Hadron Production at RHIC - Proving Hot and Dense Matter -

Tatsuya Chujo (RIKEN) for the PHENIX Collaboration

Heavy-Ion Program at RHIC

- Lattice QCD predicts transition to deconfinement sate of quarks and gluons occurs at:
 - − $T_c \sim 170 \pm 10$ MeV (10¹² °K) and $ε_c \approx 1$ GeV/fm³.
 - As existed ~ 1 micro sec after the Big Bang.
- RHIC is designed to create very high temperature and density matter in the laboratory.

First three years of RHIC run

 High quality hadron data from RHIC experiments!

 $\pi^{\pm}, \pi^{0}, \mathbf{K}^{\pm}, \mathbf{K}^{*0}, \mathbf{K}_{s}^{0}, \mathbf{p}, \mathbf{d}, \rho^{0}, \phi,$ Λ, Ω, Ξ (+ anti-particles) ...

- Hadron Measurements

- Particle ratio, yield, <p_>.
- p_T distribution (soft and hard process).
- HBT correlations.
- Event anisotropy (v₂).
- Jet physics. etc ...

2000 summer (Run-01):	Au+Au	130 GeV
2001/2002 (Run-02):	Au+Au	200 GeV
	p+p	200 GeV
2002/2003 (Run-03):	d+Au	200 GeV
	p+p	200 GeV

Brazil	University of São Paulo, São Paulo DLI	/
China	Academia Sinica, Taipei, Taiwan	1
	China Institute of Atomic Energy, Beijing	
	Peking University, Beijing	
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand	
	Dapnia, CEA Saclay, Gif-sur-Yvette	
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay	
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau	
	SUBATECH, Ecòle des Mines at Nantes, Nantes	
Germany	University of Münster, Münster	
Hungary	Central Research Institute for Physics (KFKI), Budapest	
	Debrecen University, Debrecen	
	Eötvös Loránd University (ELTE), Budapest	
India	Banaras Hindu University, Banaras	
	Bhabha Atomic Research Centre, Bombay	
Israel	Weizmann Institute, Rehovot	
Japan	Center for Nuclear Study, University of Tokyo, Tokyo	
	Hiroshima University, Higashi-Hiroshima	
	KEK, Institute for High Energy Physics, Tsukuba	_
	Kyoto University, Kyoto 12	2
	Nagasaki Institute of Applied Science, Nagasaki	_
	RIKEN, Institute for Physical and Chemical Research, Wako	
	RIKEN-BNL Research Center, Upton, NY USA	٩
	University of Tokyo, Bunkyo-ku, Tokyo	
	Tokyo Institute of Technology, Tokyo	
	University of Tsukuba, Tsukuba	
	Waseda University, Tokyo	
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul	
	Kangnung National University, Kangnung	
	Korea University, Seoul	
	Myong Ji University, Yongin City	
	System Electronics Laboratory, Seoul Nat. University, Seoul	
	Yonsei University, Seoul	
Russia	Institute of High Energy Physics, Protovino	
	Joint Institute for Nuclear Research, Dubna	
	Kurchatov Institute, Moscow	
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg	
1720 C. de 1820 C. de 1	St. Petersburg State Technical University, St. Petersburg	
Sweden	Lund University, Lund	

12 Countries; 57 Institutions; 460 Participants*

Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN *as of July 2002

PHENIX Run History

Run	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot}	p-p Equivalent	Data Size
01	2000	Au-Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au-Au	200	24 μb ⁻¹	170M	1.0 pb ⁻¹	10 TB
		p-p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d-Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
		p-p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB

RCNP workshop Oct 27th, 2003 @ Osaka, Japan

PSS: RICH PSS: PSC West UCS UCS South MailD

PHENIX Detector

Central Magnet

BBOMVD

TEC

PHENIX Goals and Achievements

- Goal: To measures all possible signatures at once for proving QGP.
 - Hadrons, leptons and photon.
- Accomplished baseline measurements by 3 RHIC runs.
 - 22 publications (including eprint, as of Oct. 27. 2003)
 - Much remains
 - Truly rare probes in Au-Au, Species & energy scans.

