uncertainties

must be reduced in order to provide better theoretical constraints. Suppressing all reducible

systematic uncertainties associated with this single muon analysis and improving the S/B at

low pT through an optimization of the “near-side z-vertex” may permit an overall reduction

to ∼25% at lower pT . From experience, this number represents the rock-bottom possible

uncertainties with the given detector configuration. Even with these reduced uncertainties

of order 25%, it is unclear how much constraint this idealized measurement would provide

to theoretical inputs, such as renormalization/factorization scale choices. Nonetheless, com-

parisons of this single muon spectra to other single-lepton heavy flavor measurements at

RHIC can also shed some light onto the current experimental situation. It is also of note

that planned detector upgrades for both PHENIX and STAR will, if successful, provide dra-

matic improvements over the existing capabilities for heavy flavor measurements starting in

2011-2012.

The most precise charm measurement at RHIC to date is the PHENIX single electron mea-

surement [26] at | y |≤ 0.35. With clear electron identification and the measurement of the

primary background source of electrons from photon conversion, heavy flavor “non-photonic”

electrons are measured over 0.3 ≤ pT ≤ 9 GeV/c with an average systematic uncertainty

on the order of 15%. This spectra is compared to FONLL in Figure 6.3. The data points

are shown as circles (red) with yellow systematic uncertainty bands. The measured single

electron spectra resides within the FONLL uncertainty bands for pT <2 GeV/c and rides

along the upper edge of the uncertainty band for higher pT . Within the experimental and
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theoretical uncertainties the PHENIX single electron spectra is consistent with the FONLL

curve, though systematically higher by a fit-to-constant value of ∼1.7.

In comparing two pT spectra, one at mid-rapidity and one at forward rapidity, two trends are

expected. First, if one chooses to take the pT spectra defined as dσ/dpT dη and integrate over

pT to obtain dσ/dη distributions, the distribution is expected to be Gaussian, reflecting the

expected charm distribution. With this standard assumption pT spectra at forward rapidity

should should be below an equivalent measurement at forward rapidity. Second, owing to

kinematic reasons, the pT spectra at y=1.65 are expected to be softer than the y=0 spectra.

Figure 6.4 highlights both of these trends.

In the top plot of Figure 6.4, the single muon spectra (blue stars) at y=1.65 is compared to

the PHENIX single electron spectra (open circles) at y=0. The y=1.65 spectra does exhibit

the expected softening relative to the y=0 spectra. In the bottom plot of Figure 6.4 the

ratio for dσ/dpT of y=1.65/y=0 is shown for the measured spectra (closed circles) as well

as for the predicted FONLL lepton spectra (pink band). Here the behavior of the y=1.65

spectra runs counter to naive expectations, with values at low pT exceeding the y=0 spectra

and for pT >3.0 GeV the data y=1.65/y=0 ratio is closer to the rapidity evolution predicted

by FONLL.

Chapter 3 already discussed some of the STAR heavy flavor results measurements at mid-

rapidity, including direct measurements of D mesons and single electrons [27,88]. Figure 3.7

taken from [88] compares the STAR single electron spectra and D spectra to the PHENIX

single electron spectra using FONLL as the common baseline reference. The discrepancy

between PHENIX and STAR single electron spectra is well known, with the STAR measure-

ment effectively a factor of two above that of PHENIX for all pT . A combined straight line

fit to the STAR D and single electron measurements results in a fit-to-constant value of 5.5

± 0.8(stat.) ± 1.7 (sys.) above the central FONLL prediction.

Figure 6.5 adds this dissertation’s single muon result at 〈y〉=1.65 to the data compar-

isons made previously to FONLL calculations in Figure 3.7. The FONLL calculation used

here [113] differs from that in the published comparison in Figure 6.3. The difference between

the two calculations concerns how the fragmentation is done [118]. The fragmentation in [20]

circa 2005 differs from the current FONLL implementation in that the fragmentation of the

charm quark now uses “pT -scaling” rather than “p-scaling”. The difference manifests itself
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in the rapidity distribution of the charm meson. Where before the p-scaling approach caused

the charm mesons to have a more narrow rapidity distribution than the charm quarks, the

pT -scaling results in the charm mesons having essentially the same rapidity distribution as

the quarks, which is certainly a more physical result since the charm mesons will have a

broader rapidity distribution due to momentum “smearing” in the fragmentation process.

The effect of this change on the pT spectra can be seen by comparing the original PHENIX

single electron ratio to FONLL in Figure 6.3 and Figure 6.5 which is to harden the FONLL

calculation at large pT while slightly suppressing the spectra for pT <1.0 GeV/c. This overall

flattening of ratio of the PHENIX data to FONLL raises slightly the fit-to-constant ratio

to about 2.0 from 1.7 but does not change the conclusion that the PHENIX single electron

spectra is in agreement with the FONLL bands.

Figure 6.5 ignores the STAR D meson results shown in Figure 3.7 which are obtained directly

through invariant mass reconstruction of hadron decay channels. Examination of just the

STAR single electron data shows that the fit-to-constant in the ratio to FONLL is 4.4 and

is relatively flat in pT .

The difference between the PHENIX and STAR single electron measurements is at the

heart of perhaps the largest experimental discrepancies in the RHIC experimental program,

so it is worth some discussion. The most striking feature of Figure 6.5 is the size of the

uncertainties on the data points. Above pT > 1.0 GeV/c, the PHENIX single electron points

have an average systematic uncertainty of about 15%, which is significantly smaller than the

35% average on the STAR points. Taking these uncertainties as a reflection of the overall of

precision of the given analysis technique, the PHENIX single electron points can be taken

as the most precise open heavy flavor measurement at RHIC.

A discussed in Chapter 2, in the realm of pT ∼ mcharm, theoretical calculations must contend

with a calculation scheme change and increasing uncertainties due to increasing sensitivity

to µR and µF variation as mcharm → pT . For pT � mcharm, FONLL treats charm as an active

parton (nlf=4) in terms of the perturbative calculation and is considered the most rigorous

theoretical treatment available [43, 60]. It is in the region of 4.0 ≤ pT ≤ 8.0 GeV/c, where

statistical errors are not too large that the disagreement between the STAR and PHENIX

is not easily reconciled. This is also the region where bottom contribution is known to dom-

inate and FONLL has been shown to match measurements in p + p̄ collisions by CDF at

the Tevatron to a factor of 1.7 [87]. In this region, the PHENIX single electrons essentially
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match the observed cross sections in [87] which is consistent with FONLL and is at a 2σ

disagreement with the STAR spectrum.

