QCD and Baryon Polarization Lecture 1: Nucleon structure in terms of collinear and transverse-momentum-dependent parton distribution functions

Christine A. Aidala Visiting Professor of Physics, Università degli Studi di Milano Associate Professor of Physics, University of Michigan

> Università degli Studi di Milano April 2020

Theory of strong nuclear interactions: Quantum Chromodynamics

- Fundamental field theory in hand since the early 1970s—BUT . . .
- Quark and gluon degrees of freedom in the theory cannot be observed or manipulated directly in experiment!

Color *confinement*—quarks and gluons are confined to color-neutral bound states

CLAS, PRL 113, 152004 (2014)

How do we understand the visible matter in our universe in terms of the quark and gluon degrees of freedom of quantum chromodynamics?

How can studying QCD systems teach us more about fundamental aspects of QCD as a theory?

Outline of lectures

- 1. Introduction; collinear and TMD nucleon structure
- 2. Spin-momentum correlations in the nucleon in terms of TMD PDFs and collinear twist-3 multiparton correlations
- 3. Hadronization: collinear and TMD fragmentation functions, collinear twist-3 correlations; dihadron FFs; different hadronization mechanisms/pictures
- 4. Hadron structure and hadronization: Sea quarks/non-valence quarks
- 5. Hyperon and heavy flavor baryon polarization I
- 6. Hyperon and heavy flavor baryon polarization II

The proton as a "laboratory" for studying QCD

- Proton: simplest stable QCD bound state
- Different energy scales offer information on different aspects of proton internal structure

What have we learned in terms of this picture by now? (Preview)

- Up and down quark "valence" distributions peaked ~1/3
- Lots of sea quarkantiquark pairs and even more gluons!

Perturbative QCD

- Take advantage of running of strong coupling constant with energy (*asymptotic freedom*)—weak coupling at high energies (short distances)
- Perturbative expansion as in quantum electrodynamics (but many more diagrams due to gluon self-coupling...)

Particle Data Group, 2019

Perturbative QCD

- Take advantage of running of strong coupling constant with energy (*asymptotic freedom*)—weak coupling at high energies (short distances)
- Perturbative expansion as in quantum electrodynamics (but many

Importantly: Perturbative QCD provides one rigorous way of relating the fundamental field theory—in terms of **quarks and gluons**—to a variety of physical observables—in terms of **hadrons**

Factorization and universality in perturbative QCD

- Systematically *factorize* short- and long-distance physics
 - Observable physical QCD processes always involve at least one "long-distance" scale of ~10⁻¹⁵ m describing boundstate structure (confinement)!
- Long-distance (i.e. not perturbatively calculable) functions describing structure need to be *universal*
 - Physically meaningful descriptions
 - Portable across calculations for many processes

Factorization and universality in perturbative QCD

- Systematically *factorize* short- and long-distance physics
 - Observable physical QCD processes always involve at least one "long-distance" scale of ~10⁻¹⁵ m describing boundstate structure (confinement)!
- Long-distance (i.e. not perturbatively calculable) functions describing structure need to be *universal*
 - Physically meaningful descriptions
 - Portable across calculations for many processes

Constrain functions describing proton structure by measuring scattering cross sections in many colliding systems over wide kinematic range and performing *simultaneous fits to world data*

Factorized pQCD calculations of observables

High-energy processes have predictable rates given:

- Partonic hard scattering rates (calculable in pQCD)
- Parton distribution functions (experiment)
- Fragmentation functions (experiment)

Factorized pQCD calculations of observables

High-energy processes have predictable rates given:

- Partonic hard scattering rates (calculable in pQCD)
- Parton distribution functions (experiment)
- Fragmentation functions (experiment)

Universal

Example NLO pQCD calculation for $p+p \rightarrow \pi^0 + X \text{ at } \sqrt{s} = 200 \text{ GeV}$

Systematic uncertainty on calculation due to factorization, renormalization, and fragmentation scale dependence. All three scales taken as equal and varied from $p_T/2$ to $2p_T$. Cross section prediction varies by tens of percent here.

