The TPC/HBD Simulation Package in PISA

The TPC/HBD in PISA

Cerenkov radiation from 100 MeV e

What has been done with it so far?

- Occupancy studies
- Cerenkov blob size, # photoelectrons
 - CH₄ and CF₄ both implemented as gas options
 - Blobs in various field configurations
- Multiplicity and conversion studies (with Si upgrade)
 - Combinatorial background studies: see K.
 Ozawa's talk
- A first look at dE/dx

Occupancy of TPC

Central Au-Au ($dN_{ch}/dy = 650$) at 200 GeV

Assume 2x10 mm² pads on readout planes

Innermost pad row (r = 20 cm) $90^{\circ} = 157 \text{ divisions in } \phi$ 199 hits

Midrange pad row (r = 35 cm) $90^{\circ} = 275$ divisions in ϕ 137 hits

HBD Occupancy, Blob Size

Occupancy of HBD

Assuming 4% of a radiation length from proposed silicon vertex detector upgrade

CF₄: ~30 photoelectrons per e⁻ track Blob diameter ~5 cm with zero-integral field

Central Au-Au ($dN_{ch}/dy = 650$)

θ-dependence of blob spread

50 MeV e- at different θ , zero-integral field

Looking at a limited φ region

50 MeV e⁻ getting turned around in the outer PHENIX field

Dalitz pair Cerenkov blobs in different fields

Electron Multiplicities/Event

In TPC

Hitting HBD

Averaged over 200 events	No Si	Si
Tracking down to 1 MeV	33.7	89.5
Tracking down to 10 MeV	30.5	81.4
Tracking down to 20 MeV	27.0	73.5

Averaged over 200 events	No Si	Si
Tracking down to 1 MeV	28.4	59.8
Tracking down to 10 MeV	25.3	56.5
Tracking down to 20 MeV	22.6	51.6

No min. hits/track required in TPC

- Zero-integral magnetic field
- 4 layers 1%X₀ Si
- 4 layers $2\%X_0$ Si: 89.5 \rightarrow 130.4 electrons/event in TPC!

Vertex of conversion pairs hitting TPC

dE/dx

- A quick look at dE/dx for electrons in CF₄ according to GEANT
 - value given inWeizmannTechnical Note:~7 keV/cm

New inner field coil: low-field inner tracking region for low-momentum measurements

Even with maximum cancellation, not a field-free region

1000 - Br - 1000 - - 2000 - - z = 20 cm - 5000 0 10 20 30 40 50 60 70 80 r (sm)

New field map
-+ Coil Configuration

Large Br components
would make track-finding
in TPC difficult!
Another field map with 80%
cancellation has been

Plans for the Future

- Study track-finding and momentum resolution in TPC for various partial cancellation field configurations
 - What distortions in the tracks will there be due to ExB effects in the non-uniform magnetic field, space charge, . . .?
- More realistic detector response and readout
- Study HBD segmentation
- Investigate alternative gases/gas mixtures
- Further integration with proposed silicon upgrade detector

Various documentation on the TPC/HBD in PISA can be found at http://www.phenix.bnl.gov/phenix/WWW/p/draft/caidala/documentation/hbd_tpc/

Spare Slides

TPC Acceptance

50 MeV e⁻ at different θ

Looking at full azimuthal coverage.

The particles at 80 and 85° are exiting and re-entering multiple times!

65° 70° 75° 80° 85°

Zero-integral field

How does the field affect the Cerenkov blobs on the HBD?

CH₄ radiator

200 MeV e⁻: Little effect

No field

Zero-integral field

With zero-integral field

e+- Multiplicities/event: Effect of no field

No min. hits/track required in TPC

TPC

HBD

Averaged over 200 events	No Si	Si	Averaged over 200 events	No Si	Si
No field (Tracking down to 1 MeV)	24.4	80.2	No field (Tracking down to 1 MeV)	19.5	50.1
Field (Tracking down to 1 MeV)	33.7	89.5	Field (Tracking down to 1 MeV)	28.4	59.8

Track distortions due to ExB effects

