ALICE実験測定器の現状 Status of ALICE detector in p+p

中條 達也(筑波大学物理学系)

Tatsuya Chujo (Univ. of Tsukuba)

日本物理学会 2010年秋季大会(九州工業大学) 2010年9月13日

Snap shot of ALICE Control Room (2010.08.25) - Data taking period, very quite... -

最初の陽子-陽子衝突を喜ぶ研究者たち First collision p+p √s= 900 GeV (2009.11.23, ALICE Control Room)

T111

The first "event" in p+p 0.9 TeV

mestamp: 2009-11-23 15:47:17; Event # in ESD file: 0

No raw-data event info is available

... and 7 TeV p+p

After ~9 months later... Already lots of first results from ALICE !

7 TeV collision events seen today by the LHC's four major experiments (clockwise from top-left: ALICE, ATLAS, CMS, LHCb). More LHC First Physics images »

LHC research programme gets underway

Geneva, 30 March 2010. Beams collided at 7 TeV in the LHC at 13:06 CEST, marking the start of the LHC research programme. Particle physicists around the world are looking forward to a potentially rich harvest of new physics as the LHC begins its first long run at an energy three and a half times higher than previously achieved at a particle accelerator. Read more...

Outline

- 1. Quark Gluon Plasma (QGP) at LHC
- 2. LHC & ALICE
- 3. ALICE & QGP
 - Parton energy loss
 - Collectivity
 - Temperature
- 4. Summary

1. QUARK GLUON PLASMA & LHC

QCD phase diagram and **QGP**

QGP in Nuclear Physics

- -Create at the lab. by heavy ion collisions
- -Study the nature of QCD matter
 - at the extreme temperature and energy density

Highlights at RHIC

- Jet quenching, indicating $dN_g/dy \sim 1100$, $\epsilon > 100 \epsilon_0$.
- Jet-medium interaction: shock wave (hit to c_s)?
- Collective flow, suggesting quark recombination.
- Heavy quark suppression and flow.
- Thermal photon emission
 - T > 300 MeV > T_c .

	RHIC	LHC
√s _{NN} (GeV)	200	5500
T/T _c	1.9	3.5-4.0
ε (GeV/fm ³)	5	15-60
au _{QGP} (fm/c)	2-4	> 10

 High temperature QGP (2 x T_{RHIC}).

	RHIC	LHC
√s _{NN} (GeV)	200	5500
T/T _c	1.9	3.5-4.0
ε (GeV/fm³)	5	15-60
τ (fm/c)	21	> 10

- τ _{QGP} (IIII/C) $\sigma_{c\overline{c}}$ Annual yields in ALICE RHIC σ_{geom} $\sigma_{b\overline{b}}$ Pb+Pb minbias binary scaling from p+p , Vield 10 L=0.5/mb/s; 1 year=10⁶ s EMCAL: Δη×Δφ=1.4×110° Annual Inclusive jets (R=0.2) Dileis Gett in ENICAL (R. 0.27 6 (J. 7) 10^{6} LHC: 10^{5} Nº ENICAL (no quenching) (EMCAL) 10 YEMCAL 10^{3} 10^{2} 100 120 140 160 180 100 80 E_{T}^{cut} (GeV) or p_{-}^{cut} (GeV/c)
- **High temperature QGP** $(2 \times T_{RHIC}).$
- Jet production dominant.

Inclusive jets, annual yield; 10⁴ @ $p_{T} = 200 \text{ GeV/c}$ (5.5 TeV, Year-1)

	RHIC	LHC
√s _{NN} (GeV)	200	5500
T/T _c	1.9	3.5-4.0
ε (GeV/fm ³)	5	15-60
au _{QGP} (fm/c)	2-4	> 10

[JW Harris, Winter WS on Nucl. Dynamics (2008)]

- High temperature QGP (2 x T_{RHIC}).
- Jet production dominant.
- Copious heavy quark production (10x σ_{c-cbar}).