Example NLO pQCD calculation for $p+p \rightarrow \pi^0 + X \text{ at } \sqrt{s} = 200 \text{ GeV}$

• Can reduce theoretical uncertainties due to the choice of factorization, renormalization, and fragmentation scales by

- going to higher orders in α_s
- and/or using resummation techniques
- Both approaches allow you to include more terms in your perturbative expansion

Example: "Threshold resummation" Extending perturbative calculations to lower energies

For observables with two different scales, sum logs of their ratio to all orders in the strong coupling constant

Next-to-leading-order in α_s + resum.

Next-to-leading-order in α_s

Almeida, Sterman, Vogelsang PRD80, 074016 (2009)

THE NNLO STANDARD

NNLO HADRON-COLLIDER CALCULATIONS VS. TIME

THE NNLO STANDARD

NNLO HADRON-COLLIDER CALCULATIONS VS. TIME

But note that these calculations are not for hadrons in the final state, only EW bosons, Higgs, and jets. More difficult when fragmentation functions involved!

- Learn from p+p results in conjunction with information from simpler systems
 - Many subprocesses contribute to (e.g.) inclusive hadron production in p+p collisions—couldn't disentangle them with p+p data alone
 - (A few processes are simpler, e.g. Drell-Yan process of qqbar to leptons)

- Learn from p+p results in conjunction with information from simpler systems
 - Many subprocesses contribute to (e.g.) inclusive hadron production in p+p collisions—couldn't disentangle them with p+p data alone
 - (A few processes are simpler, e.g. Drell-Yan process of qqbar to leptons)
- Much knowledge of PDFs from deep-inelastic lepton-nucleon scattering (DIS)
- Most knowledge of fragmentation functions from e+e-

- Learn from p+p results in conjunction with information from simpler systems
 - Many subprocesses contribute to (e.g.) inclusive hadron production in p+p collisions—couldn't disentangle them with p+p data alone
 - (A few processes are simpler, e.g. Drell-Yan process of qqbar to leptons)
- Much knowledge of PDFs from deep-inelastic lepton-nucleon scattering (DIS)
- Most knowledge of fragmentation functions from e+e-
- Note that Drell-Yan, DIS, and e+e- are all *QED* processes involving hadrons

- Learn from p+p results in conjunction with information from simpler systems
 - Many subprocesses contribute to (e.g.) inclusive hadron production in p+p collisions—couldn't disentangle them with p+p data alone
 - (A few processes are simpler, e.g. Drell-Yan process of qqbar to leptons)
- Much knowledge of PDFs from deep-inelastic lepton-nucleon scattering (DIS)
- Most knowledge of fragmentation functions from e+e-
- Note that Drell-Yan, DIS, and e+e- are all *QED* processes involving hadrons
- Once you have reasonably constrained PDFs and/or FFs, can use p+p data to further refine those constraints
 - Hadronic collisions have been especially important in constraining gluons—interact at leading order. E.g. pion production cross section measurements shown previously have improved constraints on gluon \rightarrow pion FFs

Beam on fixed target vs. colliding beams

- Colliding beams → higher energies
 - Production of new probes
 - Wide range of perturbatively calculable observables
- Fixed-target → higher luminosities
- Fixed-target \rightarrow higher x

Beam on fixed target vs. colliding beams

- Colliding beams → higher energies
 - Production of new probes
 - Wide range of perturbatively calculable observables
- Fixed-target → higher luminosities
- Fixed-target \rightarrow higher x

Lepton-nucleon scattering vs. hadronic collisions

- Leptonic processes → access to full parton kinematics
- Hadronic collisions → leading-order access to gluons
- Color annihilation in hadronic collisions→ cleanly tag antiquarks

Beam on fixed target vs. colliding beams

- Colliding beams → higher energies
 - Production of new probes
 - Wide range of perturbatively calculable observables
- Fixed-target → higher luminosities

F

Lepton-nucleon scattering vs. hadronic collisions

- Leptonic processes → access to full parton kinematics
- Hadronic collisions → leading-order access to gluons
- Color annihilation in hadronic collisions→

