## Study of di-jet properties in p+p collisions at Vs = 7 TeV by the LHC-ALICE experiment

Tatsuya Chujo for the ALICE collaboration



(University of Tsukuba)



## Outline

- Physics motivation
- ALICE experiment and data set
- First look at (di-) jet in p+p vs = 7 TeV in ALICE
- Dijet Calorimeter project
- Summary and outlook

## Why jets?

- Jet is a well defined object, and produced by the hard scatting of partons at the initial stage of the collision.
- Studied in many high energy experiments for many years.
- Jet provides a powerful prove to study the hot and dense QCD matter created in high energy heavy ion collisions.
- At LHC energy, jet production is dominant, compared to that in RHIC.
- Jet measurements in p+p at LHC provide an important baseline to heavy ion data, as well as the further understating of QCD.







Delphi (1992) T. Chujo CDF





**STAR** 

3

UA2 (1982)

## Jet quenching at RHIC



- Disappearance of away-side jet in Au+Au central at RHIC ( $Vs_{NN} = 200 \text{ GeV}$ ).
- Jet quenching by hot and dense medium.
  - indicating energy density:  $\varepsilon > 100 \varepsilon_0$
- First measurement of full jet reconstruction at RHI@s2(STAR) ng (Sep.13, 2010), T. Chujo



## Jet ID using TPC & ITS in ALICE



Charged particles reconstructed  $\Delta \eta = 1.8$ .

**ITS** (Inner Tracking System), TPC

٠





JPS 2010, Sep. 13, T. Chujo

## Analyzed data sample

- p+p at Vs = 7.0 TeV, reconstructed data from LHC10c and LHC10d periods.
- Minimum bias trigger: 128 M events.
  - eliminating non-physics events, and requiring z-vertex
     +- 10 cm.
  - MB trigger: "SPD or VO-A or VO-C"
    - at least one charged particle in 8 pseudorapidity units
- η cut:
  - single charged tracks within  $|\eta| < 0.9$ .
  - $jets |\eta| < 0.5.$

## Jet finding algorithms

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

$$utgoing parton$$
Hard scatter
$$\int_{K_T} \int_{jet} Cone jet$$

$$Anti-k_T jet$$

1. Cone algorithm:

- Simple geometric motivation.
- Split/merging procedure for overlapping cone.
- UA1
- SIS cone
  - Seedless Infrared Safe Cone algorithm
  - insensitive to soft radiation.
- 2. Sequential recombination algorithm:
  - Cluster pairs of objects close in relative p<sub>T</sub>.
  - Define "distance" between pairs.
  - k<sub>T</sub> algorithm
    - Starting from low p<sub>T</sub> particle.
  - anti-k<sub>T</sub> algorithm
    - Starting from high p<sub>T</sub> particle.

#### Dijet event in p+p 7 TeV in ALICE



 $\eta - \phi$  grid



JPS2010 Fall meeti



Reconstructed Jets UA1 Cone R = 0.4: Jet 1:  $\eta = 0.02$ ,  $\phi = 306^{\circ}$ ,  $p_T = 71$  GeV, Tracks 15 Jet 2:  $\eta = 0.84$ ,  $\phi = 132$ ,  $p_T = 47$  GeV, Tracks 9  $\Delta \phi = 174^{\circ}$ Total Tracks 108

### (Raw) single jet spectrum in p+p 7 TeV



Jet can be measured  $p_T \sim 70$  GeV/c with current statistics.

JPS2010 Fall meeting (Sep.13, 2010), T. Chujo

## **Di-jet invariant mass plot**



# Leading and second jet $p_T$ raw spectrum and correlation (for



Leading jet  $p_T$  spectrum is harder than that for  $2^{nd}$  jet.

## Acoplanarity of jets (Raw)



- Azimuthal angle difference between 1<sup>st</sup> (leading) jet and 2<sup>nd</sup> jet.
- leading jet p<sub>T</sub> cut: > 10 GeV/c

$$-\phi_{Jet1} - \phi_{Jet2} + \pi$$

- Next step:
  - comparison with model.
  - Comparison to that in heavy ion, which will start data taking in Nov. 2010,Pb+Pb 2.76 TeV.

## **ALICE Dijet Calorimeter (DCal) Project**





DCal:

- Extend the acceptance of EMCal (Pb-Scinti. sampling).
  - EMCal:  $\Delta \phi = 110^{\circ}$
  - DCal:  $\Delta \phi = 60^{\circ}$  (on opposite side of EMCal)
  - $\Delta \eta$  = 0.7 for both EMCal and DCal + PHOS
  - ~10%/√E
- Allow back-to-back hadron-jet, di-jet measurements in ALICE, with R = 0.4, up to  $p_T \sim 150$ GeV/c.
- Enhance jet, γ trigger capability.
  - Catania, CERN, Franscati, Grenoble, INFN, Jyväskylä, Nantes, Stranbourg, <u>Tsukuba</u>, ORNL, LBNL, Yale, Huston,LANL, Wuhan
- To be installed in 2012.

## **Summary and outlook**

- First look at jet and dijet in p+p 7 TeV in ALICE.
- Using the 128 M MB statistics, ALICE can measure single jet up to  $p_T \sim 70$  GeV/c, and dijet mass < 50 GeV/c<sup>2</sup>.
- Outlook:
  - Analyze full statistics data sample (so far, 700 M MB data in p+p 7 TeV as of Sep. 2010).
  - Corrections to the raw (di-) jet spectra.
  - Acoplanarity:
    - Model comparison.
    - > 2 jets study.
  - Prepare for the first Pb+Pb run (Vs<sub>NN</sub> = 2.76 TeV, Nov. 2010)!
    - Any difference in  $\phi$  balance,  $p_T$  balance in Pb+Pb compared to p+p?
  - Use EMCal & PHOS info, to enhance di-jet measurement.