

1

Particle Species Dependence of Yield Suppression in Au+Au @ RHIC

Tatsuya Chujo (RIKEN)

From our recent publications

- S.S. Adler et al. (PHENIX), nucl-ex/0305036 [Accepted, PRL, 09/23/2003].
- S.S. Adler et al. (PHENIX), nucl-ex/0307022 [Accepted, PRC, 08/21/2003].

First Three Years of RHIC Run

 High quality hadron data from RHIC!

> $\pi^{\pm}, \pi^{0}, \mathbf{K}^{\pm}, \mathbf{K}^{*0}, \mathbf{K}_{s}^{0}, \mathbf{p}, \mathbf{d}, \rho^{0}, \phi,$ Λ, Ω, Ξ (+ anti-particles)

– Hadron Measurements

- p_T distribution (soft and hard process).
- Particle ratio, yield, $< p_T >$.
- HBT correlations.
- Event anisotropy (v₂).
- Jet physics.

2000 summer: Au+Au 130 GeV			
2001/2002:	Au+Au	200	GeV
	p+p	200	GeV
2002/2003:	d+Au	200	GeV
	p+p	200	GeV

≈ BNL post-doc

Hard Scattered Partons

- Used <u>"calibrated"</u> probe (p+p data).
- Hard scatterings in nucleon collisions
 produce jets of particles.
 - hadron structure function
 - hard scattering parton (pQCD)
 - fragmentation of partons
- In the presence of a color-deconfined medium, the partons lose their energy (~GeV/fm) via gluon bremsstrahlung.
 - "Jet Quenching"∝ Color Charge Density

"gluonometer"

How Quantify the Nuclear Modification

• Any departures from the expected binary collision scaling (N_{coll}) behavior provide the information on the strong interacting medium in *AA* collisions.

R_{AA} vs. R_{dA} for h^{\pm} and π^{0}

- π^0 and charged are largely suppressed in central Au+Au at high p_T .
- No Suppression in d+Au, instead small enhancement observed !
- d-Au results rule out CGC (initial sate effect) as the explanation for high p_T suppression of hadrons in AuAu central.

RHIC High p_T Results

π^0 and h^{\pm}

- 1. High p_T yield suppression in central Au+Au.
- 2. Disappearance of away-side jet in central Au+Au (STAR publication).
- 3. Absence of high p_T suppressions in d+Au (cold matter).

→ Suppression in AuAu is the final state effect!

Baryons are also suppressed in central Au+Au?

IN THIS TALK ...

- Focused on proton and anti-proton production in Au+Au @ measured by PHENIX experiment @ $\sqrt{s_{NN}}$ = 200 GeV.
 - 1. Data Analysis

2. Experimental Results

- Proton p_T spectra vs. centrality.
- p/π ratio.
- Scaling behavior and suppression factor (R_{CP}).
- Comparison with results for π^0 and inclusive charged hadrons.

3. Discussion

- Parton Recombination and Fragmentation Model.
- Hydrodynamics + Jet Model.
- Cronin effect from d+Au data.

4. Summary

Part I

Identified Charged Particle Data Analysis

Collision Centrality Determination

- Centrality selection : Used charge sum of Beam-Beam Counter (BBC, |η|=3~4) and energy of Zero-Degree Calorimeter (ZDC) in minimum bias events (92% of total inelastic cross sections).
- Extracted N_{coll} and N_{part} based on Glauber model.

Event and Track Selections

- Event Selection
 - Minimum bias events
 - Z vertex cut : ±30 cm
 - Total number of events :
 20 M minimum bias (x 140 of 130 GeV analysis).

Track Selection

- Drift chamber tracks with z information from PC1.
- Track association at TOF within 2 σ window in both ϕ and z.
- Fiducial cut in z and ϕ directions to remove the edge effect.