Recall: Constrain functions describing proton structure by measuring scattering cross sections in many colliding systems over wide kinematic range and performing *simultaneous fits to world data*

Data from many different experiments over wide kinematic range

Global fits of parton distribution functions

Comparison of PDF fits by different

groups

• Can compare and cross-check effects of different choices made by various groups

Comparison of PDF fits by different

groups

- Can compare and cross-check effects of different choices made by various groups
- Group of Stefano Forte / NNPDF has been a leader in robust determination of uncertainties on PDFs
 - Pioneered use of neural network techniques to eliminate systematic uncertainties due to choice of functional form of parameterization—see e.g. Nucl. Phys. B809, 1 (2009)
 - See also recent paper on handling missing higher-order theory uncertainties, EPJ C79, 11 (2019)

Resulting PDF fits

J. Rojo, arXiv:1910.03408

- Different observables give sensitivity to different partonic flavors
- Note gluon scaled down by factor of 10!
- PDFs are energy scale dependent

Resulting PDF fits

J. Rojo, arXiv:1910.03408

Ways to describe proton structure: Unpolarized, collinear PDFs

What momentum fraction would the scattering particle carry if the proton were made of ...

• Don't take into account polarization of proton or parton

Integrate over partonic transverse momentum within proton

Mapping out the quark-gluon structure of the proton

What does the proton look like in terms of the quarks and gluons inside it?

- Position
- Momentum
- Spin
- Flavor
- Color

Vast majority of past five decades focused on *1-dimensional* momentum structure. Since 1990s starting to consider transverse components . . .

What does the proton look like in terms of the quarks and gluons inside it?

- Position
- Momentum
- Spin
- Flavor
- Color

Polarized protons first studied in 1980s. How angular momentum of quarks and gluons add up still not well understood!

What does the proton look like in terms of the quarks and gluons inside it?

- Position
- Momentum
- Spin
- Flavor

• Color

Good measurements of flavor distributions in valence region. Flavor structure for sea quarks still yielding surprises.

What does the proton look like in terms of the quarks and gluons inside it?

Theoretical and experimental concepts to describe and

access position only born in mid-1990s. Pioneering

measurements over past ~decade.

- Position
- Momentum
- Spin
- Flavor
- Color

What does the proton look like in terms of the quarks and gluons inside it?

- Position
- Momentum
- Spin
- Flavor
- Color

Accounted for theoretically from beginning of QCD, but more detailed, potentially observable effects of color flow have come to forefront in last decade . . .

Beyond unpolarized, collinear PDFs: Spin-spin and spin-momentum correlations in QCD bound states

Transverse-momentum-dependent PDFs

Can keep transverse momentum dependence (more info than collinear), but survive if you do integrate over $k_{\rm T}$

Transverse-momentum-dependent PDFs

Can keep transverse momentum dependence (more info than collinear), but survive if you do integrate over k_{T}

Spin-spin correlations in terms of helicity

Elastic proton-quark scattering

(related to inelastic scattering through optical theorem)

Three independent PDFs corresponding to following helicity states in scattering:

Take linear combinations to form familiar collinear PDFs:

Helicity average (unpolarized PDF) Helicity difference (helicity PDF) Helicity flip (transversity PDF)

Spin-spin correlations in terms of helicity

Elastic proton-quark scattering

(related to inelastic scattering through optical theorem)

Three independent PDFs corresponding to following helicity states in scattering:

Helicity basis not "natural" for transversity

Can think of as difference in probability of scattering off of transversely polarized quark within transversely polarized proton with quark spin parallel vs. antiparallel to proton's

Take linear combinations to form familiar collinear PDFs:

$$q \quad \longleftrightarrow \quad \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & \rightarrow & \frac{1}{2} & \frac{1}{2} \end{array}\right) + \left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & \rightarrow & \frac{1}{2} & -\frac{1}{2} \end{array}\right)$$
$$\Delta q \quad \longleftrightarrow \quad \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & \rightarrow & \frac{1}{2} & \frac{1}{2} \end{array}\right) - \left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & \rightarrow & \frac{1}{2} & -\frac{1}{2} \end{array}\right)$$
$$\delta q \quad \longleftrightarrow \quad \left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & \rightarrow & -\frac{1}{2} & \frac{1}{2} \end{array}\right)$$