Conceptual Design Report (29-Jan-1993)

Quantity to be Measured	Category*	Physics Objective
$e^+e^-, \mu^+\mu^-$	62 16 - 2020	
• $\rho \to \mu^+ \mu^- / \rho \to \pi \pi, d\sigma / dp_\perp$	BCD	Basic dynamics $(T, \tau, \text{ etc.})$ for a hot gas,
$\omega \to \mathrm{e^+e^-}/\omega \to \pi\pi, d\sigma/dp_\perp$	1	transverse flow, etc.
$\checkmark \phi$ -meson's width and $m_{\phi \to e^+e^-}$	QGP	Mass shift due to chiral transition (C.T.) [2
$\phi \rightarrow e^+e^-/\phi \rightarrow K^+K^-$	QGP	Branching ratio change due to C.T. [3]
∅-meson yield (e ⁺ e [−])	ES	Strangeness production $(qq \rightarrow s\bar{s})$
$\sqrt{J/\psi} \rightarrow e^+e^-, \mu^+\mu^-$	QGP, QCD	Yield suppression and the distortion
$\psi' \rightarrow \mu^+ \mu^-$		of $p_{\rm T}$ spectra due to Debye screening
$\Upsilon, \rightarrow \mu^+ \mu^-$	3	in deconfinement transition (D.T.) [4]
• $1 < m_T(l^+l^-) < 3 \text{ GeV}$	ES, QGP	Thermal radiation of hot gas, and
(rate and shape)	a 100 K	effects of QGP [5, 6, ?]
• $m_{l+l-} > 3 \text{ GeV} \rightarrow \mu^+ \mu^-$	QCD	A-dependence of Drell-Yan, and
	QGP	thermal $\mu^+\mu^-$ [5, 6, 7, 8]
• $\sigma \to \pi\pi, e^+e^-, \gamma\gamma$	QGP	Mass shift, narrow width due to C.T. [2]
$e\mu$ coincidence	10	
• $e\mu$, $e(p_T > 1 \text{ GeV/c})$	QCD, QGP	cc background, charm cross section [9]
Photons		
$\bigvee 0.5 < p_T < 3 \text{ GeV/c } \gamma$	ES, QGP	Thermal radiation of hot gas, and
(rate and shape)		effect of QGP [6, 7]
$V_{PT} > 3 \text{ GeV/c } \gamma$	QCD	A-dependence of QCD γ
$\checkmark \pi^0, \eta$ spectroscopy	BCD	Basic dynamics of hot gas, strangeness in η
• $N(\pi^0)/N(\pi^+ + \pi^-)$ fluctuations	QGP	Isospin correlations and fluctuations [10, 11
\checkmark High $p_T \pi^0, \eta$ from jet	QGP	Reduced dE/dx of quarks in QGP [12]
Charged Hadrons		
$\bigvee p_T$ spectra for π^{\pm} , K [±] , p, \bar{p}	BCD	Basic dynamics, flow, T, baryon density,
		stopping power, etc.
	QGP	Possible second rise of $< p_T > [13]$
$\checkmark \phi \rightarrow K^+K^-$	ES, QGP	Branching ratio, mass width [3, 14]
$\mathbf{V} \mathbf{K}/\pi$ ratios	ES	Strangeness production
$\pi\pi$ + KK HBT	BCD	Evolution of the collision, R_{\perp}
0.0	QGP	Long hadronization time $(R_{\text{out}} \gg R_{\text{side}})$ [15]
• Antinuclei	QGP	High baryon susceptibility due to C.T.? [16
\checkmark high p_T hadrons from jet	QGP	Reduced dE/dx of quarks in QGP [12]
Global	19 (1997) (1997)	NUMBER OF STREET
$\bigvee N_{\rm tot}$ (total multiplicity)	BCD	Centrality of the collision
$\sqrt{dN/d\eta}, d^2N/d\eta d\phi, dE_T/d\eta$	BCD	Local energy density, entropy
	QGP	Fluctuations, droplet sizes [17]
		1 m) 1 1 1 1
* BCD = Basic collisions dynamic	nics. ES	5 = Thermodynamics at early stages.