Inclusion of this single muon result into the Figure 6.5 comparison does not immediately clar-

ify the existing STAR/PHENIX single electron discrepancy at low pT . At high pT (pT >3.0

GeV/c) the single muon measurement is consistent with the PHENIX single electron result

(Figure 6.5) and also exhibits the expected rapidity evolution of the pT spectra as seen in

Figure 6.4. The most noticeable feature of the single muon data is that counter to both

the STAR and PHENIX single electron data, it does not obviously trend as a constant in

pT relative to FONLL. Rather, a strong (factor of 2) systematic effect is at work that takes

the single muon data from an upper factor of 4 to a lower factor of 2 above FONLL, as pT

increases. Unrelated experimental and theoretical effects may be at work to produce this

trend. Experimentally, as already mentioned, the S/B is decreases from ∼0.5 to ∼0.3 from

pT =5.0 GeV/c to pT =1.0 GeV/c, which greatly increases the sensitivity to the estimated

backgrounds. At the same time, between the two primary single muon backgrounds sources

of muons from hadron decay and punch-through hadrons, the relative background mix is

increasingly dominated by muons from hadron decay. At the lowest pT the muon decay con-

tribution is a factor of ∼2 larger than the punch-through component. Tuning of the hadron

cocktail to match the MuID gap 4 z-vertex distributions resulted in the largest χ2 matching

values. It is expected that when the analysis is performed with a improved hadron cocktail

implementation a more sophisticated matching scheme than the z-vertex matching will be

improved. This is the single most likely step that can be taken to clarify the trend observed

in the single muon data in Figure 6.5.

Theoretically, shifting from a pT =5.0 GeV/c to pT =1.0 GeV/c takes the calculation from

the case where pT � mcharm which is dominated by bottom quark production to the regime

dominated by charm quark production that is subject to large uncertainties in the FONLL

prediction due to the relatively low charm quark mass that exacerbates the uncertainties due

to µR and µF choices. The large uncertainty on both experimental and theoretical fronts

leads to the following question: what is the nature of both the experimental and theoretical

uncertainties, and how much can those uncertainties be reduced in the near future? On the

theoretical side, useful “rule(s) of thumb” concerning perturbative order cross sections and

uncertainties can be described as follows [67]:

• A leading order (LO) calculation provides a rough estimate of the cross section.
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• A next-to-leading order (NLO) calculation provides a good estimate of the cross section

and a rough estimate of the uncertainty.

• A next-to-next-to-leading (NNLO) order calculation provides a good estimate of the

uncertainty.

In practice, since a NNLO calculation is not available, the independent variation of both

µR and µF effectively explores the uncertainties due to truncated higher order terms beyond

NLO in the FONLL calculation. As was discussed in Section 2.2.2, the variation of µR and

µF is the single largest source of theoretical uncertainty in FONLL, with the effect of mass

variation the second largest contributor to the uncertainties and uncertainties due to parton

distribution and fragmentation relatively small by comparison. Although a FONLL style

calculation to one higher order may be several years off (from present day 2008), it is clearly

expected to contribute positively to the existing FONLL spectra on the order of 20-30%

which will provide better matching than the current level of 1.7-2.0 [43]. Without additional

calculations to orders beyond NLO, the only way to constrain the choice of scales is through

better precision measurements than what have been made to date, including the single muon

measurement presented in this work.

6.2 Integrated cross section

Integrated lepton cross sections

The single lepton production cross sections measured as functions of pT discussed up to this

point (and referred to as just “pT spectra”) are distributions represented in the functional

form A× dσ/dpT dy, where A is a constant correcting for finite phase space acceptance and

dy represents the narrow region of measured rapidity. Integration of this dσ/dpT dy distri-

bution over all measured pT above the minimum pmin
T provides a single cross section value

for the measured leptons, dσleptons/dy |pT >pmin
T

. Single lepton cross sections of this from are

obtained for pmin
T >1.0 GeV/c, which coincides with the minimum measured pT in the single

muon analysis, for both PHENIX heavy flavor single electrons and muons. These points are

plotted at their respective 〈y〉 values in Figure 6.6 along with a FONLL single lepton dσ/dy

distribution obtained from charmed mesons. While the single electron analysis measures

down to a pT of 0.35 GeV/c, it is integrated from the same pmin
T as used by the muon analy-

sis to permit an equivalent comparison. The pT integrated lepton contribution from bottom

relative to charm is ∼1% and is neglected in this plot.
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As expected from the dσ/dpT dy distributions in Figure 6.4, where the muon points ex-

ceed the electron points for pT <1.5 GeV/c, the pT integrated dσ/dy distribution of muons

exceeds that of electrons by about 10%. The tabulated values with statistical and system-

atic uncertainties are located in Table 6.1. This comparison, free of any model dependence,

shows straightforwardly that the measured single muon cross section is larger than expected

when compared to the published single electron result. However, the large systematic un-

certainties of order 40% also accommodate potential agreement with the upper uncertainty

band of the FONLL distribution in Figure 6.4, especially in recalling the discussion that the

FONLL uncertainties are not Gaussian in nature but essentially a flat probability region for

containing the “correct” theoretical value.

Integrated charm cross sections

The measured dσ/dpT dy distributions can be used to extract integrated and total charm

quark cross sections. Total heavy quark cross sections can be calculated in pQCD, but

they are rarely measured because of the requirement of measuring heavy flavor mesons or

single leptons down to pT = 0 GeV/c, which is extremely challenging experimentally. At

RHIC, measurements of D0’s have been made by the STAR collaboration down to pT∼0.1

GeV/c [27], and measurements of heavy flavor single electrons have been made by the

PHENIX collaboration down to pT∼0.3 GeV/c [26]. The experimental uncertainties on

both measurements are non-negligible, especially at the lowest values of pT which include

most of the integrated cross section.

The rapid fall-off of the measured pT spectra described approximately by a power-law shape

means that even at these low pT ’s only a fraction of the total cross section is being measured:

∼50% for pT >0.3 GeV/c and ∼5% for pT >1.0 GeV/c as shown in Figure 5.36. In addition

to integrating the dσ/dpT dy distributions above the minimum measured pT , the distribution

Table 6.1: Integrated lepton cross section. Note forward and backward points at y=1.65 are
derived from combined forward/backward pT spectra.

y Cross section (mb) σstat. (mb) σsys. (mb)
0 0.00101 6.98e-5 1.43e-4

1.65 0.00110 1.75e-5 4.04e-4
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Table 6.2: Integrated charm quark cross section results. Note forward and backward points at
y=1.65 are the same. The total systematic uncertainty assigned is the systematic uncertainty
due to the data added in quadrature with the systematic uncertainty inherent in the theory
curves.

y FONLL scale cc̄ cross section (mb) ± Stat. + Sys. - Sys.
1.65 3.75 0.145 1.59e-3 6.19e-2 7.22e-2

1.1% 42.7% 49.8%

can be extrapolated in the region from 0 GeV/c ≤ pT ≤ pmin
T by some means. With the

availability of a new generation of theoretical pQCD calculations that can produce not only

charm and charm hadron spectra, but single lepton spectra as well, the reliance on PYTHIA

for this extrapolation has diminished, being replaced by calculations such as FONLL.

