Hadron Production at Intermediate p_T at RHIC

Tatsuya Chujo Vanderbilt University for the PHENIX Collaboration

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

Outline

- . Motivation
 - Baryon anomaly intermediate p_T (2-5 GeV/c) at RHIC.
- 2. Experimental data in Au+Au $\sqrt{s_{NN}}$ =200 GeV
 - 1) ϕ meson (N_{coll} scaling property, R_{cp})
 - 2) Meson vs. baryon R_{cp}.
 - 3) Jet correlation with PID trigger.
 - 4) Models vs. data (hydro+jet, recombination).
- 3. Proton and antiproton production in Au+Au $\sqrt{s_{NN}}$ =62.4 GeV
- 4. Summary and outlook

PH⋇ENIX

1. Baryon Anomaly at RHIC PHIENIX

PHENIX: PRL 91, 172301 (2003), PRC 69, 034909 (2004)

p, pbar : No suppression, N_{coll} scaling at 1.5 GeV - 4.5 GeV π⁰: Suppression • Factor ~3 enhancement on both p/π and pbar/ π ratios in central Au+Au compared to peripheral Au+Au, p+p at Intermediate p_T .

• Peripheral Au+Au at high p_T : Consistent with gluon/quark jet fragmentation and IRS data.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

2.1 Scaling properties of $\phi(1020)$

• Similar mass as proton, but meson.

→ Ideal test particle whether the observed baryon anomaly is a mass effect or not.

p, pbar:

low p_T (< 1.5 GeV/c): different shape due to the radial flow, intermediate p_T : Ncoll scaling

does not scale with N_{coll}

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

Tatsuya Chujo

PH^{*}ENIX

- Followed the π^0 data points, not protons!
- Indicates the absence of suppression of proton at intermediate p_T is not a mass effect.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

2.2 Compilation on R_{cp} from STAR

- Two distinct groups in R_{cp}, i.e. meson and baryon, not by particle mass.
- Separate at $p_T \sim 2$ GeV/c and come together at 5 GeV/c.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

Tatsuya Chujo

PH券ENIX

2.3 Mid-p_T protons from fragmentation?

- Intermediate p_T is the transition region from soft to hard process.
- What is the origin of proton and antiproton production at the intermediate p_T ?
- Note: Recombination model of purely thermal quarks implies the observed baryon excess comes from soft, not from fragmentation (no jet partner hadrons).

 Jet correlation with identified particle trigger (p+pbar, π+K) are employed in Au+Au and d+Au.

Count associated low p_T particles with PID mid-p_T trigger
Near side: Number of jet associated particles from same jet.

• Away side: Number of fragments from opposing jet.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

• No apparent difference on jet partner yield between trigger baryons and mesons, perhaps except most central Au+Au for baryons.

• Suggested intermediate p_T baryon arises from a fragmentation from jet.

- Meson and baryon are comparable and decreasing at most central Au+Au collisions.
- In agreement with the disappearance/ broadening of back-to-back jet correlation in central Au+Au.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

• Excellent agreement in π^0 suppression pattern.

- Trend in Rcp(p) and p/pi ratio are right, but quantitative disagreement with data.

- Qualitative agreement with R_{cp} (proton) data.
- Better description when (thermal hard) is included, which supports the experimental result on jet correlations.

3. p, pbar production $\sqrt{s_{NN}} = 62.4$ GeV

Why 62.4 GeV?

- Located in the middle between SPS(17GeV) and RHIC top energy (200 GeV) in √s_{NN} (log scale).
- 2) Many reference data from ISR.
- 3) Provide a constraint on jet quenching model.
- 4) Allow to study the excitation function of baryon production/transport, further constrain on various models for hadron production at intermediate p_T .

PH^{*}ENIX

- Common reference $p+p \rightarrow$ charged+X is used, instead of ISR π^0 reference.
- π^0 yield is divided by (charged reference)/1.6.
- Clear difference between charged and π^0 at intermediate p_T up to 4 GeV/c.
- Suggests a large proton contribution in this p_T region, as seen in 200 GeV data.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

h^+/π^0 and h^-/π^0 ratios @ 62 GeV

 Monotonic increase for both ratios at measured p_T, starting from 1.6.

• Difference between negative and positive hadron to π^0 ratio.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

p/π^+ , pbar/ π^- ratios @ 62 GeV

- Large proton contribution at intermediate p_T 62.4 GeV.
- Less antiproton in central collisions at 62.4 GeV than 130/200 GeV.
- Indicating more baryon transport and less ppbar pair production at 62 GeV than 200 GeV.
- The 62 GeV p_T spectra will tell us more about the excitation function of chemical properties, scaling and radial flow at RHIC (stay tuned!).

<u>PH</u>∦ENIX

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

4. Summary

- Experimental data seems to have a better agreement with a recombination model with thermal-hard parton interactions.
- Important difference between Hydro+Jet and recombination model is the origin of flow, i.e. partonic flow or hadronic flow?
- Discriminatory measurements are essential to understand the hadron production at intermediate p_T.
 - High statistics identified trigger particle correlations.
 - v_2 for ϕ meson.
 - Charm: v_2 and R_{cp} for D meson, J/ψ .
 - Hadron PID (especially baryons) at higher p_T up to 10 GeV/c to study the fragmentation region at RHIC.

