PHENIX TOF Upgrade Project

Tatsuya Chujo for the PHENIX Collaboration

Outline

- 1. Introduction
 - Physics motivation.
 - PHENIX high p_T PID upgrade project.
- 2. MRPC-TOF Design
 - System requirements.
 - Design consideration for PHENIX.
- 3. Building MRPC Prototypes
- 4. Detector Performance
 - KEK beam test setup and results.
- 5. Summary and Schedule

Physics Motivations

Au+Au collisions at √s_{NN} = 200 GeV

- One of the most striking results so far at the heavy ion experiments at RHIC:
 - Strong suppression of π^0 yields above $p_T \sim 2$ GeV/c.
 - No suppression for baryons at intermediate p_T (2-5 GeV/c), "Baryon anomaly at RHIC".
- Need to understand the hadronization mechanism, *i.e.* recombination and jet fragmentations, at intermediate p_T and beyond (< 10 GeV/c).
- Importance of continuous PID capability from low p_T to high p_T .

PHENIX High p_T PID Upgrade

AEROGEL Cherenkov detector:

- n = 1.0113.
- Completed full installation for Run5.

Additional TOF counter is required for K/p separation below 5 GeV/c.

Aerogel & Time-of-Flight (TOF)

Together with the Aerogel, TOF and RICH, we can extend the PID beyond
5 GeV/c.

• Coverage: ~ 4 m² in PHENIX west arm.

Extension of Charged Hadron PID Capability

		Pion-Kaon separation	Kaon-Proton separation
TOF	σ~100 ps	0 - 2.5 0 4 8	- 5 0 4 8
RICH	n=1.00044 γth~34	5 - 17 0 4 8 1 4 8	
Aerogel	n=1.01 γth~8.5		5 - 9 0 4 8

With TOF

Aerogel <u>together with TOF</u> can extend the PID capability < 10 GeV/c • Without TOF, no K-proton separation at p_T < 5 GeV/c.

MRPC: Multi-gap Resistive Plate Chamber

- A stack of resistive plates (glass) with electrodes stuck on the outside.
- Internal glass plates electrically floating, take and keep correct voltage by electrostatics and flow of electrons and ions produced in gas avalanches.
- Resistive plates transparent to fast signals, induced signals on external electrodes is sum of signals from all gaps (also, equal gain in all gaps)
- Operated in avalanche mode for TOF detector.

PHENIX-MRPC: System Requirements

Why MPRC-TOF?

- Cost effective compared to scinti.+PMT based TOF.
- Easy to build a large area detector which can be extended from 1 sector (Run-6) to full West arm coverage in the future.
- New generation of TOF detector.
 - Good timing resolution (<100 ps)
 - Reasonable efficiency (> 95%).
- Extensive R&D by LHC-ALICE and RHIC-STAR.

Our GOAL:

- Timing resolution: < 100 ps</p>
- Detection efficiency: > 95 %
- Occupancy: < 10 %</p>
- Total cost: < 500k</p>

PHENIX-MRPC: Design Considerations

1. Single stack type MRPC.

- ALICE (10 gaps, double stack), STAR (6 gaps, single stack).
- Better performance for double stack, but single stack is easier to build and satisfies our performance requirements.
- Space limitation (< 2") in PHENIX.

2. Strip Readout pad design.

- Location will be 4.85 m from vertex.
- Hit position determined by timing info.
- Strip design with double ended readout reduces the number of electronics channels significantly.

PHENIX-MRPC: Detail

- Gas mixture: R134A (95%), Isobutene (5%) at 60 cc/min.
- HV: ±7.5 kV

3 Prototypes

PH1

PH2

PH3

Different pad/strip design, same structure inside

•PH1: 50.9 x 53.5 cm², 32 strips, readout at both ends.
•PH2: 12.5 x 53.5 cm², 8 strips, readout at both ends.
^{2004.10.13, D}
•PH3: 12.7 x 53.7 cm², 48 pads (6x2 cm²), similar to STAR MRPC.