As discussed in Chapter 5, the extrapolated lepton spectra can be converted into an in-

tegrated charm cross section using the predicted fragmentation of the charm quark, e.g.

c → D from a model (such as FONLL) and the known branching ratios to leptons, e.g.

D → lepton. Implementations of the quark fragmentation, branching ratios, the extrap-

olation to pT = 0.0 GeV/c , and the full phase space correction from the limited detector

acceptance all introduce additional systematic uncertainties in the final extracted total cross

section which serves to obscure comparisons between theoretical and experimental results,

especially in comparisons when the experimental cross section is compared to the model

used to derive the cross section. But, due primarily to the limited number of predictions

to compare against, this is precisely the situation that is often found (as in this dissertation).

The full procedure used to obtain the charm cross section from the combined-arm single

muon pT spectrum is described in Chapter 5, where the FONLL spectrum is fit to the mea-

sured single muon spectrum in Figure 6.2. The dσcc̄/dy of the FONLL charm distribution

at 〈y〉=1.65 is 0.0386 mb. Multiplying dσcc̄/dy|FONLL
y=1.65 by the scale factor (of 3.75) to match

the data and FONLL pT spectra yields a dσcc̄/dy|PHENIX of 0.145 ± 0.0016 (stat.) +0.062
−0.072

(syst.) mb, shown in Figure 6.7 and listed in Table 6.2. The upper and lower FONLL pT

spectra uncertainty bands are also fit to data with the resulting scale value and integral used

to extract an upper and lower theoretical point dσcc̄/dy. The resulting normalization scale

factors are listed in Table 5.9. The difference between the upper and lower dσcc̄/dy points

are added in quadrature with the data systematic uncertainty (which is about 36% having
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also been determined by fitting the FONLL spectra to data) to quote the final dσcc̄/dy sys-

tematic uncertainty. The systematic uncertainty plotted on the 〈y〉=1.65 points includes

data and theoretical uncertainties that are at least partially correlated, since the theoretical

uncertainty has been folded into the systematic uncertainty boxes assigned to the 〈y〉=1.65

point using the upper and lower FONLL bounds.

As observed in the integrated lepton spectra comparison in Figure 6.6, the single muon point

at 〈y〉=1.65 exceeds the extracted 〈y〉=0 point from PHENIX single electron data, as well

as that expected from the FONLL distribution. Assuming a Gaussian form for the dσ/dη

distribution, the FONLL ratio 〈y〉=1.65/〈y〉=0 suggests a Gaussian with σ = ∼1.7 which is

slightly narrower than the PYTHIA charm distribution used in [70] to extract the integrated

charm cross section. While a slightly narrower FONLL distribution would result in the ex-

tracted 〈y〉=1.65 point being slighter higher relative to the theoretical curve, however, as

indicated in the figure, this effect pales in size with respect to the systematic uncertainties

present in both the theoretical and experimental quantities. The total charm cross section

determined from the PHENIX 〈y〉=0 single electron measurement is determined to be σcc̄ =

567 ± 57stat ± 224sys µb. The uncertainties on the single muon point are too large at this

time to constrain the rapidity shape of the charm cross section.

As was the case in the discussion of the pT spectra, the presence of the STAR charm mea-

surement adds a quantity of intrigue to the state of charm measurements at RHIC. The

STAR charm result at y=0 is determined by scaling the central FONLL value by 5.5 ± 0.8

(stat.) ± 1.7 (sys.), in accordance to the values published by the STAR collaboration [88].

In so much as the expected rapidity distribution is Gaussian, the Run 5 single muon points

are consistent with both the PHENIX and STAR y=0 points when considering the 1σ sys-

tematic uncertainties.

Figures 6.8(a) and 6.8(b) shows two plots, one with the FONLL central curve scaled to the

STAR 〈y〉=0 point (scale value of 5.5) and the other scaled to match the PHENIX 〈y〉=0

point (scale value of about 1.9). The FONLL curve scaled to the STAR 〈y〉=0 result, as

in Figure 6.8(a), shows that the theoretical curve is observed to pass through the upper tip

systematic uncertainty band for the 〈y〉=1.65 muon result. Alternatively, the FONLL curve

scaled to the PHENIX 〈y〉=0 result is observed to pass through the lower tip of the 〈y〉=1.65

muon result. The magnitude of the systematic uncertainties associated with the muon re-

sult (nearing 50%) do not permit a statement regarding the large discrepancy between the
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and single muons at 〈y〉=1.65. A 10% global normalization uncertainty due to luminosity
determination is not shown for the electron point but is included in the muon uncertainty.
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PHENIX and STAR results.

Figure 6.9 plots the extracted dσcc̄/dy at 〈y〉=1.65 along with other relevant results, in-

cluding the PHENIX single electron extracted point at 〈y〉=0, the previous single muon

point at 〈y〉=1.65, and the STAR charm estimate [88]. The Run 5 single muon dσcc̄/dy at

〈y〉 point is consistent with the previous Run 2 single muon point, with the Run 5 result

sitting at the lower end of the Run 2 1-σ systematic uncertainty band. In comparison to the

previous Run 2 single muon dσcc̄/dy point, two observations can be made: 1) the extracted

dσcc̄/dy value has shifted from 0.243 to 0.145 mb (40% reduction), 2) the systematic uncer-

tainty has been reduced. Additional details concerning the downward shift in the extracted

single muon charm cross section from Run 2 to Run 5 is discussed in Appendix B.