	RHIC	LHC
√s _{NN} (GeV)	200	5500
T/T _c	1.9	3.5-4.0
ε (GeV/fm ³)	5	15-60
au _{QGP} (fm/c)	2-4	> 10

- High temperature QGP (2 x T_{RHIC}).
- Jet production dominant.
- Copious heavy quark production (10x σ_{c-cbar}).
- LHC:
 - Study the matter by clean probes, and response of bulk matter in HI collisions. JPS 2010,

JPS 2010, Sep. 13, T. Chujo [JW Harris, Winter WS on Nucl. Dynamics (2008)] 15

2. LHC & ALICE EXPERIMENT

ALICE

Large Hadron Collider (LHC)

LHC Basics :

Magnets: 1232, 15 m long, 9 T, superconducting dipoles Circumference: 27 km

LHCb

p+p \sqrt{s} = 14 TeV, L = 10³⁴ cm⁻²s⁻¹

Pb+Pb $\sqrt{s_{NN}}$ = 5.5 TeV, L = 10²⁷ cm⁻²s⁻¹

ALICE experiment

ALICE = <u>A</u> <u>Large</u> <u>Ion</u> <u>Collider</u> <u>Experiment</u>

- Dedicated heavy ion experiment at LHC:
 - Study 'state of matter' at high temperature & energy density; QGP.
 - LHC: 30 x energy of RHIC
 - Expect very different type of 'QGP'
 - 'hard signals' to probe QGP (jets, $\gamma,$ c and b quark)
 - First Pb+Pb (2.76 TeV) collisions Nov. 2010
- ALICE Institutes from Japan(ese).
 - Hiroshima Univ.: PHOS
 - Tokyo Univ. (CNS): TRD, FoCAL upgrade
 - Univ. of Tsukuba: EMCal, DCal
 - + Heidelberg Univ. (K. Oyama): TRD, Trigger

ALICE Collaboration

Collaboration:

> 1000 Members

> 100 Institutes

> 30 countries

Detector configuration 2010

- ITS, TPC, TOF, HMPID, MUON, V0, T0, FMD, PMD, ZDC (100%)
- TRD (7/18)
- EMCAL (4/12)
- PHOS (3/5)
- HLT (60%)

Full hadron and muon capabilities

Partial electron and photon

ALICE detector is fully operational !

Data taking / Trigger (2009-2010)

Trigger:

Minimum bias (MB_{or}): SPD or V0-A or V0-C (96% eff. for INEL).

 \rightarrow at least one charged particle in 8 pseudorapidity units

V0_{AND}: Hit on both side of V0. (93% eff. for NSD).

JPS 2010, Sep. 13, T. Chujo

Absolute normalization

- Vernier (van der Meer) scan tells trigger cross section
- Performed in Apr. for p+p at 7 TeV
- V0-AND trigger cross section (~62 mb) measured with 8 % of syst. uncertainty

$$R_{\rm V0}(D_x, D_y) = \underbrace{R_{\rm V0}(0, 0)}_{\text{tormation}} \cdot \exp\left(-\frac{D_x^2}{2\sigma_{scan-x}^2}\right) \exp\left(-\frac{D_y^2}{2\sigma_{scan-y}^2}\right)$$

- **top rate** beam size @ β*=2 m
 - X: 44 μm
 - Y: 47 μm
- Using this result, the cross[∞] section normalization for a 10^2 measurements (J/ ψ , charm) are on going

 $\leftarrow D_x \text{ or } D_y$

3. ALICE EXPERIMENT AND QGP PHYSICS

(1)Energy loss of parton

()) = 0.2 ()) = 0.2 () = 0.2 () = 0.2 () = 0.2 () = 0.1 () = 0.

Phys. Rev. Lett. 91, 072304 (2003).

- At RHIC energy:
 - High p_T yield suppression.
 - Gluon density: $dN_g/dy \sim 1100$
 - Energy density: $\epsilon > 100 \epsilon_0$ (!)
 - $= \epsilon > 15 \text{ GeV} / \text{fm}^3$
 - Disappearance of away side jet. JPS 2010, Sep. 13, T. Chujo

Where is the lost energy?

How parton propagates in dense matter ?

PHENIX (PRL 97, 052301, 2006)

Two peaks in Away side.

Shock wave?