Readout strip-pad (PH2/3)

2004.10.13, Downtown Ft Worth TX

Assembly Pictures

Nylon standoff Side view **TOP** view Fishing line

Assembly Pictures (cont.)

Preamp and Gas Box

HV test and cosmic ray data taking has been done on the test bench.

2004.10.13, Downtown Ft Worth TX

CAARI 2004, Tatsuya Chujo

Preamp (from STAR)

Used STAR TOFr preamp

- Fast current amplification (MIP hit for STAR MRPC: ~25 fC) using MAXIM 3760 chip.
- Discriminate using standard components.

Maxim 3760 Preamplifier Analog Devices 96687 Comparator (TOFP, PVPD, TOFr)

2004.10.13, Downtown Ft Worth TX

CAARI 2004, Tatsuya Chujo

KEK Beam Test

- Experiment: KEK-T561 (2004.6.1 6.8).
- Participating Institutions: Univ. of Tsukuba, Vanderbilt Univ.
- Beam: KEK-PS secondary 2 GeV/c pion and proton beams (some kaons and deuterons).
 - 20 counts/ spill, (1 spill ~ 2 sec duration).

• Control parameters:

- 1. Detector type (PH1,2,3).
- 2. Applied high voltage.
- 3. Beam position (horizontal and vertical scans)
 - Across the chamber.
 - Within a pad/strip.
- 4. Discriminator threshold.
- 5. Gas mixture
 - Default: R134A: Isobutene = 95:5 @ 1cc/sec flow rate.
 - No performance change seen in:
 - 97%/3% mixture, 92%/7% mixture, and x2 gas flow rate.

Checked detection efficiency and timing resolution.

KEK-T561 Experimental Setup

Slewing effect

- Typical T-A correlation plot.
- Strong slewing effect seen.
- Usual slewing correction used for PMT- scinti. based TOF is applicable.

PH1 and PH3 Performance

2004.10.13, Downtown Ft

HV scan (detector type dep.)

- PH1: worse timing resolution (>150 ps), same efficency as PH2. Problem on uniformity of performance across the chamber. Difficulties in mechanical assembly.
- PH2: 68ps timing resolution at optimal condition, but 90% efficiency. Solution → increase strip width.
- PH3: comparable timing resolution with PH2 (best value: 67ps), 98% efficiency.

Uniform efficiency along the strip.

Position Determination

Similar to scintillation counter, hit position can be determined by (left - right) time difference.

Charge sharing in strips (PH2)

- Diameter of imaged charge would be ~2cm.
- Lower efficiency in PH2 than PH3 can be understood due to the strip width being smaller than the size of the charge dist.

- PH3 pad size is 2x6 cm². If beam hits the center of the pad, efficiency is ~98% (justify 2 cm readout width).
- If beam hits between the pads or off-center, detection efficiency number is distributed to the adjacent pads.

Summary and Schedule

- We build three different MRPC TOF prototypes and tested with beams at KEK.
- Beam test results
 - PH1 (big chamber, strip): ~150 ps timing resolution. 90% efficiency, same as PH2 (same strip width as PH2). Problem on uniformity.
 - PH2 (strip): ~70 ps timing resolution and 90% efficiency under the nominal operation mode.
 - **PH3** (pad): comparable timing resolution for PH2, ~98% efficiency.
 - Solution for PH2 efficiency: increase strip width.

Schedule

- New prototype "PH4" (strip width 1.3cm → 2.0cm) will be build and tested in RHIC-Run5 (also PH2/ PH3 will be installed for comparison).
- Make a decision of the production type for RHIC-Run6 (2005-2006).
- Full installation for PHENIX 1-sector (4 m²) and Physics data taking in Run6.

