Identified Charged Particle Spectra and Yields in Au+Au Collisions at $s_{N N}=200 \mathrm{GeV}$

Tatsuya Chujo (BNL)
for the PHENIX Collaboration
BRODKHRNEN
NATIONAL LABORATORY

History of Heavy Ion Collisions

Pre-equilibrium Thermalization QGP phase? Mixed phase
Hadronization (Freeze-out) + Expansion

Real and virtual photons from q scattering sensitive to the early stages (penetrative probes).

Hadrons reflect medium properties when inelastic collisions stop (chemical freeze-out).

130 GeV Highlight (1)

Proton vs. pion

In this presentation...

We present the results on high statistics identified charged hadron p_{T} spectra, ratios and yields as a function of collision centrality in Au+Au collisions at $s_{N N}=200 \mathrm{GeV}$ at mid-rapidity from PHENIX.

```
PHENIX Collaboration, S.S.Adler et al., submitted to PRC, nucJ-ex/0307022
```

1. Centrality dependence of p_{T} spectra for \square, K, p and pbar.
2. Particle ratios vs. p_{T} and $N_{\text {part }}$.
3. $\left\langle p_{\mathrm{T}}\right\rangle$ and dN/dy vs. $\mathrm{N}_{\text {part }}$.
4. Scaling properties of identified charged hadrons.

All data tables and figures are available from the PHENIX web site.
http://www.phenix.bnl.gov/papers.html

PHENIX Experiment

Collision Centrality Determination

BBC charge sum vs ZDC total energy

- Centrality selection: Used charge sum of Beam-Beam Counter (BBC, $|\square|=3 \sim 4$) and energy of Zero-degree calorimeter (ZDC) in minimum bias events (92% of total inelastic cross sections).
- Extracted $\mathbf{N}_{\text {coll }}$ and $\mathbf{N}_{\text {part }}$ based on Glauber model.

Event and Track Selections

- Event Selection
- Minimum bias events
- Z vertex cut : $\pm 30 \mathrm{~cm}$
- Total number of events : 20 M minimum bias (x 140 of 130 GeV analysis).

- Track Selection
- Drift chamber tracks with z information from PC1.
- Track association at TOF within $2 \square$ window in both \square and z.
- Fiducial cut in z and \square directions to remove the edge effect.

Charged Hadron PID

- Detectors for hadron PID
- DCH+PC1+TOF+BBC
- $\overline{\text { - }}=[/ 8,-0.35<\square<0.35$
- Momentum Resolution
$\square p / p \square 0.7 \% \oplus 1.0 \% \square p(\mathrm{GeV} / c)$
- TOF resolution $\square_{\text {TOF }} \sim 115$ ps.
- Hadron PID in m^{2} vs. p space with asymmetric PID cuts.
- $0.2<\square<3.0 \mathrm{GeV} / \mathrm{c}$,
- $0.4<\mathrm{K}<2.0 \mathrm{GeV} / \mathrm{c}$,
- $0.6<\mathrm{p}<4.5 \mathrm{GeV} / \mathrm{c}$.
- BG contamination level :

-10\% K in —@ $^{3} \mathrm{GeV} / \mathrm{c}$,
-10\% 〕in K @ $2 \mathrm{GeV} / \mathrm{c}$,
- $5 \% \mathrm{~K}$ in p @ $4 \mathrm{GeV} / \mathrm{c}$.

Detector Occupancy Correction

- Due to the high multiplicity environment in $\mathrm{Au}+\mathrm{Au}$, corrections for detector occupancy is necessary.
- Estimate track reconstruction efficiency by embedding single MC event in real data for each particle species and centrality.
$\square_{\text {nult }}=\frac{\# \text { of reconstructed embedded tracks }}{\# \text { of embedded tracks }}$

- Results

- For most peripheral : ~ 99\%
- For most central : 80\% (p), 83\% (K), 85\% ($\mathrm{\square}$).

Feed-down correction for p and pbar

p and pbar spectra are corrected to remove the feed-down contribution from weak decays using HIJING.