Outline of this talk

We present the results on hadron production (mainly from PHENIX experiment) and overview the current understanding of hot and dense matter produced at RHIC from hadron production viewpoint.

- Physics Topics (in different p_T regions) -

- ➢ Low p_⊤ (< 2 GeV/c)</p>
 - Bulk properties : Energy density and charged multiplicity.
 - Hydrodynamical behavior and chemical properties in AuAu.
 - Space-time evolution of the system (HBT correlation).
 - Event anisotropy (elliptic flow v_2).
- > High p_T (5 > GeV/c)
 - Jet quenching in Au+Au
 - d+Au experiment
- > Intermediate p_T (2 5 GeV/c)
 - Scaling behavior of baryon and particle compositions.

PHENIX Event Characterization

- Centrality selection : Used charge sum of Beam-Beam Counter (BBC, |η|=3~4) and energy of Zero-degree calorimeter (ZDC) in minimum bias events (92% of total inelastic cross sections).
- Extracted N_{coll} and N_{part} based on Glauber model.

RCNP workshop Oct 27th, 2003 @ Osaka, Japan

PHENIX Hadron PID

Tatsuya Chujo

(1) Particle Production at low p_T - Soft Physics -

Bulk Effects

- Equilibration
- Equation of State
- Spatial and Temporal extents

Energy Density High Enough?

→ *E* ≥ 4.6 GeV/fm³ (130 GeV Au+Au) 5.5 GeV/fm³ (200 GeV Au+Au)

Well above predicted transition!

Tatsuya Chujo

Charged Particle Multiplicity

In initial volume ~ V_{nucleus} Rescattering should be important!

Tatsuya Chujo

PID p_T Spectra

Central

- low p_T slopes increase with particle mass
- proton and antiproton yields equal the pion yield at high p_T.

Peripheral

- mass dependence is less pronounced
- ➢ similar to pp

$m_{T} - m_{0}$ Spectra

Blast-wave fit and kinetic freeze-out PHIENIX

E. Schnedermann, J. Sollfrank, and U. Heinz, Phys. Rev. C 48, 2462 (1993)

$$\frac{dN}{m_T dm_T} \propto \int_0^R r \cdot dr \cdot m_T \cdot I_0 \left(\frac{p_T sinh\rho}{T}\right) \cdot K_1 \left(\frac{m_T sinh\rho}{T}\right)$$

$$\beta = \beta_{max} \left(\frac{r}{R}\right)^{1/2} \qquad \rho = \tanh^{-1}\beta$$
Most central bin Positive particles
$$0.24 \qquad \rho = \tanh^{-1}\beta$$
Au+Au 200 GeV (central)
Freeze-out Temperature
$$T_{fo} = 110 \pm 23 \text{ MeV}$$
Transverse flow velocity
$$\beta_T = 0.7 \pm 0.2$$

$$(<\beta_T>= 0.47)$$
QM02 talk, J. Burward-Hoy

p_T Spectra for All 4 Experiments and Hydrodynamical Model

Data: PHENIX: NPA715(03)151; STAR: NPA715(03)458; PHOBOS: NPA715(03)510; BRAHMS: NPA715(03)478 Hydro-calculations including chemical potentials: P.Kolb and R. Rapp, Phys. Rev. C 67 (03) 044903

Hydrodynamics describes all p_T spectra up to 2 GeV/c.

Evidence for equilibrated final state PH^{*}ENIX</sup>

• Almost complete reconstruction of hadronic state when system decouples by the statistical thermal model.

Fit yields vs. mass (grand canonical ensemble)

 T_{ch} = 177 MeV, μ_B = 29 MeV @ 200 GeV central AuAu.

