Identified Charged Single Particle Spectra at RHIC-PHENIX

Tatsuya Chujo (BNL) for the PHENIX Collaboration

managed by Brookhaven Science Associates for the U.S. Department of Energy

BNL/ Tatsuya CHUJO 02/14/2001 @ CNS workshop, Tokyo Univ.

Physics of Identified Hadron Spectrum

From identified single particle spectra,

- Hydro-dynamical collective expansion velocity (β).
- Thermal freeze-out temperature (T_{th}).
- Chemical freeze-out temperature and chemical potential (T_{ch}, μ_B, μ_s)
- Jet quenching effect at high p_T by parton energy loss in medium (dE/dx).

In this talk, we present identified (charged) single particle spectra as a function of centrality, measured at RHIC-PHENIX.

Inverse slope

dN/dv

PHENIX Detector Setup

Particle Identification by TOF

PID Cut Criteria

BNL/ Tatsuya CHUJO 02/14/2001 @ CNS workshop, Tokyo Univ.

Correction factor for raw spectra

• Based on single particle Monte Carlo simulation.

• Included overall effects

- 1. Tracking efficiency
- 2. Geometrical acceptance
- 3. Multiple scattering
- 4. Decay in flight
- 5. Hadronic int.
- 6. Dead area of detectors
- Confirmed that the multiplicity dep. is small by track embedding method in real data.

Centrality Classes

- Used correlation between BBC charge and ZDC energy to define centrality.
- Extracted N_{part} based on Glauber model

Centrality	Participants
0-5%	347 ± 15%
5-15%	271 ± 15%
15-30%	178 ± 15%
30-60%	76 ± 15%
60-80%	19 ± 60%
80-92%	5 ± 60%

particle	p _T range
π	0.3 - 1.8 GeV/c
K	0.5 - 1.6 GeV/c
proton	0.5 - 3.0 GeV/c
pbar	0.8 - 3.0 GeV/c

- pions yield ~ proton and pbar yield
 @ p_T~ 2 GeV/c
 - Large proton and anti-proton contributions at high p_{T.}

Minimum bias M_T spectra

- In $0.2 < m_t m_0 < 1.2$ [GeV/c²], spectra for all species scale by single exp. function.
- Similar inverse slope for π and K.

•
$$T_{\text{proton}} > T_{\pi}$$

 \bigstar Fitting results by single exp. function

$$\frac{1}{m_T} \frac{dN}{dm_T} \propto A \exp\left(-\frac{m_T - m_0}{T}\right)$$

 $\pi^{\pm} \sim 205\pm5 \text{ (stat.)} \pm 15 \text{ (sys.)} \text{ MeV}$ $K^{\pm} \sim 215\pm5 \text{ (stat.)} \pm 20 \text{ (sys.)} \text{ MeV}$ $p, \overline{p} \sim 320\pm10 \text{ (stat.)} \pm 20 \text{ (sys.)} \text{ MeV}$

Centrality Dependence of M_T Spectra for pions

- Single exponential scaling at 0.2 1.0 GeV in $m_t m_0$.
- Almost parallel among all centrality classes.
- T_{π} (central 0-5%) ~ 210 MeV ±5 (stat.) ±15 (sys.) MeV

- Single exponential scaling at 0.2 1.0 GeV in $m_t m_0$.
- Parallel slope among all centrality classes.
- $T_{\rm K}$ (central 0-5%) ~ 217 MeV ±5 (stat.) ±20 (sys.) MeV.

$$\cong T_{\pi}$$

BNL/ Tatsuya CHUJO 02/14/2001 @ CNS workshop, Tokyo Univ.

PHENIX Centrality Dependence of M_T Spectra for p/pbar

- Single exponential scaling at 0.2 1.2 GeV in $m_t m_0$.
- Gradual increase from centrality 60-80% to 30-60%.
- T_{proton} (central 0-5%) ~ 325 MeV ±17 (stat.) ±20 (sys.) MeV > T_{π} .

Centrality dependence of *T*

- Weak centrality dependence for T_{π} and T_{K} .
- Gradual rise of T_{proton} and T_{pbar} from peripheral to mid-central collisions.

•
$$T_{\pi} \cong T_{\rm K} < T_{\rm proton}$$

Mass Dependence of T

 \bigstar Intuitive explanation of mass dependence of T

 $T \propto T_{\text{theremal}} + m < \beta_t >^2$

 β_t : Transverse expansion velocity

Comparison with CERN Energy

- The slopes of pions and protons at RHIC are higher than that of Pb+Pb collisions at SPS.
- Kaon's slope is almost same at SPS Pb+Pb.

Conclusions

- Single particle spectra for π^{\pm} , K[±], protons and anti-protons in each centrality class are studied.
- In p_T spectra, a large proton and anti-proton contributions at high p_{T_1}
- Weak centrality dependence of slopes for T_{π} and T_{K} .
- Gradual rise of T_{proton} and T_{pbar} from peripheral to mid-central collisions.
- $T_{\pi} \cong T_{\rm K} < T_{\rm proton}$ at all centrality classes.
- The slope of pions and protons at RHIC are higher than that of Pb+Pb collisions at SPS.
- Kaon's slope at RHIC is almost same at SPS Pb+Pb.