In general, the reduction in the Run 5 result’s charm cross section systematic uncertainties

relative to the Run 2 result is due to two effects: 1) reduced systematic uncertainty in

the measured single muon spectra, 2) reduced theoretical systematic uncertainty relative to

PYTHIA. In regards to the second item, multiple parameter cases of PYTHIA were used in

the Run 2 analysis to determined the PYTHIA systematic uncertainty. As discussed in [70],

the Run 2 analysis conservatively takes the maximum range in different parameter cases to

determine the systematic uncertainty. A few of the PYTHIA parameter choices produces

spectra that would be rejected by the Run 5 data but can not be rejected by the Run 2 data

due to the larger errors associated with the Run 2 analysis. The use of min bias PYTHIA

on the Run 5 analysis to obtain dσcc̄/dy results in a value of 0.168 mb, 30% below the Run

2 result.
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Chapter 7

Epilogue

The single muon cross sections presented in this dissertation fall into the regime of measure-

ments not originally envisioned in the planning stage of PHENIX. While some goals, such as

the measurement of the φ and Υ at forward rapidity have not really materialized∗, the mea-

surement of single muons in a detector not optimized for their measurement does potentially

open up some interesting physics topics for study. The work presented in this measurement

follows two previous efforts in measuring single muons in PHENIX. The first result which

has been published from the Run 2 data set [70], has been discussed and compared to the

results of this dissertation (Appendix B). The second result from the Run 3 d+Au data set

using a modified analysis approach to that done in [70] achieved PHENIX preliminary status

but has not been published. Ongoing single muon analyses (benefitting from the techniques

developed here) in Cu+Cu and Au+Au should produce results before 2009 that will allow

plots of RAA for both species to be made which will contribute toward the understanding

of the medium produced at RHIC in heavy-ion collisions. On going PHENIX spin analyses

to measure both AN ad ALL are underway which take advantage of this work, although

due to the challenging nature of the analysis, it is not clear whether theoretically restrictive

measurements will result from these efforts.

Bypassing the discussion of upgrades in the planning and development stage, it is worth

asking what else can be done with the existing data and detector. The work presented

in this dissertation has reached PHENIX preliminary status, having been shown at multi-

ple conferences and workshops and has been published in conference proceedings. Before

pursuing publication by PHENIX, additional work will be done to extend this analysis in

∗There is a PHENIX preliminary result that potentially uncovered about a twenty Υ’s in the Run 5 data.
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both pT reach and in the rapidity binning. Since the limitations of this measurement are

presently systematic rather than statistical, the extension of the measurement, possibly up

to 7.0 GeV (as included in some of the plots in this work), will be pursued. While the

acceptance (shown in Appendix I) of the PHENIX muon spectrometer for 〈y〉=1.65 based

on minimum ionization energy loss in the muon arm steel is nominally pT =1.0 GeV/c, a

statistically significant yield of low pT heavy flavor muons stop in the second-to-last MuID

Gap 3. As shown in Figure I, the muon arm acceptance extends pT <1.0 GeV/c. The

novel approach of measuring heavy flavor single muons very well may extend the pT reach

to 0.8 GeV/c, or even lower. One of the most interesting contributions from a heavy fla-

vor single muon measurement is the constraint of the rapidity evolution of the total charm

quark production cross section. Future results based on this work will be obtained for mul-

tiple data points over the range 1.4≤y≤ 2.0. Despite the inherent ±30% uncertainties on

these measurements, some indication of the charm rapidity distribution should be observable.

Several other details of a PHENIX single muon analysis were uncovered in the course of

this work and in the parallel work that has commenced for the Cu+Cu single muon analysis.

Consideration of these details will modify the measured single muon cross section presented

in this work and are briefly mentioned here for completeness. Only time will tell what the

final effects of these “details” will have on the final published result. In the “response” stage

of the hadron simulations a flaw has been uncovered in how neutral particles are treated. It

is possible for neutral particles leaving the absorber material preceding a MuID detector gap

to create a charged particle that can deposit a hit in a MuID tube. The simulations used in

this work are blind to this effect. After study, the application of a correction is thought to

to likely to increase the final single muon yield by less than 10%.

Another effect that potentially will increase the measured cross section of single muons is

the inclusion of positive hadrons. The present work used only negatively charged hadrons to

extract the background estimate for negatively charged single muons. Since positive hadrons

can result in negative secondaries in the muon arm (and vice-versa for negative hadrons) the

effect was originally thought to cancel out when analyzing separately for negative and posi-

tive muons. However, an overall charge imbalance does exist in the muon arm where more

positive tracks are observed. This imbalance arise from two sources, 1) a measured global

charge asymmetry for K’s [119], and 2) a significant difference in the interaction cross section

between K+ and K− that leads to significantly more K+ relative to K− reaching the deepest

gap of the MuID. Keeping in mind the difference between the cτ of K’s and π’s that leads to
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approximately half of the deepest tracks in the hadron background estimate tracks having

originated from K’s. As a result of this fact and the charge imbalance, it is now realized to

be very important to include oppositely charged initial particles in the hadron background

estimate.

In this dissertation’s single muon measurement the effect of the light vector mesons (pri-

marily η, ρ, and ω) has been ignored. Figure 2.9 shows that the expected yield of single

muons with pT >0.9 GeV/c (from a PYTHIA calculation) resulting from light vector mesons

is 13% of the total single muons. Any contribution of these light vector mesons add directly

to the measured single muon signal. Figure 2.10 shows that the relative fraction of light

vector mesons is more significant at lower pT . Recent PHENIX mesons measurements [29]

that demonstrate a sort-of universal mT scaling parameterization for the light meson yields

can be used to provide estimates of the the expected contributions that are included in the

present heavy flavor single muon yield. If the estimates provided by PYTHIA are accurate,

the expected single muon cross section should be reduced by 10%.

The existing disagreement between STAR and PHENIX is an unfortunate accident of history

to which the “lightness” of charm compounds the situation by ensuring existing theoretical

calculations can not clearly weigh in. It was clear at the Quark Matter 2008 Conference in

Jaipur, India, that this discrepancy is perhaps the largest remaining experimental discrep-

ancy that should not be, for heavy quarks are understood to be clear signals, not sources of

controversy themselves. But as pointed out in Chapter 3, discrepancies in charm production

between both experiments and theoretical calculations have always existed and eventually

resolved themselves. If successfully implemented, both of the PHENIX and STAR upgrades

program will greatly enhance both of the remaining RHIC experiments’ abilities to mea-

sure heavy flavor. I am confident that these upgrades will eventually achieve peace on this

subject.
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Appendix A

Glossary of selected terms

This is intended to provide some basic definitions.

1. Rapidity, y: The dimensionless kinematic variable rapidity, y, of a particle is defined

in terms of the energy, E, and longitudinal momentum, pz, of a particle:

y =
1

2
ln

(
E + pz

E − pz

)
(A.1)

y can be either positive or negative, depending on the orientation of positive pz. Since

y requires knowledge of a particle’s full energy, particle identification is required. Ra-

pidity is a convenient variable for describing kinematic properties of particles in high-

energy reactions for a couple of reasons. First, due to its properties under a Lorentz

transformation, the rapidity of a particle in a moving frame, y′ is equal to the rapidity

of the rest frame, y minus the rapidity of the moving frame, yβ [18]:

y′ = y − yβ.