\textbf{T}_{ch} vs. μ_{B} from thermal model

Statistical thermal model

$$\rho_i = \frac{g_i}{2\pi} \int \frac{p^2 dp}{\exp(E_i - \mu_i/T_{ch}) \pm 1}$$

• RHIC and SPS points are very close to the phase boundary of lattice QCD.

Elliptic flow is expected to be sensitive to the early stage of the collision.

 v_2 : 2nd harmonic coefficient of a Fourier expansion in ϕ .

\sqrt{s} dependence of integrated v_2

• Smooth increase from AGS-SPS-RHIC.

• Highest v₂ @ RHIC: qualitative agreement with hydro model.

p_T dependence of v_2

 Good agreement with QGP type EOS at low p_T.
 Start to deviate from hydro calc. at p_T > 2 GeV/c.
 → Data shows a different p_T dependence between meson and baryon!

Universality of v₂(p_T) ?

The *complicated* observed flow pattern in $v_2(p_T)$ is predicted to be *simple* at the quark level under $p_T \rightarrow p_T / n$, $v_2 \rightarrow v_2 / n$, n = 2,3 for meson, baryon *if* the flow pattern is established at the quark level

Proving the spatial and temporal extents of source: HBT correlation.

Bertsch-Pratt parameterization

$$C_{2} = 1 + \lambda \exp\left(-R_{\text{side}}^{2}q_{\text{side}}^{2} - R_{\text{out}}^{2}q_{\text{out}}^{2} - R_{\text{long}}^{2}q_{\text{long}}^{2}\right)$$

$$R_{\text{out}} = \left\langle (\tilde{x} - \beta_{\perp} \tilde{t})^2 \right\rangle^{1/2}$$
$$R_{\text{side}} = \left\langle \tilde{y}^2 \right\rangle^{1/2}$$
$$R_{\text{long}} = \left\langle \tilde{z}^2 \right\rangle^{1/2}$$

K_T dependence of R

QM02 talk, A. Enokizono

•Applied the standard full Coulomb correction.

• All R parameters decrease as a function of k_T \Rightarrow consistent with collective expansion picture (x-p correlation with collective flow).

Comparison with hydrodynamic model

Hydrodynamic calculation by U.Heinz and P. F. Kolb (hep-ph/0204061)

Hydro w/o FS

• Standard initialization and freeze out which reproduce single particle spectra.

Hydro at e_{crit}

• Assuming freeze out directly at the hadronization point. $(e_{dec} = e_{crit})$

R_{out}/R_{side} vs. K_T

Tatsuya Chujo

Revisit Coulomb Corrections!

• Taking into account the contribution from the long-lived resonance.

- \rightarrow "Core-Halo" source picture ("Sinyukov's fit").
- → Fraction of coulomb corr. can be determined by data ($\pi^+\pi^-$ correlation).

R_{out}/R_{side} (full coulomb) < R_{out}/R_{side} (partial coulomb)

- Work in progress on pair efficiency correction.
- Final results will appear soon!

(2) High p_T Particle Production - Hard Process -

- Jet quenching effect.
- Control experiment: d+Au

Hard Scattered Partons

- Used <u>"calibrated"</u> probe (p+p data).
- Hard scatterings in nucleon collisions
 produce jets of particles.
 - hadron structure function
 - hard scattering parton (pQCD)
 - fragmentation of partons
- In the presence of a color-deconfined medium, the partons lose their energy (~GeV/fm) via gluon bremsstrahlung.
 - "Jet Quenching"
 ∞ Color Charge Density

"gluonometer"

How Quantify the Nuclear Modification

• Any departures from the expected binary collision scaling (N_{coll}) behavior provide the information on the strong interacting medium in *AA* collisions.