Charged Hadron PID

Detectors for hadron PID

- DCH+PC1+TOF+BBC
- $\Delta \phi = \pi/8$, -0.35 < η < 0.35
- Momentum Resolution

 $\delta p \, / \, p \approx 0.7\% \oplus 1.0\% \times p \; (\text{GeV}/c)$

- TOF resolution $\sigma_{\rm TOF}$ ~ 115 ps.
- Hadron PID in *m*² vs. *p* space with asymmetric PID cuts.
 - 0.2< π < 3.0 GeV/c ,
 - 0.4< K < 2.0 GeV/c,
 - 0.6< p < 4.5 GeV/c.
- BG contamination level :
 - 10% K in π @ 3 GeV/c,
 - 10% π in K @ 2 GeV/c,
 - 5% K in p @ 4 GeV/c.

Detector Occupancy Correction

p and pbar spectra are corrected to remove the feed-down contribution from weak decays using HIJING.

Assumptions:

- 1. pbar/p, Λ bar/ Λ ratios are independent of p_T and centrality.
- 2. m_T scaling for high p_T region.
- 3. No drastic change from 130 GeV to 200 GeV.

Tuned HIJING (central) output to reproduce Λ/p (Λ bar/pbar) measured ratio at 130 GeV AuAu.

Estimate fractional contributions of p (pbar) from Λ (Λ bar) decay in all measured p (pbar).

Final p_T Spectra

Invariant Yield

Part II

Experimental Results on Identified Particles

p_T Spectra (central vs. peripheral)

Central

- low p_T slopes increase with particle mass
- proton and antiproton yields equal the pion yield at high p_T.

Peripheral

- mass dependence is less pronounced
- ➢ similar to pp

$m_{T} - m_{0}$ Spectra

p_T Spectra for All 4 Experiments and Hydrodynamical Model

Data: PHENIX: NPA715(03)151; STAR: NPA715(03)458; PHOBOS: NPA715(03)510; BRAHMS: NPA715(03)478 Hydro-calculations including chemical potentials: P.Kolb and R. Rapp, Phys. Rev. C 67 (03) 044903

Hydrodynamics describes all pT spectra up to 2 GeV/c.

Proton and anti-proton spectra in AuAu 200 GeV

- Corrected for weak decay feed-down effect (~40% at 0.6 GeV/c, ~25% at 4 GeV/c).
- Strong centrality dependence in spectra shape at low p_T (< 1.5 GeV/c).

PH*ENIX

Consistency Check (Charged vs. PID Spectra)

- Identified spectra were converted from $y \rightarrow \eta$.
- Compared to 2 GeV/c where kaon runs out.

p vs. π Spectra in Au+Au @ 200 GeV

 π^{\pm} vs. π^{0} : Good agreement within 5-15%

- Clearly seen $p-\pi$ merging at $p_T \sim 2$ GeV/c in central.
- No $p-\pi$ merging in peripheral.
- Suggested significant fraction of p, pbar at pt = 1.5 4.5 GeV/c in central.

p/π ratio vs. p_T and centrality

- Both p/π and $pbar/\pi$ ratios are enhanced compared to peripheral Au+Au, p+p and e⁺e⁻ at p_T = 1.5 ~ 4.5 GeV/c.
- Consistent with gluon/quark jet fragmentation in peripheral AuAu (> 3 GeV/c).

RIKEN Internal Seminar Oct. 7th, 2003 @ RIKEN

N_{coll} scaled p_T spectra

Tatsuya Chujo

Centrality dep. of R_{AA} for π^0 and h

• R_{AA} is well below 1 for both charged hadrons and neutral pions in central.

• Suppression is larger in central events.

•The neutral pions fall below the charged hadrons since they do not contain contributions from protons and kaons.

PHENIX AuAu 200 GeV π^{0} data: PRL 91 072301 (2003), nucl-ex/0304022. charged hadron (preliminary) : NPA715, 769c (2003).

Centrality Dependence of R_{CP}

- Proton data scales with N_{coll} for all centrality bins (accidental?).
- Charged pions: decrease with N_{part}, kaons: between pions and protons. RIKEN Internal Seminar Oct. 7th, 2003 @ RIKEN

STAR Results

Tatsuya Chujo

Particle Composition at p_T > 5 \text{ GeV}

PHENIX (Au+Au) nucl-ex/0305036

Part III

Interpretations (Recombination vs. Hydro)

Recombination/Fragmentation Model

Fries, Muller, Nonaka, Bass (Fragmentation/Recombination model) nucl-th/0306027

- Quarks and anti-quarks recombine into hadrons locally "at an instant"
 - qq-bar → Meson
 - qqq \rightarrow Baryon
- Thermal part (quark only) and power law tail (quarks and gluons) from pQCD.
- Modification of fragmentation function " $D_{i \rightarrow h}(z)$ " by energy loss of partons.
- Competition between recombination and fragmentations mechanism.
- Quark degrees of freedom play an important role.

