Identified Charged Hadron p_T Spectra in Au+Au Collisions at RHIC-PHENIX

Tatsuya Chujo (BNL) For the PHENIX Collaboration

managed by Brookhaven Science Associates for the U.S. Department of Energy Tatsuya CHUJO/ BNL JPS2002 @ Ritsumeikan Univ., Shiga, 3/25/2002

Introduction

- Identified charged hadron spectra at RHIC
 - p_T spectra : Having the entire history of dynamical evolution of the system.
 - $< p_T > vs.$ particle mass, centrality.
 - Centrality dependence of spectra shape.
 - Freeze-out temperature and expansion velocity based on the hydro dynamical model (radial flow).
 - Suppression of hadron yield at high p_T by parton energy loss in hot and dense matter.
- In this presentation,
 - 1. PHENIX detector system used in this analysis.
 - 2. Results of identified single particle spectra in Au+Au @ 130 GeV (Run1) from PHENIX, K. Adcox et al., (PHENIX) nucl-ex/0112008.
 - 3. Status of Au+Au 200 GeV (Run2) analysis.
 - 4. Summary and outlook.

Detectors for Identified Hadron Analysis

• Beam-Beam Counter (BBC)

- z vertex, start timing for TOF
- Time-of-Flight (TOF)
 - stop timing measurement
- Drift Chamber (DC)
 - momentum, flight path length
- Pad Chamber 1 (PC1)
 - additional track-z information to Dch

Geometrical Acceptance @ TOF

- Rapidity coverage : $|\eta| < 0.35$
- ϕ coverage : $\pi/4$
- p_T range : > 0.2 GeV/c
- Overall TOF resolution : ~100 ps (Run1).
- Momentum resolution : δp/p = 0.6 % ⊕ 3.6% p [GeV/c] (Run1)

PID and Corrections to Raw Spectra

- Charged hadron Identification by TOF
 - Identified in m² vs. momentum space.
 - Applied 2.0 σ momentum dependent PID cut.

Corrections to raw spectra

- Based on single particle Monte Carlo simulation.
- Geometrical acceptance @ TOF
- Decay correction for π , K
- Multiple scattering effect.
- Software reconstruction efficiency.
- Multiplicity dependence of track reconstruction (embedding MC in real data).

Particle Composition @ High p_T

- Nucleons dominate mesons at ~ 1.5-2 GeV/c (π /p crossing).
- Centrality dependence of π/p crossing point ?
- Suppression of high p_T pions (PRL 88, 022301 (2002)) and radial flow in the protons may explain the observed crossing region in the spectra.

Centrality dependence of $< p_{\tau} >$

- $< p_T >$ increase with N_{part} and particle mass consistent with radial flow.
- (Anti) proton $< p_T >$ significant increase from pp collisions.
- The same relative increase from peripheral to central for all particles species.

Tatsuya CHUJO/ BNL JPS2002 @ Ritsumeikan Univ., Shiga, 3/25/2002

Centrality Dependence of Particle Yield

- (Anti) proton yields per participant pair rise faster than pion yields with N_{part} .
- Similar behavior in K⁺, K⁻, π^+ and π^{-}

Status of Run2 (Au+Au @ 200 GeV) Analysis

• Collected 92 million minimum bias triggered events in Au+Au at 200 GeV.

- Analyzed 15 Million event within 30 cm z-vertex.
- π/K separation < 2 GeV/c , 2 σ K/proton separation < 4 GeV/c.
- Observed deuteron and anti-deuteron.

Minimum Bias Raw p_T Spectra

- Well enough statistics for the precise measurements of p_T spectra at high p_T region (spectra shape, $<p_T>$ and yield vs. centrality).
- Deuteron and anti-deuteron spectra from Run2.

Tatsuya CHUJO/ BNL JPS2002 @ Ritsumeikan Univ., Shiga, 3/25/2002

Summary and Outlook

We measured identified single particle charged Hadron spectra in Au+Au @ 130 GeV

- Nucleons dominate mesons at ~ 1.5-2 GeV/c (π /p crossing).
- $< p_T >$ increase with Npart and mass (consistent with radial flow pict.). (Anti) proton yields per participant rise faster than pion yields with N_{part}.

Outlook for 200 GeV data analysis

- 1. Precise measurements of p_T spectra in 200 GeV data.
- 2. Centrality dependence of $\langle \dot{p}_T \rangle$, spectra shape and yield at high p_T .
- 3. Conclusion on π/p crossing (vs. centrality).
- 4. Comparison with pp data.
- 5. Deuteron and anti-deuteron spectra.