Helicity average (unpolarized PDF) Helicity difference (helicity PDF) Helicity flip (transversity PDF)

Spin-spin correlations (collinear or TMD): Helicity vs. transverse spin structure

- Transverse spin structure of the proton cannot be deduced from helicity structure
 - Spatial rotations and Lorentz boosts don't commute
 - Relationship between longitudinal and transverse structure provides information on the relativistic nature of partons in the proton
 - Even collinear transverse spin structure (transversity) should thus be linked to parton k_T
 - I haven't dug into this yet myself to try to understand it better

The Relativistic Heavy Ion Collider: A polarized p+p collider

Accessing gluon spin with polarized p+p collisions

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{1}{|P_1P_2|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

Study difference in particle production rates for same-helicity vs. opposite-helicity proton collisions

RHIC measurements sensitive to gluon

PRD86, 032006; PRL 115, 092002

Clear nonzero asymmetry seen in STAR jet measurements

• PHENIX π^0 data consistent (PRD90, 012007)

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{1}{|P_1P_2|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

Gluon spin from two subsequent global fits DSSV, PRL 113, 012001 (2014) NNPDF, NPB 887, 276 (2014)

- Can extract helicity PDFs using global fits of world data on longitudinally polarized protons (but much less data available than unpolarized)
- Fits by DSSV and NNPDF including RHIC data consistently found evidence for small but positive gluon polarization in the region x > 0.05

SCIENTIFIC AMERICAN[™]

Sign In Register 0

July 2014

Subscription Center Subscribe to All Access »

Subscribe to Print »

Give a Gift »

Q

Give a Gift »

View the Latest Issue »

Subscribe	News & Features	Topics	Blogs	Videos & Podcasts	Education	Citizen Science	SA Magazine	SA Mind	Books	SA en español
The Sciences » News				19	:: Email	:: Print				

Proton Spin Mystery Gains a New Clue

Physicists long assumed a proton's spin came from its three constituent quarks. New measurements suggest particles called gluons make a significant contribution

By Clara Moskowitz | July 21, 2014

Protons have a constant spin that is an intrinsic particle property like mass or charge. Yet where this spin comes from is such a mystery it's dubbed the "proton spin crisis." Initially physicists thought a proton's spin was the sum of the spins of its three constituent quarks. But a 1987 experiment showed that quarks can account for only a small portion of a proton's spin, raising the question of where the rest arises. The quarks inside a proton are held together by gluons, so scientists suggested

Brookhaven National Laboratory

perhaps they contribute spin. That idea now has support from a pair of studies analyzing the results of proton collisions inside the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, N.Y.

More from Scientific American

SCIENTIFIC 7

Follow Us:

ADVERTISEMENT

Parton helicity distributions

- First NNPDF polarized fits: Ph.D. thesis of Emanuele Nocera, UniMi
- Nocera et al., Nucl. Phys. B887, 276 (2014)

Parton helicity distributions

- First NNPDF polarized fits: Ph.D. thesis of Emanuele Nocera, UniMi
- Nocera et al., Nucl. Phys. B887, 276 (2014)

L.S.

Orbital angular momentum still needed to account for total proton spin \rightarrow parton *dynamics* important

Parton dynamics: Transverse-momentum-dependent PDFs

- Don't integrate over partonic transverse momentum (k_T): explicitly keep information on parton *dynamics* within the proton
 - $f(x, k_T, Q^2)$
- Framework of TMDfactorization goes back to 1980s (Collins, Soper, Sterman)
- Observables need sensitivity to two scales, $q_T \ll Q^2$
 - E.g. Z transverse momentum for $p_T \ll M_Z$
 - Higher p_T generated by hard (perturbative) radiation

At leading order, p_T of Z boson at low p_T due to sum of k_T of annihilating quark and antiquark