PH※ENIX

High p_T PID Upgrade

		Pion-Kaon separation	Kaon-Proton separation
TOF	σ~100 ps	0 - 2.5 ⁰ ⁴ ⁸	-5
RICH	n=1.00044 γth~34	5-17 4 8	
Aerogel	n=1.01 γth~8.5		5-9 1 1 1

Aerogel & MRPC-TOF

• Together with the Aerogel, TOF and RICH, we can extend the PID **beyond 5 GeV/c.**

• Coverage: ~ 4 m² in west arm.

AEROGEL:

• Full installation for Run5. MRPC-TOF:

- Prototype installation in Run5
- Physics run in Run6.

MRPC-TOF Prototype Test

PH^{*}ENIX

VANDERBILT UNIVERSITY

V

Prototype Test @ KEK (June 1-8, 2004)

TOF resolution: 85 ps achieved.

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

Brazil				
China	Academia Sinica, Taipei, Taiwan			
	China Institute of Atomic Energy, Beijing			
	Peking University, Beijing			
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand			
	Dapnia, CEA Saclay, Gif-sur-Yvette			
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay			
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau			
-	SUBATECH, Ecole des Mines at Nantes, Nantes			
Germany	University of Munster, Munster	1		
Hungary	Central Research Institute for Physics (KFKI), Budapest			
	Eötvös Loránd University /ELTE) Budanest			
India	Banaras Hindu University Banaras			
India	Bhabha Atomic Research Centre Bombay			
Israel	Weizmann Institute, Rehovot			
Japan	Center for Nuclear Study, University of Tokyo, Tokyo			
	Hiroshima University, Higashi-Hiroshima			
	KEK, Institute for High Energy Physics, Tsukuba			
	Kyoto University, Kyoto 12	(
	Nagasaki Institute of Applied Science, Nagasaki			
	RIKEN, Institute for Physical and Chemical Research, Wako			
	RIKEN-BNL Research Center, Upton, NY USA			
	University of Tokyo, Bunkyo-ku, Tokyo			
	Tokyo Institute of Technology, Tokyo			
	Wasada University Takyo			
S Korea	Cyclotron Application Laboratory KAERI Secul			
U. Norca	Kangnung National University Kangnung			
	Korea University, Seoul			
	Myong Ji University, Yongin City			
	System Electronics Laboratory, Seoul Nat. University, Seoul			
	Yonsei University, Seoul			
Russia	Institute of High Energy Physics, Protovino			
	Joint Institute for Nuclear Research, Dubna			
	Kurchatov Institute, Moscow			
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg			
Ourselaw	St. Petersburg State Technical University, St. Petersburg			
Sweden	Luna University, Luna			

12 Countries; 57 Institutions; 460 Participants*

Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN *as of July 2002 Vanderbilt University, Nashville, TN

Backup Slides

Hybrid model: Hydro + Jet

Hirano, Nara (Hydro+Jet model) • PRC 69, 034908 (2004). • nucl-th/0404039 (+CGC).

PH*ENIX

• 3D Hydro calculation. Required QGP type EOS in order to reproduce p_T spectra and elliptic flow. Jet quenching included. Hydro push thermal distribution to higher pT at hadronic stage (mass effect). $T=T_{c}$, $<v_{T}>\sim0.25c$ T=100 MeV, <v_T>~0.55c • Intermediate $p_{\tau} = 2 - 4 \text{ GeV/c}$ • π : hard region • p : soft region \sim 1.8 GeV/c for π $p_{T,cross}$ 2.7 GeV/c for K 3.7 GeV/c for p

PH^{*}ENIX

Quark Recombination Models

Quarks in a densely populated phase space combine to form the final state hadrons.

1. Duke model (Fries, Muller, Nonaka, Bass)

Exponential thermal quark distribution, fragmentation for high pT (w/ eloss). Relative normalization (recombination \Leftrightarrow fragmentation).

No gluons in the system. Parameterized collective flow developed in the partonic phase $(v_T \sim 0.55c \text{ at } T=T_c)$.

2. Oregon model (Hwa and Yang)

All hadrons arise from recombination (NO fragmentation). Hard partons are allowed to fragment into a shower of partons. e.g.) thermal-thermal, thermal-shower, shower-shower (for mesons).

3. Texas model (Greco, Ko, Levai)

Allow recombination of hard partons with thermal partons by Monte-Carlo. Taking into account decays (e.g. $\rho \rightarrow 2\pi$) which produces low pt pions.

Recombination Model References

Duke Model

- R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, PRL 90, 202303 (2003).
- R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, PRC 68, 044902 (2003).
- Oregon Model
 - R.C. Hwa, C.B. Yang, PRC 67, 034902 (2003).
 - R.C. Hwa, C.B. Yang, nucl-th/0401001.
- TAMU Model
 - V. Greco, C.M. Ko, P. Levai, PRL 90, 202302 (2003).
 - V. Greco, C.M. Ko, RPC 68, 034904 (2003).

Another Scenarios...

- pQCD does not reproduce Bbar/B vs. p_T .
- Baryon Junction Mechanism ? (Vitev, Gyulassy PRC 65, 041902, 2002)
- Different formation time between baryons and mesons ?

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

ϕR_{cp} by STAR

Hot Quarks 2004 July 23, 2004, Taos, New Mexico

Tatsuya Chujo

26