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Background to the study—or why did we bother

to work like slaves for several months?

Shore and White’s, at first sight, surprising

claim about the axial anomaly.

Based on a classical paper of Jaffe and Manohar

who stressed the subtleties and warned that ’

a careful limiting procedure has to be intro-

duced’

Despite all the care, there are flaws. With the

J-M result one cannot have a sum rule for a

transversely polarized nucleon.

With the correct version one can
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OUTLINE OF TALK

The Ugly: The traditional way of deriving an-

gular momentum sum rules. Its pitfalls and

problems. Horrible infinities all over the place.

The Bad: Our improvement of the traditional

approach. No infinities but the price is high in

terms of complexity.

The Good: Larry Trueman’s brilliant idea. All

is beautiful and simple.
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What is the aim???

We consider a nucleon with 4-momentum pµ

and covariant spin vector S corresponding to

some specification of its spin state e.g. helic-

ity, transversity or spin along the Z-axis i.e. a

nucleon in state |p,S〉.

We require an expression for the expectation

value of the angular momentum in this state

i.e. for 〈p,S|J|p,S〉

i.e. we require an expression in terms of p

and S. This can then be used to relate the

expectation value of J for the nucleon to the

angular momentum carried by its constituents.
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THE UGLY

The traditional approach: In every field theory

there is an expression for the angular momen-

tum density operator. The angular momentum

operator J is then an integral over all space of

this density.

To understand the subtleties we need to recall

Noether’s famous theorem:

For every continuous symmetry there is a con-

served current and a conserved operator which

generates the transformations of that symme-

try.

Thus invariance under time translations⇒ con-

servation of the energy operator (or Hamil-

tonian) P0. Invariance under spatial transla-

tions ⇒ conservation of linear momentum P
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Then translations in space-time are generated

as follows: For any local operator F (x)

F (x + a) = eiP.aF (x)e−iP.a

Thus

F (x) = eiP.xF (0)e−iP.x

Danger! G(x) = xF (x) seems like a reasonable

local operator.

But by the above:

G(x) = eiP.xG(0)e−iP.x (1)

= 0forALLx

Clearly absurd!
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Typically the angular momentum density in-

volves the energy-momentum tensor density

Tµν(x) in the form e.g.

Jz = J3 =
∫

dV [xT02(x)− yT01(x)]

Consider the expectation value of the first term

〈p,S|
∫

d3xx1T02(x)|p,S〉 =
∫

d3xx1〈p,S|T02(x)|p,S〉
(3)

=
∫

d3xx1〈p,S|eiP.xT02(0)e−iP.x|p,S〉
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Now the nucleon is in an eigenstate of momen-

tum, so P acting on it just becomes p. The

numbers eip.xe−ip.x cancel out and we are left

with:

∫
dV x〈p,S|T02(0)|p,S〉

The matrix element is independent of x so we

are faced with
∫

dV x = ∞ ? or = 0 ? Totally

ambiguous!

The problem is an old one: In ordinary QM

plane wave states give infinities

The solution is an old one: Build a wave packet,

a superposition of physical plane wave states
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In QM we use

Ψp0(x) =
∫

d3p ψ(p0 − p) eip.x

where ψ(p0 − p) is peaked at p = p0

We then calculate some physical quantity and
at the end take the limit of a very sharp wave
packet

In field theory we do essentially the same and
build a physical wave packet state:

|Ψ(p0)〉 =
∫

d3p ψ(p0 − p) |p〉

then an expectation value in the state |Ψ(p0)〉
will involve non-diagonal matrix elements

〈p′|J |p〉
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What about the spin??? J-M use

|Ψ(p0,S)〉 =
∫

d3p ψ(p0 − p) |p,S〉
i.e. with a fixed S on both sides of the equa-
tion.

They do this to simplify things so that the
expectation value only involves

〈p′,S|J |p,S〉

i.e. is at least diagonal in S—important for
them because they try to write down the most
general form for this matrix element

But this is incorrect. The wave packet is not
physical. Recall that for a physical nucleon

p.S = 0
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Thus if p is to vary freely in the wave packet

integration S cannot remain fixed. — Point 1

The second difficulty is the general form writ-

ten down for the matrix element. The Lorentz

structure assumed is not correct for non-diagonal

matrix elements.

To see this think of electromagnetic form factors:〈p′,S|jµ
em|p,S〉

We cannot say: this transforms like a 4-vector,

therefore we can express it terms of vectors

built from p, p′,S

We have to first factor out the Dirac spinors

ū(p′)[γµ F1 + iσµνqν
2m F2]u(p)

This is the second problem—-Point 2
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ū(p′)[γµ F1 + iσµνqν
2m F2]u(p)

This is the second problem—-Point 2

31



Thus if p is to vary freely in the wave packet
integration S cannot remain fixed. — Point 1

The second difficulty is the general form writ-
ten down for the matrix element. The Lorentz
structure assumed is not correct for non-diagonal
matrix elements.

To see this think of electromagnetic form fac-
tors:

〈p′,S|jµ
em|p,S〉

We cannot say: this transforms like a 4-vector,
therefore we can express it terms of vectors
built from p, p′,S

We have to first factor out the Dirac spinors
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THE BAD

Correcting the traditional approach

Point 1:á la BLT, sandwich J between physical
wave packet states

|Ψ(p0, s)〉 =
∫

d3p ψ(p0 − p) |p, s〉

where s is the spin vector in the rest frame.

Note that the covariant spin vector, for spin
quantized along the Z axis is then

Sµ =

(
p.s

m
, s +

p.s

m(p0 + m)
p

)

Thus S varies as we integrate over p
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Point 2: Take care to utilize Dirac spinors

when writing down general structure of

〈p′, s|J |p, s〉

• Long, involved calculation!