Assumptions:

1. $\mathrm{pbar} / \mathrm{p}, \square \mathrm{bar} / \square$ ratios are independent of p_{T} and centrality.
2. m_{T} scaling for high p_{T} region.
3. No drastic change from 130 GeV to 200 GeV .

Tuned HIJING (central) output to reproduce \square / p (\square bar/pbar) measured ratio at 130 GeV AuAu.

Estimate fractional contributions of p (pbar) from \square (\square bar) decay in all measured p (pbar).

Final p_{T} Spectra

Invariant Yield

$$
\begin{array}{|c}
\frac{1}{2 \square p_{T}} \frac{d^{2} N}{d p_{T} d y}=\frac{1}{2 \square p_{T}} \cdot \frac{1}{N_{e v t}(i)} \cdot C_{i j}\left(p_{T}\right) \cdot \frac{N_{j}\left(i, p_{T}\right)}{\square p_{T} \square y} \\
C_{i j}\left(p_{T}\right)=\frac{1}{\square_{a c c}\left(j, p_{T}\right)} \cdot \frac{1}{\square_{\text {nult }}(i, j)} \cdot C_{f e e d}\left(j, p_{T}\right) \\
\begin{array}{l}
\text { Acceptance, Decay, } \\
\text { Mult. scattering } \\
\text { (single particle MC) }
\end{array}
\end{array}
$$

(1) Particle Spectra

p_{T} Spectra (central vs. peripheral)

Central

> low-pt slopes increase with particle mass
$>$ proton and antiproton yields equal the pion yield at high p_{T}.

Peripheral

> mass dependence is less pronounced
> similar to pp

Charged pion spectra in AuAu 200 GeV

- Approximately power-low shape for all centrality.
- The spectra fall faster with increasing p_{T} for more peripheral collisions.

Charged kaon spectra in AuAu 200 GeV

- Approximately exponential shape in p_{T} for all centrality.

Proton and anti-proton spectra in AuAu 200 GeV

- Corrected for weak decay feed-down effect ($\sim 40 \%$ at $0.6 \mathrm{GeV} / \mathrm{c}, \sim 25 \%$ at $4 \mathrm{GeV} / \mathrm{c}$).
- Strong centrality dependence in spectra shape at low $\mathrm{p}_{\mathrm{T}}(<1.5 \mathrm{GeV} / \mathrm{c})$.

p_{T} Spectra for All 4 Experiments and Hydrodynamical Model

Data: PHENIX: NPA715(03)151; STAR: NPA715(03)458; PHOBOS: NPA715(03)510; BRAHMS: NPA715(03)478
Hydro-calculations including chemical potentials: P.Kolb and R. Rapp, Phys. Rev. C 67 (03) 044903

Calculations \rightarrow too long a system lifetime Enormous initial pressure, but decouples quickly (~10 fm/c)

Hydrodynamics describes bulk particle momentum distributions.

Hydro + Jet Model

- Hydrodynamics can describe the spectra up to $\sim 2 \mathrm{GeV} / \mathrm{c}$.
- Jet contributions > $2 \mathrm{GeV} / \mathrm{c}$.
- Needed detailed comparison with data (e.g. centrality dependence) .

$\mathrm{m}_{\mathrm{T}}-\mathrm{m}_{\mathbf{0}}$ Spectra

Fit Function

$$
\frac{1}{2 \square T\left(T+m_{0}\right)} \cdot A \cdot \exp \square \frac{m_{T} \square m_{0}}{T} \sqsubseteq
$$

- Clear mass and centrality dep. in slope parameter T.
- Freeze-out temperature $\mathrm{T}_{0} \sim 175 \mathrm{MeV}$ for all centralities.

$$
T=T_{0}+m\left\langle u_{t}\right\rangle^{2}
$$

(2) Yields and $\left\langle p_{T}\right\rangle$

Mean p_{T} Vs. $\mathrm{N}_{\text {part }}$

- Increase from peripheral to mid-central, and then saturate from mid-central to central for all particle species.
- Observed clear mass dependence (consistent with hydro picture).

dN/dy vs. $\mathbf{N}_{\text {part }}$

- dN/dy per participant pair increases for all particle species with Npart up to ~ 100 and saturates from the mid-central to the most central.
- Net proton : $\mathrm{dN} /\left.\mathrm{dy}\right|_{\mathrm{p}}=\mathrm{dN} /\left.\mathrm{dy}\right|_{\text {pbar }}=4.95 \pm 2.74$ (most central AuAu).