To change between a frame reference at rest to the frame of reference of a particle

can be accomplished through a simple addition/subtraction. The second reason for

the convenience of using rapidity to describe particle kinematics is its relation to a

variable referred to as pseudo-rapidity, η.

2. Pseudo-rapidity, η:

η = −ln

[
tan

(
θ

2

)]
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In the limit of |p | ∼ E, then η ≈ y, and η can be substituted into Equation A.1. Since θ

is often measured experimentally, access to η is “straightforward”, and for sufficiently

relativistic particles, which is the case at RHIC with a high degree of accuracy, η

provides experimental access to y.
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Appendix B

Additional comparison of results

Comparison to the previous PHENIX single muon result [70]
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Figure B.1: Run 5 spectra (this work) comparison to the published Run 2 result [70].
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Table B.1: PYTHIA tuning parameters, Case 1

Parameter Value Meaning
MSEL 2 Minimum bias events

MSTP(32) 4 Hard scattering scale, Q2 = ŝ
MSTP(33) 1 Use K-factor
MSTP(52) 2 Use PDF libraries
MSTP(51) 4046 Select CTEQ5L PDF libraries
MSTP(91) 1 Use Gaussian distribution for intrinsic kT

PARP(31) 3.5 K-factor
PARP(93) 5.0 Maximum kT

PMAS(4,1) 1.25 mc (GeV/c)
D+/D0 0.32 Default charm chemistry ratio

Spectra comparison to PYTHIA

√
s=200 GeV p+p minimum bias collisions were generated in PYTHIA (version 6.205), with

the PYTHIA parameters listed in Table B.1. These parameters allow PYTHIA to reproduce

the measured charm production at y=0 at SPS and FNAL as well as single electron data

at the PHENIX. As opposed to running with PYTHIA MSEL=4 where a heavy quark is

produced every collision, running MSEL=2 is the “inefficient” way of obtaining charm and

bottom.

Integrated cross section comparisons with PYTHIA

PYTHIA was used in the charm cross section extraction in [70] (Run 2 PHENIX single muon

analysis) and at one point was considered for use in this study. However, a “tuned” PYTHIA

has been abandoned in favor of exclusive use of FONLL which is an NLO pQCD calculation.

Regardless, for comparison and as a bit of nostalgia, Figure B.3 shows the extracted charm

cross section obtained using both PYTHIA (MSEL=2) and FONLL pT spectra, illustrating

that this current method is consistent with the use of PYTHIA as in [70]. PYTHIA was not

used to extract any results presented in this dissertation.

The reason for the reduced charm cross section from the Run 5 result relative

to the published Run 2 result in Figure B.3.

As described in [70], the Run 2 point uses the same basic spectral fitting methodology to

extract the charm cross section. In this Run 2 analysis the PYTHIA spectra was produced
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Figure B.3: Comparison plot: Determining dσ/dy at y=1.65 for charm using PYTHIA. The
central point determined using Case 1 PYTHIA parameters from [70] and Table B.1 is 0.168
mb, approximately 30% lower than the Run 2 single muon result and about 15% above the
dσ/dy determined for Run 5 (not shown) using FONLL.
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with the charm heavy quark (HQ) production turned on for every event (MSEL=4). Large

differences in the PYTHIA HQ lepton spectra exist between the using MSEL values of 2

(minimum bias) or 4. The HQ lepton spectra produced in the minimum bias events is harder,

and the overall cross section is larger. This means that when the minimum bias PYTHIA

spectra is used to fit the data instead of the HQ spectra that the overall normalization scale

factor needed to match data is lower which results in a lower extracted dσcc̄/dy. The reason

minimum bias PYTHIA was not used in the Run 2 analysis is the large cpu time required

to run the multiple parameter sets used to extract the PYTHIA “theoretical” systematic

uncertainty. The single min bias PYTHIA parameter set used in this note (Figure B.3) for

comparison took two weeks of dedicated running on the ORNL cluster (22 cpu’s). Eighteen

different PYTHIA parameter sets were used in the final Run 2 analysis.
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Appendix C

Derivation of systematic uncertainties

C.1 From which the errors spring

Using the following notation for invariant yields:

Nx ≡
d2Nx(pT )

2πpT dpT dη
,

the yield of single muons as an implicit function of pT is determined by the equation:

Nµ = NI −Nc −N2c (C.1)

where NI is the yield of inclusive muon candidate tracks, Nc is the hadron cocktail back-

ground yield estimate, and N2c is the additional yield of particles removed in the two-

component fit of the pδθ distributions. Once the single muon yield is determined, the differ-

ential cross section is determined using the following equation:

d2σµ(pT )

2πpT dpT dη
=

σpp
BBC

εcc̄→µ
BBC

· Nµ

εAε

(C.2)

where σpp
BBC is the cross section of the BBC trigger for p+p interactions and εcc̄→µ

BBC is the

efficiency of the BBC trigger for events in which a charm quark is created and decays into a

muon, and εAε is the acceptance times efficiency correction factor for muons reaching gap 4

of the MuID (see Section 5.5 on how εAε is determined).
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C.2 Uncertainty on the yield of single muons assuming

an error on NI

The purpose of this section is to develop Eq. 5.10 (see Eq. C.5). For clarity, F ’s are used to

signify fractional uncertainties and σ’s are used to signify absolute uncertainties, meaning

explicitly that F = σ/NI . Multiplying equation C.1 by NI/NI :

Nµ = NI

(
NI −Nc −N2c

NI

)
The uncertainties on this equation can be propagated as:

FNµ =
σµ

Nµ

=

√√√√(σNI

NI

)2

+

(
σNI−Nc−N2c

NI

NI−Nc−N2c

NI

)2

(C.3)

Using Nµ = NI − Nc − N2c, the systematic uncertainty on the muon yield can now be

expressed as:

FNµ =
σµ

Nµ

=

√√√√√(σNI

NI

)2

+

σ2
Nc
NI

+ σ2
N2c
NI(

Nµ

NI

)2

σNI
, σNc

NI

, and σN2c
NI

are now rewritten in terms of fractional uncertainties:

FNµ =

√√√√F2
NI

+

[(
FNc

NI

· Nc

NI

)2

+

(
FN2c

NI

· N2c

NI

)2
]
·
(

NI

Nµ

)2

Reducing terms provides:

FNµ =

√
F2

NI
+

(
FNc

NI

· Nc

Nµ

)2

+

(
FN2c

NI

· N2c

Nµ

)2

The fractional uncertainties, FNc
NI

and FN2c
NI

, are:

FNc
NI

=
√
F2

Nc
+ F2

NI

FN2c
NI

=
√
F2

N2c
+ F2

NI

so that the uncertainty can be written as:
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FNµ =

√
F2

NI
+

(√
F2

Nc
+ F2

NI
· Nc

Nµ

)2

+

(√
F2

N2c
+ F2

NI
· N2c

Nµ

)2

. (C.4)

Equation C.4 is used to determine the uncertainty on the yield of single muons. The expected

behavior of increasing uncertainty in the yield with decreasing signal background (Nµ/Nc

and Nµ/N2c) is reflected in this equation.