•Need to study narrow wave packet and limit

as it approaches plane wave

Result: For general polarization state of nu-

cleon BLT differs from J-M. Details later.
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THE GOOD

Larry Trueman’s brilliant idea

• It is simple.

• It is short

• It works for any spin. Previous methods only

work for spin 1/2.

We know how rotations affect states. If |p, m〉
is a state with momentum p and spin projec-

tion m in the rest frame of the particle, and

if R̂z(β) is the operator for a rotation β about

OZ, then

R̂z(β)|p, m〉 = |Rz(β)p, m′〉Ds
m′m[Rz(β)]
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But rotations are generated by the angular mo-

mentum operators! i.e.

R̂z(β) = e−iβJz

so that

Jz = i
d

dβ
R̂z(β)

∣∣∣
β=0

From the above we know what the matrix ele-

ment of R̂z(β) looks like. So we simply differ-

entiate and put β = 0.

One technical point: you have to know that

the derivative of the rotation matrix for spin s

at β = 0 is just the spin matrix for that spin.

e.g. for spin 1/2 just σz.
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COMPARISON OF RESULTS

For the expectation values we find, for any spin
configuration (longitudinal, transverse etc) the
remarkably simple result:

〈〈p, s|Ji|p, s〉〉 =
1

2
si

Written in these variables the J-M result is:

〈〈p, s|Ji|p, s〉〉 =

1

4mp0

[
(3p2

0 −m2)si −
3p0 + m

p0 + m
(p.s)pi

]

These look completely different. But for a
state of longitudinal polarization i.e when s =
p̂ they agree!

But for transverse spin they are crucially dif-
ferent.
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This difference is critical for the purpose of de-

riving angular momentum sum rules, because

these are derived for a fast moving nucleon i.e.

for p0 →∞.

For transverse spin i.e. for s perpendicular to

p the J-M result gives:

〈〈p, s|Ji|p, s〉〉JM =
1

4mp0

[
(3p2

0 −m2)si

]

which →∞ as p0 →∞, so no sum rule is pos-

sible.
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SUM RULES

Expand nucleon state as superposition of n-

parton Fock states.

|p, m〉 '
∑
n

∑

{σ}

∫
d3k1 . . . d3kn

ψp,m(k1, σ1, ...kn, σn)

δ(3)(p− k1...− kn)|k1, σ1, ...kn, σn〉.
Consider a nucleon moving along OZ with mo-

mentum p

There are two independent cases:

(a) Longitudinal polarization i.e. s along OZ.

The sum rule for Jz yields the well known result

1/2 = 1/2∆Σ + ∆G + 〈Lq
z〉+ 〈LG

z 〉
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(b) Transverse polarization i.e. s ⊥ p. The

sum rule for Jx or Jy yields a a new sum rule

1/2 = 1/2
∑

q, q̄

∫
dx∆T q(x) +

∑

q, q̄, G

〈LsT 〉

Here LsT is the component of L along sT .

The structure functions ∆T qa(x) ≡ h
q
1(x) are

known as the quark transversity or transverse

spin distributions in the nucleon.

As mentioned no such parton model sum rule is

possible with the J-M formula because, as p →
∞, for i = x, y the matrix elements diverge.

55



(b) Transverse polarization i.e. s ⊥ p. The

sum rule for Jx or Jy yields a a new sum rule

1/2 = 1/2
∑

q, q̄

∫
dx∆T q(x) +

∑

q, q̄, G

〈LsT 〉

Here LsT is the component of L along sT .

The structure functions ∆T q(x) ≡ h
q
1(x) are

known as the quark transversity or transverse

spin distributions in the nucleon.

As mentioned no such parton model sum rule is

possible with the J-M formula because, as p →
∞, for i = x, y the matrix elements diverge.

56



(b) Transverse polarization i.e. s ⊥ p. The

sum rule for Jx or Jy yields a a new sum rule

1/2 = 1/2
∑

q, q̄

∫
dx∆T q(x) +

∑

q, q̄, G

〈LsT 〉

Here LsT is the component of L along sT .

The structure functions ∆T q(x) ≡ h
q
1(x) are

known as the quark transversity or transverse

spin distributions in the nucleon.

As mentioned no such parton model sum rule is

possible with the J-M formula because, as p →
∞, for i = x, y the matrix elements diverge.

57



The structure functions ∆T q(x) ≡ h
q
1(x) are

most directly measured in doubly polarized Drell-
Yan reactions

p(sT ) + p(sT ) → l+ + l− + X

where the asymmetry is proportional to

∑

f

e2f [∆T qf(x1)∆T q̄f(x2) + (1 ↔ 2)].

They can also be determined from the asym-
metry in semi-inclusive hadronic interactions
like

p + p(sT ) → H + X

where H is a detected hadron, typically a pion.
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Also in SIDIS reactions with a transversely po-

larized target

` + p(sT ) → ` + H + X.

The problem is that in these semi-inclusive re-

actions ∆T qf(x) always occurs multiplied by

the largely unknown Collins fragmentation func-

tion. Moreover recent studies seem to indicate

that in hadronic reactions the Collins asymme-

try is largely washed out by phase effects.
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SUMMARY

• In order to derive angular momentum sum
rules you need an expression for the matrix el-

ements of the angular momentum operators J

in terms of the momentum p and spin s of the

particle.

• Such matrix elements are divergent and am-

biguous in the traditional approach and are

incorrect in some classic papers

• This can be handled using wave packets but

the calculations are long and unwieldy

• Using our knowledge of how states trans-

form under rotations leads quickly and rela-

tively painlessly to correct results

• The great success of the correct approach is
that it allows derivation of a sum rule also for

transversely polarized nucleons
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