クォークグルーオンプラズマの生成

中條 達也 理化学研究所・放射線研究室

RHIC加速器における高エネルギー重イオン核物理

- 格子QCD計算の予言:臨界温度 T_c≈ 170 ± 10 MeV (10¹² °K) 、臨 界エネルギー密度ε_c≈1 GeV/fm³でクォークとグルーオンが閉じ 込めから解放された状態、クォーク・グルーオンプラズマ状態 (QGP) への相転移がおこる。
 - ビックバンの 10⁻⁶ sec 後に存在。
 - 相対論的重イオン加速器 RHIC (Relativistic Heavy Ion Collider) を用いて実験室上で高温・高エネルギー密度QCD核 物質を生成しその性質を研究。

金原子核衝突で約600個の荷電粒子が生成

放射線研・イメージ情報ユニット合同セミナー Nov. 6th, 2003 @ RIKEN, Japan

RHIC における最初の3年間

・ ハドロン精密測定の時代

π[±], π⁰, K[±], K^{*0},K⁰, p, d, ρ⁰, φ, Λ, Ω, Ξ (+ 反粒子) ...

- <u>主な測定物理量</u>
 - ・ 粒子多重度、横方向エネル ギー
 - 粒子比、収量
 - 横運動量分布
 - 2 粒子HBT相関
 - 方位角非等方性
 - ジェット生成 etc ...

2000 (Run-01):	Au+Au 130 GeV
2001/2002 (Run-02):	Au+Au 200 GeV
	p+p 200 GeV
2002/2003 (Run-03):	d+Au 200 GeV
	p+p 200 GeV

p+p, d+Auなどの系統的な測定も行う。

PHENIX実験の目標と現状

Ta

• <u>目標:</u>

多様なチャンネルで物理量 を同時測定し、QGPのシ グナルを包括的に捕らえる。 – ハドロン、電子、ミュー オン、光子

- 過去3年間の物理測定で当 初計画の主要ハドロン測定 をほぼ終了。
 - 論文数:22

(2003年11月現在、e-print 含む)

放射線研・イメージ情報ユニット合同セミナー Nov. 6th, 2003 @ RIKEN, Japan

Conceptual Design Report (29-Jan-1993)

Quantity to be Measured	Category*	Physics Objective
$e^+e^-, \mu^+\mu^-$		
$p \rightarrow \mu^+ \mu^- / \rho \rightarrow \pi \pi, d\sigma / dp_\perp$	BCD	Basic dynamics $(T, \tau, \text{etc.})$ for a hot gas,
$\omega \to e^+e^-/\omega \to \pi\pi, d\sigma/dp_\perp$	1	transverse flow, etc.
• ϕ -meson's width and $m_{\phi \to e^+e^-}$	QGP	Mass shift due to chiral transition (C.T.) [2]
$\phi \rightarrow e^+e^-/\phi \rightarrow K^+K^-$	QGP	Branching ratio change due to C.T. [3]
ϕ -meson yield (e ⁺ e ⁻)	ES	Strangeness production $(gg \rightarrow s\bar{s})$
• $J/\psi \rightarrow e^+e^-, \mu^+\mu^-$	QGP, QCD	Yield suppression and the distortion
$\psi' \rightarrow \mu^+ \mu^-$		of $p_{\rm T}$ spectra due to Debye screening
$\Upsilon, \rightarrow \mu^+ \mu^-$		in deconfinement transition (D.T.) [4]
• $1 < m_T(l^+l^-) < 3 \text{ GeV}$	ES, QGP	Thermal radiation of hot gas, and
(rate and shape)	- 2 G	effects of QGP [5, 6, ?]
• $m_{l+l^-} > 3 \text{ GeV} \rightarrow \mu^+ \mu^-$	QCD	A-dependence of Drell-Yan, and
	QGP	thermal $\mu^+\mu^-$ [5, 6, 7, 8]
• $\sigma \rightarrow \pi\pi, e^+e^-, \gamma\gamma$	QGP	Mass shift, narrow width due to C.T. [2]
$e\mu$ coincidence		
$p e\mu$, $e(p_T > 1 \text{ GeV/c})$	QCD, QGP	cc background, charm cross section [9]
Photons		
$p 0.5 < p_T < 3 \text{ GeV/c } \gamma$	ES, QGP	Thermal radiation of hot gas, and
(rate and shape)	0.004.000	effect of QGP [6, 7]
• $p_T > 3 \text{ GeV/c } \gamma$	QCD	A-dependence of QCD γ
$\bullet \pi^0, \eta$ spectroscopy	BCD	Basic dynamics of hot gas, strangeness in η
• $N(\pi^0)/N(\pi^+ + \pi^-)$ fluctuations	QGP	Isospin correlations and fluctuations [10, 11]
• High $p_T \pi^0, \eta$ from jet	QGP	Reduced dE/dx of quarks in QGP [12]
Charged Hadrons		
• p_T spectra for π^{\pm} , K^{\pm} , p, p	BCD	Basic dynamics, flow, T , baryon density,
	3	stopping power, etc.
\checkmark	QGP	Possible second rise of $\langle p_T \rangle$ [13]
$\phi \rightarrow K^+K^-$	ES, QGP	Branching ratio, mass width [3, 14]
• K/ π ratios	ES	Strangeness production
• $\pi\pi$ + KK HBT	BCD	Evolution of the collision, R_{\perp}
	QGP	Long hadronization time $(R_{out} \gg R_{side})$ [15]
Antinuclei	QGP	High baryon susceptibility due to C.T.? [16]
p_T high p_T hadrons from jet	QGP	Reduced dE/dx of quarks in QGP [12]
Global	•	, , , , , , , , , , , , , , , , , , , ,
\bullet $N_{\rm tot}$ (total multiplicity)	BCD	Centrality of the collision
• dN/dn , $d^2N/dnd\phi$, dE_T/dn	BCD	Local energy density, entropy
	QGP	Fluctuations, droplet sizes [17]
* BCD = Basic collisions dynamic	nics FS	- Thermodynamics at early stages
QGP = Effect of QGP phase	transition. QC	D = Study of basic QCD processes.