(3) Particle Ratios

$\square^{-} / \square^{+}$and $\mathrm{K} / \mathrm{K}^{+}$vs. p_{T}

- For each of these particle species and centralities, the particle ratios are constant within the experimental errors over the measured p_{T} range.

\bar{p} / p ratio vs. p_{T}

Constant within the experimental errors

Baryon Junction
Vitev, Gyulassy NPA 715, 779c (2003)
pQCD

- Baryon Junction model agrees well with the measured p_{T} dependence of pbar/p ratio.
- Parton recombination model also reproduce the ratio and its flat p_{T} dependence.

K / \square ratio vs. p_{T}

- Both $\mathrm{K}^{+} / \square^{+}$and K^{-} / \square ratios increase with p_{T}.
- Increase is faster in central collisions in peripheral one.

p / \square ratio vs. p_{T} and centrality

- Both p / \square and $p b a r / \square$ ratios are enhanced compared to peripheral $A u+A u$, $p+p$ and $e^{+} e^{-}$at $p_{T}=1.5 \sim 4.5 \mathrm{GeV} / \mathrm{c}$.
- Consistent with gluon/quark jet fragmentation in peripheral AuAu (> 3 $\mathrm{GeV} / \mathrm{c}$).

What is the PHYSICS behind?

Hydro+Jet
Hirano, Nara nucl-th/0307015

- Both Parton Recombination/Coalescence and Baryon Junction models reproduce p / \square ratio (p_{T} and centrality dep.) qualitatively.
- Both models predict p / \square enhancement is limited $<5 \mathrm{GeV} / \mathrm{c}$.
- Another scenarios: Different formation time between baryons and mesons ? or Strong radial flow + hard scattering ?

Particle composition beyond 5 GeV

Particle Ratio vs. $\mathbf{N}_{\text {part }}$

- Ratios for equal mass particle are independent of $\mathrm{N}_{\text {part }}$.
- K / \square : increase rapidly for peripheral and then saturate (or rise slowly to central).
- p / \square : similar to these of K/ \square.

Statistical Thermal Model

- Almost complete reconstruction of particle ratios by the statistical thermal model.
- Thermal model prediction in AuAu 200 GeV central.

$$
\mathrm{T}_{\mathrm{ch}}=177 \mathrm{MeV}, \square_{\mathrm{B}}=29 \mathrm{MeV}
$$

* feed-down effect is not included in the model.
- Thermal model: P.Braun-Munzinger et al., PLB 518, 41 (2001).
- PHOBOS: B.B.Back et al., PRC 67, 021901(R) (2003).
- BRAHMS: I.G.Bearden et al., PRL 90, 102301 (2003).
- STAR: G.V.Buren, NPA 715, 129c (2003).
- PHENIX : nucl-ex/0307022.

(4) Scaling Properties of Hadrons

R_{AA} for \square^{0} and charged hadron

$$
\mathrm{R}_{\mathrm{AA}}=\frac{\text { Yield }_{\mathrm{AuAu}} / \mathbb{N}_{\text {binary }}\left\lceil_{\text {huAu }}\right.}{\text { Yield }_{\mathrm{pp}}}
$$

- \mathbf{R}_{AA} is well below 1 for both charged hadrons and neutral pions.
- The neutral pions fall below the charged hadrons since they do not contain contributions from protons and kaons.

PHENIX AuAu 200 GeV

\square^{0} data: PRL 91072301 (2003), nucl-ex/0304022.
charged hadron (preliminary) : NPA715, 769c (2003).

p_{T} spectra (p vs. \quad) in Au+Au @ 200 GeV

- Clearly seen $p-\square$ merging at $p_{T} \sim 2 \mathrm{GeV} / \mathrm{c}$ in central.
- No p- \square merging in peripheral.
- Suggested significant fraction of $\mathrm{p}, \mathrm{pbar}$ at $\mathrm{pt}=1.5-4.5 \mathrm{GeV} / \mathrm{c}$ in central.

