Hadron Production at RHIC-PHENIX

Tatsuya Chujo (BNL) for the PHENIX Collaboration

managed by Brookhaven Science Associates for the U.S. Department of Energy

Space-time Evolution in Relativistic Heavy Ion Collisions

Hadrons reflect the bulk property of created system and its evolution!

Outline

In this presentation, we present the recent preliminary results in

Au+Au collisions, $\sqrt{s_{NN}} = 130$ GeV @ mid-rapidity $|\eta| < 0.35$, Measured at RHIC-PHENIX.

- 1. Experimental setup and PID by TOF.
- 2. Identified charged hadron spectra.
 - Spectra shape
 - Inverse slope parameter vs. centrality
 - Particle ratios
- 3. HBT $\pi^+\pi^+$, $\pi^-\pi^-$ correlations.

PHENIX Detector Setup

In this analysis, we use

• Beam-Beam Counter (BBC)

z vertex, start timing for TOF

- Time-of-Flight (TOF) stop timing measurement
- Drift Chamber (DC)

momentum, flight path length

• Pad Chamber 1 (PC1)

additional track z information to Dch

Reality of PHENIX

Particle Identification by TOF

PID Cut Criteria

Centrality Classes

- Used correlation between BBC charge and ZDC energy to define centrality.
- Extracted N_{part} based on Glauber model.

Centrality	Participants
0-5%	347 ± 15%
5-15%	271 ± 15%
15-30%	178 ± 15%
30-60%	76 ± 15%
60-80%	19 ± 60%
80-92%	5 ± 60%

JO 03/27/2001 @ JPS RHIC symposium, Chuo Univ., Tokyo

PHENIX Results : Minimum bias p_T spectra

- pions yield ~ proton/pbar yield
 @ p_T~ 2 GeV/c.
- How m_T spectra look like? \rightarrow next slide

particle	p _⊤ range
р	0.3 - 1.8 GeV/c
К	0.5 - 1.6 GeV/c
proton	0.5 - 3.0 GeV/c
pbar	0.8 - 3.0 GeV/c

Minimum bias m_T spectra

 $\frac{1}{2}$

- In 0.2 < $m_t m_0 < 1.2$ [GeV/c²], spectra for all species scaled by single exp. function.
- Similar inverse slope for π and K.

• $T_{\text{proton}} > T_{\pi}$

Fitting results by single exp. function

$$\frac{1}{m_T} \frac{dN}{dm_T} \propto A \exp\left(-\frac{m_T - m_0}{T}\right)$$

Centrality Dependence of m_T Spectra for π

- Single exponential scaling at 0.2 -1.0 GeV in m_t-m₀ (soft region). (power low shape in most peripheral event ?)
- T_{π} (central 0-5%) ~ 210 MeV ±5 (stat.) ±15 (sys.) MeV.
- Applied same parameterization for kaons and (anti-) protons.

PHENIX Centrality dependence of m_{τ} slope

Weak centrality dependence for T_{π} and T_{κ} .

Gradual rise of T_{proton} and T_{pbar} from peripheral to mid-central collisions.

$$T_{\pi} \cong T_{\rm K} < T_{\rm proton}$$

Mass Dependence of T

Comparison with CERN Energy

- The slopes of pions and protons at RHIC are higher than that of Pb+Pb collisions at SPS.
- Large transverse flow @ RHIC than SPS?

PHKENIX K⁺/K⁻ and pbar/p ratio vs. centrality

- No clear dependence as a function of centrality (N_{part}) in both K⁺/K⁻ and pbar/p ratios.
- K+/K- @5% central = 1.29 \pm 0.07(stat) \pm 0.19(sys.)
- pbar/p = $0.54 \pm 0.01(stat.) \pm 0.08(sys.)$

Beam Energy Dependence of ratios

Both ratios are closing to 1.0 from AGS, SPS to RHIC energy.

RHIC data point in μ_B -T plane

HBT correlations

Extraction of source size "R" using quantum interferometry

Particle emitting source

Correlation function C₂

 $C_{2} \equiv \frac{P(p_{1}, p_{2})}{P(p_{1}) \cdot P(p_{2})}$ Fourier transform of $\rho_{eff} \rightarrow \tilde{\rho}_{eff}(\mathbf{q})$ $= 1 + \left| \tilde{\rho}_{eff}(\mathbf{q}) \right|^{2}$ $\mathbf{q} \equiv \mathbf{p}_{1} - \mathbf{p}_{2}$ $= 1 + \lambda \exp(-R^{2}\mathbf{q}^{2}) \longleftarrow \text{Assume Gaussian } \mathbf{r}_{eff}$ with width "R"

PHIENIX 3D HBT measurement in PHENIX

Bertsch-Pratt Fit Results (TOF PID)

PH*****ENIX Beam energy dependence of R

Conclusions from Year-1 data

- Single particle spectra for $\pi \pm$, K \pm , protons and anti-protons in each centrality class and 2π HBT correlations are studied.
- Weak centrality dependence of slopes for T_{π} and T_{K} .
- Gradual rise of T_{proton} and T_{pbar} from peripheral to mid-central collisions.
- $T_{\pi} \cong T_{\rm K} < T_{\rm proton}$ at all centrality classes.
- The slope of pions and protons at RHIC are higher than that of Pb+Pb collisions at SPS (indicative of large expansion velocity @ RHIC).
- Weak centrality dependence in both K⁺/K⁻ (~1.29) and pbar/p (~0.54).
- Baryon chemical potential ~ 50MeV (thermal model), not baryon free($\mu_B=0$).
- No indication of large source size in 2π HBT measurement.

Start next data taking from May 2001! $\Rightarrow \times \sim 1000$ data will come soon, and more physics

See also

- 28aSG7 : Measurement of hadron spectra at RHIC-PHENIX experiment *M. Suzuki (Univ. of Tsukuba)*
- 28aSG8 : Study of charged particle ratios at RHIC-PHENIX experiment A. Kiyomichi (Univ. of Tsukuba)