

Particle Composition at High p_T in Au+Au Collisions at RHIC

Tatsuya Chujo (BNL) for the PHENIX Collaboration

1

CIPANP2003 May 23th, 2003 @ NYC

Hadron Production at High p_T in AA

- Hard processes in AA are sensitive to the early partonic phase of reaction.
- Any departures from the expected binary collision scaling (N_{coll}) behavior provide the information on the strong interacting medium in AA collisions.

CIPANP2003 May 23th, 2003 @ NYC

Tatsuya Chujo

130 GeV Results (1): π⁰,*h* suppression at high p_T

- Both charged hadron and π^0 are suppressed in AuAu central at high p_T at RHIC ($R_{AA} < 1$). \Rightarrow A possible consequence of parton energy loss via gluon radiation in dense medium ("jet quenching").
- But $R_{AA}(\pi^0) < R_{AA}(h)$: Suggests the importance to study the particle composition at high p_T .

CIPANP2003 May 23th, 2003 @ NYC

PRL 88, 022301 (2002)

PH^{*}ENIX

5

In this presentation...

We present the high statistics proton and anti-proton p_T spectra and their centrality dependencies in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at mid-rapidity from the PHENIX experiment.

- Feed-down corrected p and pbar p_T spectra.
- N_{coll} scaling behavior.
- Central-to-Peripheral ratio (R_{CP}) for p and π^0 .
- p/π (pbar/ π) ratio vs. p_T and centrality.
- $-h/\pi$ ratio vs. p_T and centrality.

* To be submitted to PRL soon.

Tatsuya Chujo

- Centrality selection : Used charge sum of Beam-Beam Counter (BBC, |η|=3~4) and energy of Zero-degree calorimeter (ZDC) in minimum bias events (92% of total inelastic cross sections).
- Extracted N_{coll} and N_{part} based on Glauber model.

CIPANP2003 May 23th, 2003 @ NYC

Tatsuya Chujo

7

Proton and anti-proton spectra in AuAu at 200 GeV

PH^{*}ENIX

CIPANP2003 May 23th, 2003 @ NYC

Tatsuya Chujo

- No p- π merging in peripheral.
- Suggested significant fraction of p, pbar at pt = 1.5 4.5 GeV/c in central.

- Both p/π and $pbar/\pi$ ratios are enhanced compared to peripheral Au+Au, p+p and e⁺e⁻ at p_T = 1.5 ~ 4.5 GeV/c.
- Consistent with gluon/quark jet fragmentation in peripheral AuAu (> 3 GeV/c)

Summary

We presented the yield of protons and anti-protons as a function of centrality and p_T in Au+Au at $\sqrt{s_{NN}} =$ 200 GeV.

- In central collisions at intermediate p_T (1.5 < p_T < 4.5 GeV/c), protons and anti-protons are a significant fraction of the total yield.
- Scaling behavior:
 - p: N_{coll} scaling behavior at intermediate p_T for all centralities.
 - π : suppression @ p_T > 2 GeV (central > peripheral).
- pbar/π and p/π ratios are enhanced compared to peripheral Au+Au, p+p and e⁺e⁻.
- This enhancement is limited to $p_T < 5$ GeV/c as deduced from h/π^0 measurement at $p_T = 1.5 9.0$ GeV/c.

Brazil	University of São Paulo, São Paulo PH	1
China	Academia Sinica, Taipei, Taiwan	
	China Institute of Atomic Energy, Beijing	
	Peking University, Beijing	
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand	
	Dapnia, CEA Saclay, Gif-sur-Yvette	
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay	
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau	
	SUBATECH, Ecòle des Mines at Nantes, Nantes	
Germany	University of Münster, Münster	
Hungary	Central Research Institute for Physics (KFKI), Budapest	
	Debrecen University, Debrecen	
	Eötvös Loránd University (ELTE), Budapest	
India	Banaras Hindu University, Banaras	
	Bhabha Atomic Research Centre, Bombay	
Israel	Weizmann Institute, Rehovot	
Japan	Center for Nuclear Study, University of Tokyo, Tokyo	
	Hiroshima University, Higashi-Hiroshima	
	KEK, Institute for High Energy Physics, Tsukuba	
	Kyoto University, Kyoto	1
	Nagasaki Institute of Applied Science, Nagasaki	
	RIKEN, Institute for Physical and Chemical Research, Wako	
	RIKEN-BNL Research Center, Upton, NY	US
	University of Tokyo, Bunkyo-ku, Tokyo	
	Tokyo Institute of Technology, Tokyo	
	University of Tsukuba, Tsukuba	
	Waseda University, Tokyo	
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul	
	Kangnung National University, Kangnung	
	Korea University, Seoul	
	Myong Ji University, Yongin City	
	System Electronics Laboratory, Seoul Nat. University, Seoul	
	Yonsei University, Seoul	
Russia	Institute of High Energy Physics, Protovino	
	Joint Institute for Nuclear Research, Dubna	
	Kurchatov Institute, Moscow	
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersbu	rg
Our days	St. Petersburg State Technical University, St. Petersburg	
sweden	Luna University, Luna	

12 Countries; 57 Institutions; 460 Participants*

A Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN *as of July 2002 Vanderbilt University, Nashville, TN