Key detectors for hard probes in ALICE

• ITS, TPC, TRD (40%), TOF, HMPID

- Charged particles $\Delta \eta = 1.8$.
- Excellent momentum resolution.
- Excellent PID and heavy flavor tagging.
- TRD: high p_T and electron trigger.
- EMCal (40%)
 - Pb-Scint.
 - Energy of neutral particles
 - $\Delta \phi = 107^{\circ}$, $\Delta \eta = 1.4$
 - Energy resolution ~10%/ $\sqrt{E_{\gamma}}$
 - Jet and γ trigger
- PHOS (60%)
 - PWO
 - $220^{\circ} < \phi < 320^{\circ}, \Delta \eta = 0.24$
 - Energy resolution ~3%// $\sqrt{E\gamma}$
 - γ trigger.

Time-Projection Chamber (TPC)

- Detector fully operational: 99.9% of all channels
- dE/dx resolution: < 5%
- Momentum resolution: < 7% at 10 GeV
- Working on distortion map: $\Delta p/p < 5\%$ at 10 GeV
- Read-out rate up to 1kHz

• Invariant mass of π^0 at 7 TeV p+p data.

$\pi^{\textbf{0}}$ and η from γ conversion

Di-Jet event (7 TeV p+p)

η-φ grid

Reconstructed Jets UA1 Cone R = 0.4: Jet 1: $\eta = 0.02$, $\phi = 306^{\circ}$, $p_T = 71$ GeV, Tracks 15 Jet 2: $\eta = 0.84$, $\phi = 132$, $p_T = 47$ GeV, Tracks 9 $\Delta \phi = 174^{\circ}$ JPS 2010, SIP.14/3, Tracks 108

DCAL (Dijet Calorimeter)

A 60% expansion of EMCal arranged to permit back-toback hadron-jet, jet-jet and gamma-jet measurements.

Goal: QGP tomography via detailed «jet quenching» studies: PbPb/pp jet x-section ratios, fragmentation functions, ...

(2) Collectivity

- At RHIC energy: •
- Quark number scaling of v_2 works. •
- Indication of quark level collective motion at RHIC. • JPS 2010, Sep. 13, T. Chujo
- What happens at LHC?

Radial flow

Radial flow at RHIC

Au+Au 200 GeV central (b < 2.6 fm)

- Large radial flow observed at RHIC.
- Charged particle identification is key to understand matter properties. JPS 2010, Sep. 13, T. Chujo

ALICE PID Capability

ALICE PID performance (1)

ALICE PID performance (2)

Strangeness productions (p+p 7 TeV)

(3) Temperature

DATA: $T_{ini} > T_{AuAu} \sim 220 \text{ MeV}$ MODELS: $T_{ini} = 300 \text{ to } 600 \text{ MeV}$ Lattice QCD prediction: $T_c \sim 170$ MeV

Indicating thermal photon emission at low p_T .

PHENIX (PRL 104, 132301 (2049) 010, Sep. 13, T. Chujo

Charmonium: suppression or enhancment?

Transition-radiation detector (TRD)

Muon detector (di-muon event display)

J/Ψ at p+p 7 TeV

due to low material budget

JPS 2010, Sep. 13, T. Chujo

44

Charm at p+p 7 TeV

Prospects for Pb+Pb

What will be luminosity for November 2010?

- Design luminosity for Pb+Pb: 10²⁷ cm⁻²s⁻¹
 - $\sim /10$ from number of bunches
 - $\sim /10$ from increased beam size (lower energy, less focussing)
- Most probable value $\rightarrow 10^{25} \text{ cm}^{-2} \text{ s}^{-1}$ [J. Jowett]

What is expected amount of data sample?

- Depends critically on overall duty factor and number of days
- e.g.: 20 days at 50 Hz min bias at 20% overall duty factor
 → ~ 1.5 x 10⁷ min bias events (as opposed to target of a few 10⁷ central!)

Summary

- ALICE detector is fully operational since the first collision.
- p+p (mainly 7 TeV):
 - Re-discovering "standard model" and particle zoo.
 - Providing an important reference data to the heavy ion data.
- Pb+Pb:
 - Will start the 2.76 TeV Pb+Pb run on Nov. 2010.
- Exciting moment, new regime of QCD matter, and discoveries !!