C.3 Uncertainty on the yield of single muons assuming

no error on NI

If the error on NI is considered to be negligible ( σNI
→ 0 ), then the uncertainty in the

muon yield reduces to:

FNµ =

√(
FNc ·

Nc

Nµ

)2

+

(
FN2c ·

N2c

Nµ

)2

. (C.5)

In this case the fractional uncertainties, FNc
NI

and FN2c
NI

, are equivalent to the fractional

uncertainties on the background sources ( FNc and FN2c ) since no intrinsic systematic

uncertainty is assigned to NI .

C.4 Uncertainty on the single muon differential cross

section

The total systematic uncertainty associated for the single muon differential cross section

is the quadratic sum of the uncertainties on the four components to the differential cross

section (Eq. 5.11)

σσµ =
√

σ2
Nµ

+ σ2
σBBC

+ σ2
εBBC

+ σ2
εAε

. (C.6)
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C.5 Combining North and South muon arm systematic

uncertainties with correlated and uncorrelated er-

rors

This subsection explains how equation 5.8 was derived. The standard propagation of errors

equation for averaging the north and south arm single muon measurements that possess both

correlated and correlated errors is:

σ2
x = σ2

N

(
∂x

∂N

)2

+ σ2
S

(
∂x

∂S

)2

+ 2σ2
NS

(
∂x

∂S

)(
∂x

∂N

)
(C.7)

where x = (N + S)/2 and σNS is the covariance term representing the correlated north and

south uncertainties. Rewriting σNS as σcor
N&S, Eq. C.7 can be written as:

σ2
N+S

2

=
(σtotal

N )2 + (σtotal
S )2

4
+

(σcor
N&S)2

2
(C.8)

where the last term is the covariance term. The total uncertainties can be divided into the

uncorrelated (arm independent) components as well as the correlated components:

σ2
N+S

2

=
(σuncor

N )2 + (σcor
N&S)2

4
+

(σuncor
S )2 + (σcor

N&S)2

4
+

(σcor
N&S)2

2
(C.9)

which reduces immediately to

σN+S
2

=

√
(σuncor

N )2 + (σuncor
S )2

4
+ (σcor

N&S)2. (C.10)

In practice, σcor
N&S = 1/2(σcor

N + σcor
S ), so that Equation C.10 can be written as:

σN+S
2

=

√
(σuncor

N )2 + (σuncor
S )2

4
+

(
σcor

S + σcor
N

2

)2

(C.11)

which is Eq. 5.8.
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Appendix D

Notes concerning yields and cross

section expressions, and how to

convert from one to the other

Measurements of single-particle production are discussed in terms of the number of particles

per event, per unit of Lorentz-invariant momentum space, referred to as invariant yield or

invariant multiplicity [120]:

E
d3N

d3p
= N(~p)

E

∆3p
(D.1)

where N(~p) is the number of particles per event measured in a bin in momentum space

centered at the Energy, E, and momentum of the produced particle, ~p in the ∆3p phase-

space volume of the bin. As shown below, a unit of Lorentz-invariant momentum space

can be written in terms of the variables y, pT , and φ. Since experimentally the full three-

dimensional phase space is not measured, ∆φ is integrated over 2π (since the muon arms

cover the full 2π in acceptance), and the exact form of measured yields is expressed in the

double-differential form:

1

2πpT ∆pT

d2N

dydpT

=
1

2πpT ∆pT ∆y
·N(y, pT ) (D.2)

N(y, pT ) is the number of tracks per event in the ∆y, ∆pT bin covered by pT ±∆pT /2 and

y ±∆y/2.
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A different derivation of the invariant yield formula

The yield of particles, N , detected over a finite volume of momentum space 1/dp3:

d3N

dp3
=

d3N

dpx dpy dpz

=
d3N

pT dpT dφ dpz

using dpx dpy = pT dpT dφ for change to cylindrical coordinates. Integrating over the full

azimuth in dφ:

d3N

dp3
=

d2N

2πpT dpT dpz

then using pz = mT sinh(y) [18]:

d3N

dp3
=

d2N

2πpT dpT d(mT sinh(y))

and taking the derivative in the denominator:

d3N

dp3
=

d2N

2πpT dpT mT cosh(y) dy

and using E = mT cosh(y), and the invariant yield is ...

E
d3N

dp3
=

d2N

2πpT dpT dy
(D.3)

For the case of the PHENIX muon arm where a number of tracks, N , is measured in a

particular pseudo-rapidity bin, say ∆y ∼ ∆η = 1.9 - 1.4 = 0.5, and in a particular pT bin of

a particular width ∆pT , then the invariant yield is formed according to Equation D.3.

Converting dσ/dpT to E dσ
dp3

Theoretical curves have been provided in primarily two ways that must be converted in

order to compare to data in the form of E dσ
dp3 . FONLL pT spectra have been provided in the

form of dσ/dpT integrated over a particular dη range. In this case, to numerically convert
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(c.f. Eq. D.3) dσ/dpT values to E dσ
dp3 , one need only multiply by the so-called “phase-space

factor”, 1/(2 π dη dpT ):

E
d3σ

dp3
=

1

2πdηdpT

· dσ

dpT

(D.4)
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Appendix E

Bin shift corrections

This appendix describes the method of bin-shift correction used in this analysis. The magni-

tude of the corrections are in fact quite small and are only mentioned for completeness. This

information is adapted from internal PHENIX sources and is listed here for reference. Data

which is distributed along exponential curves, such as particle yields as a function of pT , will

experience a non-neglible error when binned in pT . The exponential drop-off is significant

inside a single bin such that the center of the bin (in pT ) will not correspond to the average

pT of the data in that bin. There are two ways to approach this issue:

1. Move the data point vertically and leave the pT of the data point unchanged, i.e. use

the bin centers to represent the pT points.

2. Move the data point along the pT -axis and leave the yield unchanged. The average

value of pT for that particular bin is used for plotting and in all calculations involving

invariant yields, etc.