$\mathbf{N}_{\text {coll }}$ scaled p_{T} spectra

Radial Flow Effect

Central-to-Peripheral Ratio (R_{CP}) vs. p_{T}

* Shaded boxes : $N_{\text {part }}, N_{\text {coll }}$ determination errors.

p: No suppression, $\mathrm{N}_{\text {coll }}$ scaling at 1.5 GeV - 4.5 GeV
\square^{0} : Suppression (central > peripheral)

Centrality Dependence of \mathbf{R}_{CP}

* Data points are normalized to the most peripheral data point.
- Proton data scales with $\mathrm{N}_{\text {coll }}$ for all centrality bins.
- Charged pions: decrease with $\mathbf{N}_{\text {part }}$, kaons: between pions and protons.

STAR Results

- Similar behavior has been observed in $]$.
- Limitted behavior of baryon enhancement (<~4 GeV/c).

Model Comparison

Hirano, Nara (Hydro+Jet model) nucl-th/0307015

Fries, Muller, Nonaka, Bass
(Fragmentation/Recombination model) nucl-th/0306027

- Baryon Junction model, Recombination model, Hydro-jet model (Predicted baryon enhancement is limitted up to ~4-5 GeV/c.
- Qualitative agreement with data for all these models.

$R_{d A}$ for charged hadrons and \square^{0}

- Different behavior between \square^{0} and charged again at $p_{T}=1.5-5.0 \mathrm{GeV} / \mathrm{c}$!
- $d+A u$ data suggests the flavor dependent Cronin effect.
- New results will come soon!

Summary and Conclusions

We presented the high statistics identified charged hadron p_{T} spectra, ratios and yields in Au+Au collisions at $s_{N N}=200 \mathrm{GeV}$ from the PHENIX experiment.

1. In low p_{T} region ($<2 \mathrm{GeV} / \mathrm{c}$) in central collisions, the p_{T} spectra show a clear mass dependence in their shape (p : shoulder-arm shape, \square : concave shape).
2. Inverse slope parameters show clear mass and centrality dependence.
3. These observations are consistent with hydro-dynamic picture.
4. In central events, p and pbar comprise a significant fraction of hadron yields in the intermediate p_{T} range ($2 \sim 4 \mathrm{GeV} / \mathrm{c}$).
5. Particle ratios in central AuAu are well reproduced by the statistical thermal model with $\square_{B}=29 \mathrm{MeV}$ and $\mathrm{T}_{\mathrm{ch}}=177 \mathrm{MeV}$.
6. Net proton number in AuAu central is ~ 5 at mid-rapidity.
7. At the intermediate p_{T}, \mathbf{p} and pbar spectra show the different scaling behavior from pions ($\mathrm{N}_{\text {coll }}$ scaling), and a strong centrality dependence of p / \square ratio has been observed.

- Various theoretical models (recombination, baryon junction, hydro+jet) reproduce the data qualitatively. Dapnia, CEA Saclay, Gif-sur-Yvette
IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay
LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau SUBATECH, Ecòle des Mines at Nantes, Nantes
Germany University of Münster, Münster
Hungary Central Research Institute for Physics (KFKI), Budapest Debrecen University, Debrecen Eötvös Loránd University (ELTE), Budapest
India
Banaras Hindu University, Banaras
Bhabha Atomic Research Centre, Bombay
Israel Weizmann Institute, Rehovot
Japan Center for Nuclear Study, University of Tokyo, Tokyo Hiroshima University, Higashi-Hiroshima
KEK, Institute for High Energy Physics, Tsukuba Kyoto University, Kyoto
Nagasaki Institute of Applied Science, Nagasaki

12 Countries; 57 Institutions; 460 Participants*

RIKEN-BNL Research Center Upton, NY
University of Tokyo, Bunkyo-ku, Tokyo
Tokyo Institute of Technology, Tokyo
University of Tsukuba, Tsukuba
Waseda University, Tokyo
S. Korea Cyclotron Application Laboratory, KAERI, Seoul