π^0 spectra pp @ 200 GeV : Baseline

- π^0 measurement in same experiment allows us the study of nuclear effect with less systematic uncertainties.
- Good agreement with NLO pQCD
- **Reference for Au+Au** spectra

PRL accepted, hep-ex/0304038

<u>π⁰ and *h* spectra AuAu @ 200 GeV</u>

PHENIX AuAu 200 GeV π^{0} data: PRL 91, 072301 (2003), nucl-ex/0304022. charged hadron: submitted PRC, nucl-ex/0308006.

R_{AA} for π^0 and charged hadron

 R_{AA} is well below 1 for both charged hadrons and neutral pions.

• The neutral pions fall below the charged hadrons since they do not contain contributions from protons and kaons (will be discussed later).

PHENIX AuAu 200 GeV π^{0} data: PRL 91, 072301 (2003), nucl-ex/0304022. charged hadron: submitted PRC, nucl-ex/0308006.

Initial state effect or Final state effect?

- d+Au Experiment -

d+Au: Control Experiment

- The "Color Glass Condensate" model predicts the suppression in **both Au+Au and d+Au** (due to the initial state effect).
- d+Au experiment can tell us whether the observed hadron suppression at high p_T central Au+A is the final state effect or initial state effect.

d+Au Spectra

PHENIX: PRL 91, 072303 (2003), nucl-ex/0306021 1/N_{evt} 1/2 π 1/p_T dN/dp_Tdy (1/GeV² 0 0 0 0 0 0 0 0 0 ∖s_{NN}=200 GeV minimum bias d+Au d+Au data d+Au data pp ref. pp ref. fit to pp π**0** h[±] 10⁻⁸ 10⁻⁹山 \mathbf{u}_1 10 9 0 p_T (GeV/c)

- Final spectra for charged hadrons and identified pions.
- Data span 7 orders of magnitude.

RCNP workshop Oct 27th, 2003 @ Osaka, Japan

R_{AA} vs. R_{dA} for charged hadrons and π^0

No Suppression in d+Au, instead small enhancement observed (Cronin effect)!!

d-Au results rule out CGC as the explanation for high p_T Suppression of hadrons in AuAu central.

RCNP workshop Oct 27th, 2003 @ Osaka, Japan

Tatsuya Chujo

Centrality Dependence

- Dramatically different and opposite centrality evolution of Au+Au experiment from d+Au control.
- High p_T hadron suppression in AuAu is clearly a final state effect.

(3) Intermediate p_T region

Proton and anti-proton spectra in AuAu at 200 GeV

- Corrected for weak decay feed-down effect (~40% at 0.6 GeV/c, ~25% at 4 GeV/c).
- Strong centrality dependence in spectra shape at low p_{T} (< 1.5 GeV/c).

N_{coll} scaled p_T spectra for p and pbar

Tatsuya Chujo

- Clearly seen p- π merging at p_T ~ 2 GeV/c in central.
- No p- π merging in peripheral.
- Suggested significant fraction of p, pbar at pt = 1.5 4.5 GeV/c in central.

Central-to-Peripheral Ratio (R_{CP}) vs. p_T

PHENIX: PRL 91, 172301 (2003), nucl-ex/0307022

p/π ratio vs. p_T and centrality

- Both p/π and $pbar/\pi$ ratios are enhanced compared to peripheral Au+Au, p+p and e⁺e⁻ at p_T = 1.5 ~ 4.5 GeV/c.
- Consistent with gluon/quark jet fragmentation in peripheral AuAu (> 3 GeV/c).

Particle composition beyond 5 GeV ...

STAR Results

- Similar behavior has been observed in Λ .
- Limited behavior of baryon enhancement (< ~4 GeV/c).

Fragmentation/Recombination model

Fries, Muller, Nonaka, Bass, nucl-th/0306027

- Quarks and anti-quarks recombine into hadrons locally "at an instant"
 - qq-bar → Meson
 - qqq → Baryon
- Thermal part (quark only) and power law tail (quarks and gluons) from pQCD.
- Modification of fragmentation function " $D_{i \rightarrow h}(z)$ " by energy loss of partons.
- Competition between recombination and fragmentations mechanism.
- Quark degrees of freedom play an important role.