Method 1

The method 1 correction depends on approximating the spectra with some function. When

fitting entire exponential or power-law distributed data points, the fits tend to match the

data well at low pT but not at high pT due to the several orders of magnitude drop of in the

value of the data. In order to side-step this issue, the data distributions can be accurately

approximated with an exponential or power-law function over several subranges of the full

distribution. Each function can then be evaluated in its particular fit sub-region, which is

what Figure 5.37 is essentially showing.
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The corrected yield in a given pT bin is calculated in the following way:

dN/dpT |corrected =
dN/dpT |uncorrected

R
. (E.1)

Where R is the ratio of the average yield in the bin to the value of the function at the bin

center pc
T . R is defined as:

R =

1
∆

∫ pc
T +∆/2

pc
T−∆/2

f(pT )dpT

f(pc
T )

. (E.2)

Where ∆ is the bin width. This approach is equivalent to just evaluating the fitting function

at the bin center and taking the value of f(pT ) provided that:

dN/dpT |uncorrected =
1

∆

∫ pc
T +∆/2

pc
T−∆/2

f(pT )dpT (E.3)

Method 2

The method 2 correction is achieved in this work by calculating the average pT value for

every histogram bin in every instance. This method has the advantage in that it is easy to

use numerically and program, but it does suffer from the fact that it makes any subsequent

comparisons less straightforward since not all pT points exactly correspond.

Most of the work done in this analysis, including the results are presented using method 2,

although some final comparisons are made instead with Method 1 corrections.
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Table E.1: Method 1 bin-shift correction factors for single muon data points

Average pT (GeV) Bin center (GeV) R
1.118 1.125 1.054
1.360 1.375 1.063
1.610 1.625 1.071
1.860 1.875 1.043
2.112 2.125 1.035
2.363 2.375 1.038
2.614 2.625 1.057
2.863 2.875 1.012
3.214 3.25 1.103
3.720 3.75 1.062
4.218 4.25 1.034
4.717 4.75 1.089
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Appendix F

Details on the modification of the

hadronic package cross sections in the

CERN libs

The analysis methodology established in this dissertation depends upon the ability to “tune”

the simulation response to hadrons by altering the interaction cross sections of the hadron

shower packages available in GEANT 3. In April 2006, during his postdoctoral tenure at the

University of Tennessee, Youngil Kwon performed a basic modification to both the FLUKA

and GHEISHA hadron shower packages. The hadron interaction cross sections do possess

some momentum dependence, but as a basic attempt, the interaction cross section of mate-

rial was scaled by a simple constant. Since the GEANT 3 implementation of the PHENIX

muon arms is rather basic and dominated by the large amount of steel material, the approx-

imation of scaling the hadron cross sections for all materials was used.

The 2005 CERN libraries were used, and the scaling of the material cross sections are per-

formed in the following tow files:

for FLUKA: /src/geant321/fiface/fldist.F

for GHEISHA: /src/geant321/giface/ghesig.F

The modification to FLUKA is presented verbatim below:

kwon We modify FLUKA! ================================================

ckwon decide scale factor based on switch

237



if(iswit(6).eq.0) then

ckwon Case we don’t change hadron interaction cross section

CrossXScaleFactor = 1

else

if(iswit(10).eq.0) then

ckwon Case we scale cross section uniformly

CrossXScaleFactor = iswit(6)/10000.0

if(firstcall.eq.1) then

print *,’************************************************* ’

print *,’******* Modified FLUKA for muon analysis ******** ’

print *,’***************** Version 1.00 ****************** ’

print *,’* Date : Apr. 24th, 2006 * ’

print *,’* Iinitial work : Y. Kwon * ’

print *,’* iswit( 6) = ’,iswit(6)

print *,’* We scale hadron cross section by ’,

+ CrossXScaleFactor

print *,’************************************************* ’

endif

else

ckwon Case we scale PI/K- cross section and K+ cross section

if(firstcall.eq.1) then

print *,’************************************************* ’

print *,’******* Modified FLUKA for muon analysis ******** ’

print *,’***************** Version 1.00 ****************** ’

print *,’* Date : Apr. 24th, 2006 * ’

print *,’* Iinitial work : Y. Kwon * ’

print *,’* iswit( 6) = ’,iswit(6)

print *,’* iswit(10) = ’,iswit(10)

print *,’* We scale PI/K- cross section by ’,

+ iswit(6)/10000.0

print *,’* We scale K+ cross section by ’,

+ iswit(10)/10000.0

print *,’************************************************* ’

endif

CrossXScaleFactor = 1
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if(IPART.eq.8.or.IPART.eq.9.or.IPART.eq.12) then

CrossXScaleFactor = iswit(6)/10000.0

endif

if(IPART.eq.11) then

CrossXScaleFactor = iswit(10)/10000.0

endif

endif

endif

firstcall = 0

SINE = CrossXScaleFactor*SINE

SELA = CrossXScaleFactor*SELA

ckwon print *,’ (YKWONF) IPART,CrossXScaleFactor ’,

ckwon + IPART,CrossXScaleFactor

ckwon =================================================================
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Appendix G

Run 5 MuID efficiency plots

Run 5 MuID tube efficiency plots are shown in Figure G.1 and Figure G.2 and are taken

from [103].
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Figure G.1: MuID efficiencies versus run, north muon arm.

241



Figure G.2: MuID efficiencies versus run, south muon arm.
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Appendix H

Design specifications and performance

of the PHENIX muon spectrometer

The PHENIX muon spectrometers design specifications were driven by the following physics

requirements [121] [122]:

1. Resolve φ (1.02 GeV) from ρ (0.77 GeV) and ω (0.78 GeV) and optimize signal to

background.

2. Resolve J/Ψ (3.097 GeV) from Ψ′ (3.686 GeV) and optimize signal to background.

3. Resolve Υ(1S) (9.46 GeV) from Υ(2S+3S) (10.02+10.36 GeV) over all rapidity (in-

cluding central rapidity).

4. Have low enough occupancy to be able to reconstruct tracks efficiently in central Au+

Au events (with a particle multiplicity of about 1000 particles).

5. High performance in lower occupancy/ higher event rate p + p and d + Au events.

In order to meet these design goals the muon tracking chambers are required to be able to

provide 100 µm resolution in particle trajectory measurement. Physics simulations (circa

1999) conducted assuming this resolution performance and test-bench measurements of pro-

duction chambers and electronics provided the following expected mass resolutions as follows:

φ ≈ 80 MeV/c2, J/Ψ ≈ 110 MeV/c2, and Υ ≈ 200 MeV/c2. Absent from this list of physics

goals is measuring heavy flavor single muons as performed in this work.