Example: Fits of transversemomentum-dependent PDFs

• First global fit of unpolarized TMD PDFs, including semi-inclusive deep-inelastic scattering, Drell-Yan, and Z boson data

Example: Fits of transversemomentum-dependent PDFs

0.3 0.6 0.9

P_{hT}[GeV]

Christine A

0.3 0.6 0.9

PhT[GeV]

0.3 0.6 0.9

P_{hT}[GeV]

0.3 0.6 0.9

P_{hT}[GeV]

0.3 0.6 0.9

PhT[GeV]

0.3 0.6 0.9

P_{hT}[GeV]

• First global fit of unpolarized TMD PDFs, including semi-inclusive deep-inelastic scattering, Drell-

Aata

Example: Fits of transversemomentum-dependent PDFs

• First global fit of unpolarized TMD PDFs, including semi-inclusive deep-inelastic scattering, Drell-TMD ("unintegrated") gluon distribution relevant e.g. to Higgs distribution at low p_T via gg \rightarrow Higgs 0ala

PhT[GeV

P_{hT}[GeV]

More on TMD PDFs and spin-momentum correlations in Lecture 2

PhT[GeV]

PhT[GeV]

A few words on nuclei: Not just superposed protons and neutrons

$$R_A \equiv \frac{1}{A} \frac{F_{2A}}{F_{2N}} \neq 1$$

- Ratio of cross section for e+A compared to scaled e+p collisions, shown vs. parton momentum fraction x
- Regions of both enhancement and depletion

Partonic momentum structure of nuclei: Nuclear parton distribution functions (Traditional collinear, unpolarized) Nuclear PDFs: Ratio of nuclear PDFs in lead with respect to deuterium

EPPS16 – EPJ C77, 163 (2017)

Partonic momentum structure of nuclei: Nuclear parton distribution functions (Traditional collinear, unpolarized) Nuclear PDFs: <u>Ratio of nuclear PDFs in lead with respect to deuterium</u>

EPPS16 – EPJ C77, 163 (2017)

Still lots to learn about partonic structure of nuclei!

Summary: Lecture 1

- Parton distribution functions have proven to be a very useful language to describe the quark-gluon structure of hadrons
 - Understanding proton structure
 - Making analytical cross section predictions within the framework of perturbative QCD
 - Input to Monte Carlo event generators
- Beyond collinear, unpolarized PDFs in the proton
 - spin-spin correlations in a polarized proton can be described by the helicity and transversity PDFs
 - transverse-momentum-dependent PDFs encode information on parton dynamics within the proton
 - nuclear PDFs describe modification of PDFs in nuclei with respect to free nucleons

Next-generation QCD facility: The Electron-Ion Collider

Key science questions:

- *How does a nucleon acquire mass?*
- How does the spin of the nucleon arise from its elementary quark and gluon constituents?
- What are the emergent properties of dense systems of gluons?

Project approval ("Critical Decision 0") and site selection at Brookhaven National Lab announced Jan 9, 2020!

Deep-inelastic lepton-nucleon scattering: A tool of the trade

- Probe nucleon with an electron or muon beam
- Interacts electromagnetically with (charged) quarks and antiquarks
- "Clean" process theoretically—quantum electrodynamics well understood and easy to calculate!

Decades of DIS data: What have we learned?

$$\frac{d^2 \sigma^{e_p \to e_X}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

- Wealth of data largely thanks to proton-electron collider, HERA, in Hamburg (1992-2007)
- Rich structure at low x
- Half proton's momentum carried by gluons!

What have we learned in terms of this picture by now?

- Wealth of data largely thanks to proton-electron collider, HERA, in Hamburg (1992-2007)
- Half proton's momentum carried by gluons!

 Both deep-inelastic lepton-nucleon scattering (DIS) and quark-antiquark annihilation to leptons (Drell-Yan process) are tools to probe the quark and antiquark structure of hadrons

Drell-Yan complementary to DIS

Christine Aidala, UniMi, April 2020

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

- A great place to be to study QCD
- A collider-based program, but not designed to be at the energy (or intensity) frontier. More closely analogous to many areas of condensed matter research—create a system and study its properties
- What systems are we studying?