FIG. 1. Schematic conception of contrasting hadronization mechanisms for (a) a superposition of hadronic jets and (b) a plasma with a jet caused by a fast quark escaping.

Lepez, Parikh, Siemens, PRL 53 (1984) 1216

Another Approach (Hydro + Jet Model)

Model Comparison (1) - R_{CP} -

- Recombination model, Hydro-jet model
 ⇒ Predicted baryon enhancement is limited up to ~ 4-5 GeV/c.
- Qualitative agreement with data for both models.

RCNP workshop Oct 27th, 2003 @ Osaka, Japan

Model Comparison (2) - p/π vs. p_T -

- Both Parton Recombination and Hydro+Jet models reproduce p/π ratio (p_T and centrality dep.) qualitatively.
- Both models predict p/π enhancement is limited < 5 GeV/c.
- Another scenarios: Different formation time between baryons and mesons ?
 or Baryon Junction Mechanism ?

(Vitev, Gyulassy PRC 65, 041902, 2002)

Summary (1)

Ε _T , N _{ch}	Above the critical density of deconfined state predicted by the LQCD.
PID spectra	Well described by hydrodynamic model up to 2 GeV/c in p_T .
Particle Yield	Well reproduced by the statistical thermal model. (T_{ch} , μ_B): close to the phase boundary of QGP predicted by LQCD.
Pion HBT	R vs. K _T : consistent with hydro, but large discrepancy in magnitudes. Suggests the importance of partial Coulomb correction.
Elliptic flow	Good agreement with hydrodynamics up to 2 GeV/c. Observed Complicated $v_2(p_T)$ pattern (might be explained by the partonic flow picture).

Summary (2)

High p _⊤ Spectra (Au+Au)	Both neutral and inclusive charged hadrons are largely suppressed in AuAu central collisions.
High p _⊤ Spectra (d+Au)	Suppressions are not observed in d+Au, instead there is a small enhancement, which suggests the suppression in AuAu is the final state effect.
Intermediate p _T in Au+Au	Proton and anti-proton spectra show the different scaling behavior from pions: NO suppression. Strong centrality dependence of p/π ratio. Recombination, Hydro+Jet, (baryon junction) reproduce the data qualitatively.

What's Next

- We must investigate other probes that look deeply into the medium to characterize it.
- The Rare Processes the Medium:
 - Heavy Quark States
 - Dissolution of $J/\Psi \& \Psi$, the bound states of charm-anticharm quarks probes quark deconfinement.
 - Electromagnetic Probes (no strong interaction)
 - Lack of strong interaction allows them to penetrate the black medium and see through the hadronic veil
 - Direct Photons, e⁺e⁻, μ⁺μ⁻
- PHENIX plans to make these measurements in the next high luminosity Au+Au run.

See next talk, K. Shigaki.

Backup Slides

STAR Blast-wave fit

RCNP workshop Oct 27th, 2003 @ Osaka, Japan

Tatsuya Chujo

- Small particle species dependence of Cronin effect, compared to lower energies.
- Same (p+pbar)/h ratio in dAu as p+p.
- Indicated the Cronin effect alone is not enough to account for the relative baryon enhancement in AuAu central (discussed later).

Alternative: Initial Effects

- Gluon Saturation
 - (color glass condensate: CGC)

Wave function of low x gluons overlap; the self-coupling gluons fuse, saturating the density of gluons in the initial state.

(gets N_{ch} right!)

hep-ph/0212316; D. Kharzeev, E. Levin, M. Nardi

D.Kharzeev et al., PLB 561 (2003) 93

• Multiple elastic scatterings (Cronin effect)

Wang, Kopeliovich, Levai, Accardi

• Nuclear shadowing

Broaden p_T

R vs. N_{part}^{1/3}

Fit with $p0+p1*N_{part}^{1/3}$

R_{out} weaker increase with Npart

RCNP workshop Oct 27th, 2003 @ Osaka, Japan

Tatsuya Chujo