FIG. 1. Schematic conception of contrasting hadronization mechanisms for (a) a superposition of hadronic jets and (b) a plasma with a jet caused by a fast quark escaping.

Lepez, Parikh, Siemens, PRL 53 (1984) 1216

Recombination Tested

The *complicated* observed flow pattern in $v_2(p_T)$ $d^2n/dp_T d\phi \sim 1 + 2 v_2(p_T) \cos (2 \phi)$ is predicted to be *simple* at the quark level under $p_T \rightarrow p_T / n$, $v_2 \rightarrow v_2 / n$, n = 2,3 for meson,baryon *if* the flow pattern is established at the quark level

Another Approach (Hydro + Jet Model)

Model Comparison (1) - R_{CP} -

- Recombination model, Hydro-jet model
 ⇒ Predicted baryon enhancement is limited up to ~ 4-5 GeV/c.
- Qualitative agreement with data for both models.

Model Comparison (2) - p/π vs. p_T -

- Both Parton Recombination and Hydro+Jet models reproduce p/π ratio (p_T and centrality dep.) qualitatively.
- Both models predict p/π enhancement is limited < 5 GeV/c.
- Another scenarios: Different formation time between baryons and mesons ?
 or Baryon Junction Mechanism ?

(Vitev, Gyulassy PRC 65, 041902, 2002)

How about the Cronin effect ? \rightarrow dAu results.

R_{dA} for charged hadrons and π^0

- <u>Different behavior between π^0 and charged again</u> at $p_T = 1.5 - 5.0$ GeV/c!
- d+Au data suggests the flavor dependent Cronin RIKEN Internal Seminar Offecta RIKEN
 Tatsuya Chujo

R_{dAu} and p/h for π , K, p in d+Au (STAR)

- Small particle species dependence of Cronin effect, compared to lower energies.
- Same (p+pbar)/h ratio in dAu as p+p.
- Indicated the Cronin effect alone is not enough to account for the relative baryon enhancement in AuAu central.

Proton and anti-proton (Λ)

- 1. Observed baryon enhancement relative to pion in central Au+Au at intermediate p_T (2 4 GeV/c).
- **2.** Absence of yield suppression for p and pbar (Λ) at intermediate p_T .
- 3. dAu results suggest that the Cronin effect alone is not enough to account for the relative baryon enhancement in AuAu central.
- 4. Both Parton Recombination and Hydro+Jet models reproduce p/π ratio (p_T and centrality dep.) qualitatively and predicted that enhancement is limited < 5 GeV/c.

Partonic Flow

Tatsuya Chujo

Azimuthal Distributions in d+Au (STAR)

• Near-side: p+p, d+Au, Au+Au similar

• Back-to-back: Au+Au strongly suppressed relative to p+p and d+Au

Suppression of the back-to-back correlation in central Au+Au is a finalstate effect

p/p ratio vs. p_T

Constant within the experimental errors

• Baryon Junction model agrees well with the measured p_T dependence of pbar/p ratio.

• Parton recombination model also reproduce the ratio and its flat p_T dependence.

Jet Quenching Effect

Au+Au $\rightarrow \pi^0$ +X at $\sqrt{s_{NN}}$ = 200 GeV

CGC Model: Initial Effects

- Gluon Saturation
 - (Color Glass Condensate: CGC)

Wave function of low x gluons overlap; the self-coupling gluons fuse, **saturating** the density of gluons in the initial state.

Braking QCD factorization!

 \rightarrow gets N_{ch} right!

hep-ph/0212316; D. Kharzeev, E. Levin, M. Nardi

D.Kharzeev et al., PLB 561 (2003) 93

Baryon Junction

Centrality Dependence

- Dramatically different and opposite centrality evolution of Au+Au experiment from d+Au.
- High p_T hadron suppression in AuAu is <u>clearly a final state effect.</u>