- "Simple" QCD bound states—the proton is the simplest stable bound state in QCD (and conveniently, nature has already created it for us!)
- Collections of QCD bound states (nuclei, also available out of the box!)
- QCD deconfined! (quark-gluon plasma, some assembly required!)

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

- A great place to be to study QCD
- A collider-based program, but not designed to be at the energy (or intensity) frontier. More closely analogous to many areas of condensed matter research—create a system and study its properties
- What systems are we studying?

Polarized proton beams colliding at center-of-mass energies 62-510 GeV. *Running 2001-present* CD decontined! (quark-gluon plasma, some assembly

ıt of

able

required!)

RHIC's current main experiments

PHENIX:

- High resolution; high rate capabilities for rare probes
- Central arms $|\eta| < 0.35$, $\Delta \phi \sim 2\pi$ with • key strength measuring EM probes
- Muon arms $1.2 < |\eta| < 2.4$
- Forward EM calorimetry

Control spin direction of proton beams independently

STAR:

- Key strengths jets + correlations
- Full acceptance including PID • for $|\eta| < 1$, $\Delta \phi \sim 2\pi$
- Forward EM calorimetry \bullet

COMPASS at CERN: Muon/Pion scattering off of fixed targets

Nucleon structure and hadron spectroscopy

- Polarized muon
 beam, unpolarized
 negative pion beam,
 160-200 GeV/c
- Polarized ⁶LiD and NH₃ targets (polarized deuterons and protons)

Quest for ΔG , gluon spin contribution to spin of proton

•

In mid-1990s predictions for the integrated gluon spin contribution to proton spin ranged from 0.7 - 2.3!

 Many models hypothesized large gluon spin contributions to screen the quark spin, but these would then require large orbital angular momentum in the opposite direction

Unpolarized proton structure from deep-inelastic lepton-proton scattering

$$\frac{d^2 \sigma^{ep \to eX}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

- Wealth of data largely from HERA e+p collider
- Rich structure at low *x*
- Half proton's linear momentum carried by gluons!
- Kinematic coverage of polarized experiments much smaller

World data on longitudinally polarized proton structure function

 $\cdot \Lambda \Sigma$ G+q

Flavor-separated sea quark helicities through W production

 $\Delta q(x), \Delta \overline{q}(x)$

$$A_L^{W^+} \approx -\frac{\Delta u(x_1)\overline{d}(x_2) - \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) - \overline{d}(x_1)u(x_2)}$$

$$A_L^{W^-} \approx -\frac{\Delta d(x_1)\overline{u}(x_2) - \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) - \overline{u}(x_1)d(x_2)}$$

Parity violation of weak interaction + control over proton spin orientation gives access to *flavor*-spin structure of proton

 \overline{u}_R

Flavor-separated sea quark helicities through W production

 $\Delta q(x), \Delta \overline{q}(x)$

 u_I

 \overline{d}_B

$$A_L^{W^+} \approx -\frac{\Delta u(x_1)\overline{d}(x_2) - \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) - \overline{d}(x_1)u(x_2)}$$

$$A_L^{W^-} \approx -\frac{\Delta d(x_1)\overline{u}(x_2) - \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) - \overline{u}(x_1)d(x_2)}$$

Parity violation of weak

Flavor separation of the polarized sea quarks with
to
no reliance on fragmentation functions, and at
much higher scale than previous fixed-target
experiments.1Complementary to semi-inclusive DIS
measurements.1

Flavor-separated sea quark helicities through W production

NNPDF, NPB 887, 276 (2014)

Includes RHIC W boson data: Indication of SU(3) breaking in polarized quark sea (as in unpolarized sea)

Partonic momentum structure of nuclei: EMC effect and local density

- Fit slope of ratios for 0.3<x<0.7; compare across nuclei
- EMC slope doesn't scale with A or with avg nuclear density...

Partonic momentum structure of nuclei: EMC effect and local density

Partonic momentum structure of nuclei: EMC effect and local density