The following sections describe the muon spectrometer used for this research, installed in
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1999-2000 and operated in essentially the same configuration through the RHIC Run 5 period

(2005) when the data taken for this particular work was recorded. Since 2006 PHENIX has

engaged in an ongoing detector upgrades program that is introducing new and/or upgraded

subsystem detectors annually. Upgrades to the muon arm’s electronics, trigger capabilities,

and a forward silicon vertex detector are currently planned for 2009-2010 and after. These

upgrades are under way largely as an effort to enhance the W detection capability in a future
√

s=500 GeV p+p run, but these upgrades may also significantly improve PHENIX’s ability

to measure heavy flavor single muons.

Performance of the PHENIX muon spectrometer with regards to design specifi-

cations

We will briefly run through the list of physics goals for the PHENIX muon arms previously

listed.

1. Resolve the φ meson. Due to larger than expected backgrounds, the φ has not been

measured in any collision environment.

2. Resolve the J/Ψ meson. The PHENIX muon arms have measured the J/Ψ in all

recorded collision environments. Figure H.1 shows the separate J/Ψ peaks for the

North and South muon arms measured during the same run period of this dissertation’s

single muon measurement (p+p at
√

s = 200 GeV). The mass resolution as determined

from a gaussian fit to the J/Ψ are about 180 MeV, larger than the design resolution

of 110 MeV, but still good enough to provide a rich collection of physics results.

3. Resolve Υ(1S). A dimuon pair analysis on the same 2005 p + p data set resulted

in a total of 27 Υ events in both arms (15 North and 12 South) [PHENIX AN401].

Relative to J/Ψ dimuons, dimuons in Υs are higher momentum muons that experience

less multiple scattering in the ample absorber material. The primary limitations in

the Υ mass resolution are associated with MuTr position resolution and alignment

errors. Based on these effects the expected mass resolution for Υ is about a three

times J/Ψ resolution, about 500 MeV. While this analysis provided a first look at

Υ in the PHENIX muon arm, increased luminosity, future upgrades, and improved

understanding of high momentum background are needed to achieve this particular

physics goal.

4. Efficient reconstruction of central Au+Au events. While the combinatoric background

levels are high, PHENIX has successfully measured J/Ψ in central Au+Au events.
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Figure H.1: J/Ψ peaks for both the North and South PHENIX muon arms from the 2005√
s =200 GeV p + p run. The mass resolution can be taken as the Sigma from the fit. The

north and south arms have about a 10 MeV difference in mass resolution. Plots obtained
from [110].
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The tracking challenge associated with central Au+Au events is unprecedented, and

the level of efficiency achieved is an achievement in and of itself.

5. High performance in lower occupancy/ higher even rate p+p and d+Au. The perfor-

mance has been sound if slightly less than hoped for originally.

The original design and the stated goals of the muon spectrometer were made for a new

accelerator and an unknown collision environment, so it is understandable that not all goals

were achieved. Shortfalls in performance are due to a few different reasons, but they are

all essentially related to the topic of unanticipated “backgrounds”. Backgrounds from the

beam itself were realized during the first RHIC physics run in 2002 (Run 2). Before Run 3,

additional shielding was installed in both the square hole (Figure 4.10) and on the outside of

the last MuID gap in order to minimize an initially unexpected, large non-collision related

background from beam “scraping” on the magnets and beam-pipe both upstream and inside

the PHENIX experimental hall.
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Appendix I

Optimal muon acceptance in (pT ,η)

This section considers the pT vs. η acceptance for muons in the PHENIX muon arms. High

energy muons passing through the large amount of absorber material between the collision

vertex and the muon arm detector lose energy primarily as a minimum ionizing particle

(MIP). This energy loss is characterized by the well known Bethe-Bloch formula and can be

applied to the PHENIX muon arms in order to determine the minimum pT that should be

considered for a given choice of pseudorapidity (angle from the beam-line) acceptance. The

impact of software reconstruction efficiencies on this issue are not considered and are applied

at the last step of the analysis. Based solely on the function pT (η), for a lower acceptance

bound of η=1.4, it is found that muons of pT ≥ 1.2 GeV and pT ≥ 1.3 are capable of pene-

trating to Gap 4, for south and north arms respectively.

Minimum penetration momenta for muons has been tabulated [123] by integration of the

Bethe-Bloch formula and are show in tables 1 and 2. Since this calculation there has been a

small decrease (from 20 cm to 19 cm) in material of both arms’ copper nose cone absorber,

decreasing slightly the energy needed to penetrate to a given gap. This change is ignored in

the following plots.

An analytical expression pT (η) is determined in order to graph the minimum penetration pT

vs. η for a given gap. The value pmin(θ) is defined as:

pmin(θ) =
pmin(00)

cos(θ)
(I.1)
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Figure I.1: Tabulated energy loss for a MIP in the PHENIX muon arms. Tables taken
from [123].
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where Pmin(00) are the tabulated values. In discussing minimum penetration momentum,

pmin(00) = pz and pmin(θ) = ptotal. Then,

pT (θ) = pmin(θ) · sin(θ). (I.2)

Using the following standard expression for psuedorapidity,

η = − ln [tan(
θ

2
)] (I.3)

and eliminating θ in favor of η, an expression of pt(η) is found:

pT (η) = pmin(00) · tan[2 tan−1(e−η)]. (I.4)

The distributions that follow in Fig. I are created using Eq. I.4.

In considering the lower bound for η acceptance one should consider the Gap 4 distribution.

For a lower bound of η=1.4 muons of pT ≥ 1.2 GeV penetrate to Gap 4 in the south arm.

For the north arm the value is pT ≥ 1.3 GeV.

For a lower bound of η=1.5 as used in the run 2 analysis, Figures I.2(a) and I.2(b) sug-

gest that muons of minimum energies of pT ≥ 1.1 GeV are capable of penetrating to Gap

4. For the north arm the value is approximately pT ≥ 1.15 GeV.

These distributions show that shifting the lower η bound by 0.1 by going from 1.5 to 1.4

raises the threshold of muons penetrating to Gap 4 by about 0.1 GeV. Barring other re-

stricting issues, such as reconstruction inefficiencies, these distributions also suggest that it

is possible to extend pT acceptance range to below a minimum pt= 1.5 GeV. This can be

accomplished by either pushing the η acceptance to above 1.8 or possibly incorporating Gap

3 in the calculation of the decay muon yield.
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Figure I.2: Minimum penetration pT in GeV as a function of η for the PHENIX north and
south muon arms.
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