	\sim	-		
Brazil	University of São Paulo, São Paulo DLI	NI	Y	
China	Academia Sinica, Taipei, Taiwan		Л	
	China Institute of Atomic Energy, Beijing			
	Peking University, Beijing			1000
France	LPC, University de Clermont-Ferrand, Clermont-Ferran	d		
	Dapnia, CEA Saclay, Gif-sur-Yvette			-
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay			1 -
	LLR, Ecóle Polytechnique, CNRS-IN2P3, Palaiseau			
	SUBATECH, Ecole des Mines at Nantes, Nantes			
Germany	University of Munster, Munster			
Hungary	Central Research Institute for Physics (KFKI), Budapes	τ		
	Eötvös Loránd University (ELTE) Budapest			
India	Banaras Hindu University (EETE), Buddpest			
IIIula	Bhahha Atomic Research Centre Bomhav			
Israel	Weizmann Institute, Rehovot	Sr	De	CI
Japan	Center for Nuclear Study, University of Tokyo, Tokyo		•••	
anball	Hiroshima University, Higashi-Hiroshima	M		
	KEK, Institute for High Energy Physics, Tsukuba	VV	.0	• •
	Kyoto University, Kyoto		12	Co
	Nagasaki Institute of Applied Science, Nagasaki			00
	RIKEN, Institute for Physical and Chemical Research, V	Vako		
	RIKEN-BNL Research Center, Upton, I	I YI	USA	Ab
	University of Tokyo, Bunkyo-ku, Tokyo			Br
	Tokyo Institute of Technology, Tokyo			Un
	University of Tsukuba, Tsukuba			Un
	Waseda University, Tokyo			Co
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul			FIC
	Kangnung National University, Kangnung			Ge
	Korea University, Seoul			Un
	System Electronics Laboratory Scoul Nat University	Rooul		
	Vonsei University Secul	Seoul		La
Russia	Institute of High Energy Physics, Protovino			Un
Russiu	Joint Institute for Nuclear Research, Dubna			Ne
	Kurchatov Institute, Moscow			De
	PNPI, St. Petersburg Nuclear Physics Institute. St. Peter	ersbur	q	De
	St. Petersburg State Technical University, St. Petersbu	irg	5	Oa
Sweden	Lund University, Lund	-		Un

Special Thanks to W.J. Llope (Rice Univ.)

12 Countries; 57 Institutions; 460 Participants*

ilene Christian University, Abilene, TX ookhaven National Laboratory, Upton, NY iversity of California - Riverside, Riverside, CA iversity of Colorado, Boulder, CO lumbia University, Nevis Laboratories, Irvington, NY orida State University, Tallahassee, FL orgia State University, Atlanta, GA iversity of Illinois Urbana Champaign, Urbana-Champaign, IL va State University and Ames Laboratory, Ames, IA s Alamos National Laboratory, Los Alamos, NM wrence Livermore National Laboratory, Livermore, CA iversity of New Mexico, Albuquerque, NM w Mexico State University, Las Cruces, NM pt. of Chemistry, Stony Brook Univ., Stony Brook, NY pt. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY k Ridge National Laboratory, Oak Ridge, TN iversity of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN *as of July 2002

Backup Slides

	AEROGEL : (n=	=1.0114, thr	eshold= 10%	of Max. Np.e.,
Momentum [GeV/c]	$\begin{array}{c c} 1. & 2. \\ 0.5 & 1.2 \end{array}$	$\begin{array}{ccc} 3. & 4. \\ 3.5 \\ \end{array}$	$5. 6. 7. \\ 5.5 \\ 6.5 \\ 5.5 \\ 6$	~10. (momentum limit)
π	EMCal AERO	GEL	•	RICH
K	EMCal EMCal(proton)	AERO NAEROGEI		Ħ
р	EMCal	AEROG	EL(() RICH)	

Without TOF

PHENIX-TOF-E Front End Electronics

PMT input lemo

16 inputs for PMT signals per board, which are split for timing and charge measurements

Double vs single stack performance

ALICE R&D: double stack is better, but comparable overall performance.

STAR MRPC performance

- Single stack
- 6 gaps
- chamber size 20x6 cm²
- readout pad: 3x6 cm²