放射線研・イメージ情報ユニット合同セミナー Nov. 6th, 2003 @ RIKEN, Japan

ハドロンの粒子識別

Nov. 6th, 2003 @ RIKEN, Japan

Tatsuya Chujo

0.8GeV<p<0.9GeV

 $J/\Psi \rightarrow e^+e^-$ in d+Au (RAW)

放射線研・イメージ情報ユニット合同セミナー Nov. 6th, 2003 @ RIKEN, Japan

Tatsuya Chujo

ミューオンアームで見た J/Ψ

放射線研・イメージ情報ユニット合同セミナー Nov. 6th, 2003 @ RIKEN, Japan

これまでにわかったことのハイライト (ハドロン物理より)

RHIC でのエネルギー密度は十分?

5.5 GeV/fm³ (200 GeV Au+Au)

相転移を起こすのに十分なエネルギー密度!

横運動量分布と流体力学計算

Data: PHENIX: NPA715(03)151; STAR: NPA715(03)458; PHOBOS: NPA715(03)510; BRAHMS: NPA715(03)478 Hydro-calculations including chemical potentials: P.Kolb and R. Rapp, Phys. Rev. C 67 (03) 044903

粒子比からわかる相図

•統計的熱力学モデル

$$\rho_i = \frac{g_i}{2\pi} \int \frac{p^2 dp}{\exp(E_i - \mu_i/T_{ch}) \pm 1}$$

・RHIC と SPS のデータ は格子QCDの phase boundary と非常に近い

放射線研・イメージ情報ユニット合同セミナー Nov. 6th, 2003 @ RIKEN, Japan

衝突初期の情報に迫る

金原子核同士の非中心衝突に着目!
 利点:
 空間的非等方性は衝突時のジオメトリーで決まるため、衝突初期の情報 (圧力勾配、状態方程式など)を含む。

実験手法:

実験的に反応平面を決定し、その平面に 対する発生粒子の方位角分布を測定。

運動量空間での非等方性: elliptic flow (v,)

dN $\propto 1 + 2v_2 \cos 2(\phi - \Psi_R)$ dф

放射線研・イメージ情報ユニット合同セミナー Nov. 6th, 2003 @ RIKEN, Japan

Tatsuya Chujo

クォークレベルでの集団運動?

<u>測定したElliptic flow (v₂) を p_Tの関数としてプロット:</u> 複雑なパターンを示し、いっけん統一性がないようにみえる。 (注) 流体力学計算は低い p_T 領域でよく記述。

もし集団運動がクォークのレベルで成立しているとすると… $p_T \rightarrow p_T / n, v_2 \rightarrow v_2 / n, n = 2$ (中間子),3 (重粒子)

High p_T ハドロンをプローブとして

なぜ "high p_τ ハドロン" ? - High p_T ハドロンは、核子を構成するパート ン同士の大きな momentum transfer により クォークとグルーオンがフラグメントする ことで作られる(ジェット生成)ので、反 応初期のパートン相のプローブとして最適。 もし何も媒質がなければ、high p_T ハドロン の収量は核子・核子衝突の重ね合わせで記 述できるはず。 <u>もし QGP が存在すれば、パートンは媒質</u> 中でのグルーオン放射によりエネルギーを 損失し、結果として high p_T のハドロン生 成が抑制される(=ジェット抑制効果)。 実験上の利点 - 同じ実験装置、衝突エネルギーで測定した p+p データを reference として用い、少ない 系統誤差でAu+Au 衝突での媒質効果を測定

できる。

π⁰と荷電ハドロンの収量抑制

最近の d+Au 実験でわかったこと

- ・ d+Au ではハドロンの収量抑制効果はみられず!
- 従ってAu+Au 中心衝突で見られた大きな収量の抑制は QGP 生成などの終状態の効果によるものと考えられる。

まとめと今後の展望

これまでのデータ収集・解析により、RHICにおける金原子核中心衝
 突でQGP生成を示唆する興味深いデータが示されている。

<u>さらなるQGP生成の確証をつかむために…</u>

- 1. 閉じ込めに敏感なプローブを用いる。
 - J/Ψ & Ψ' (c-cbar の束縛状態)の収量の変化
- 2. 電磁相互作用のみをプローブとして、反応初期の情報を みる。
 - 光子、電子、ミューオンの精密測定
- 今年の12月から高統計 Au+Au 物理ラン(J/Ψラン)
 を開始予定。エネルギースキャンや軽イオン衝突などの
 系統的測定も計画中。