Kangnung National University, Kangnung
Korea University, Seoul
Myong Ji University, Yongin City
System Electronics Laboratory, Seoul Nat. University, Seoul Yonsei University, Seoul
Russia Institute of High Energy Physics, Protovino
Joint Institute for Nuclear Research, Dubna Kurchatov Institute, Moscow
PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg St. Petersburg State Technical University, St. Petersburg Lund University, Lund

Abilene Christian University, Abilene, TX
Brookhaven National Laboratory, Upton, NY
University of California - Riverside, Riverside, CA
University of Colorado, Boulder, CO
Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL
Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN

PHENIX Publications
 \sim single particle spectra (hadron) only ~

- K. Adcox et al., PHENIX Collaboration, "Suppression of Hadrons with Large Transverse Momentum in Central Au+Au Collisions at $\mathrm{s}_{\mathrm{NN}}=130 \mathrm{GeV}$ ", Phys. Rev. Lett. 88, 022301 (2002).
- K. Adcox et al., PHENIX Collaboration, "Centrality dependence of $\pi^{ \pm}, \mathrm{K}^{ \pm}, \mathrm{p}$ and p -bar production from $\mathrm{s}_{\mathrm{NN}}=130 \mathrm{GeV}$ Au+Au collisions at RHIC, Phys. Rev. Lett. 88, 242301 (2002).
- K. Adcox et al., PHENIX Collaboration, "Measurement of Lambda and Lambda-bar particles in $\mathrm{Au}+\mathrm{Au}$ collisions at $\mathrm{s}_{\mathrm{NN}}=130 \mathrm{GeV}$ ', Phys. Rev. Lett. 89, 092302 (2002).
- K. Adcox et al., PHENIX Collaboration, "Centrality Dependence of the High p_{T} Charged Hadron Suppression in Au +Au collisions at $\mathrm{s}_{\mathrm{NN}}=130 \mathrm{GeV} "$, Phys. Lett. B 561, 82-92 (2003).
- S.S. Adler et al., PHENIX Collaboration, "Suppressed \square^{0} Production at Large Transverse Momentum in Central Au+Au Collisions at $\mathrm{s}_{\mathrm{NN}}=200 \mathrm{GeV}^{\prime}$, Phys. Rev. Lett. 91, 072301 (2003) [nuclex/0304022].
- S.S. Adler et al., PHENIX Collaboration, "Scaling properties of proton and anti-proton production in $=200 \mathrm{GeV} \mathrm{Au}+\mathrm{Au}$ collisions", to be appeared in Phys. Rev. Lett., nucl-ex/0305036.
- S.S. Adler et al., PHENIX Collaboration, "Midrapidity Neutral Pion Production in Proton-Proton Collisions at $s=200 \mathrm{GeV}^{\prime}$ ", to be appeared in Phys. Rev. Lett., hep-ex/0304038.
- S.S. Adler et al., PHENIX Collaboration, "Absence of Suppresion in Particle Production at Large Transverse Momentum in $\mathrm{s}_{\mathrm{NN}}=200 \mathrm{GeV}$ d+Au Collisions", Phys. Rev. Lett. 91, 072303 (2003) [nucl-ex/0306021].
- K. Adcox, et al, PHENIX Collaboration, "Single Identified Hadron Spectra from $\mathrm{s}_{\mathrm{NN}}=130 \mathrm{GeV}$ Au+Au Collisions", to be appeared in Phys. Rev. C, nucl-ex/0307010.
- S.S. Adler et al., PHENIX Collaboration, "Identified Charged Particle Spectra and Yields in Au+Au Collisions at $\mathrm{s}_{\mathrm{NN}}=200 \mathrm{GeV}$ ", to be appeared in Phys. Rev. C, nucl-ex/0307022.
- S.S. Adler et al., PHENIX Collaboration, "High p_{T} Charged Hadron Suppression in Au+Au Collisions at $\mathrm{s}_{\mathrm{NN}}=200 \mathrm{GeV}$ ', to be appeared in Phys. Rev. C, nucl-ex/0308006.

Backup Slides

Hard Scattered Partons

- Hard scatterings in nucleon collisions produce jets of particles.
- In the presence of a color-deconfined medium, the partons strongly interact ($\sim \mathrm{GeV} / \mathrm{fm}$) losing much of their energy.
- "Jet Quenching"

