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Assumptions of Physics

• The aim of the project is to find a handful of physical principles and 
assumptions from which the basic laws of physics can be derived

• To do that we want to develop a general mathematical theory of 
experimental science: the theory that studies scientific theories

• A formal framework that forces us to clarify our assumptions
• From those assumptions the mathematical objects are derived
• Each mathematical object has a clear physical meaning and no object is 

unphysical
• Gives us concepts and tools that span across different disciplines
• Gives us a better understanding of what the laws of physics are and what they 

represent
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Experimental verifiability
leads to topological spaces, sigma-algebras, …

…

Infinitesimal reducibility
leads to classical phase space

Irreducibility
leads to quantum state space

Deterministic and reversible 
evolution

leads to isomorphism on state space

Non-reversible evolution

Kinematic equivalence
leads to massive particles

Hamilton’s equations
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𝜕𝜕𝑞𝑞

Euler-Lagrange equations

𝛿𝛿∫ 𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 = 0

Schroedinger equation

𝚤𝚤𝚤
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓 = 𝐻𝐻𝐻𝐻

Thermodynamics

General mathematical theory
of experimental science

State-level assumptions

Process-level assumptions



Assumptions of Physics

• The scope of the project is broad, touching elements of many 
different disciplines

• Yet it is the ability to see how the different pieces fit that makes it very 
rewarding

• In this talk we’ll go through at least the major starting points and 
hopefully give a sense of how they lead to certain branches of known 
physics, and the types of insight this approach can provide
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Principle of
Scientific Objectivity

Science is:
• universal (same for everybody)
• non-contradictory (logically consistent)
• evidence-based (experimentally verifiable)
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Verifiable statements

• The principle of scientific objectivity tells us that science deals with 
assertions that are:

• either true or false (non-contradictory)
• for everybody (universal)
• and experimentally verifiable (evidence-based)

• We call such assertions verifiable statements
• The first two requirements are the same as in classical logic.
• The third means we have an experimental test that we can run and, if the 

statement is true, it completes successfully in finite time
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Examples of verifiable statements

• Examples:
• The mass of the photon is less than 10−13 eV
• If an electron is prepared in the following way its energy will be between 10 

and 11 MeV in 90% to 95% of the cases
• Counterexamples:

• Chocolate tastes good (not universal)
• It is immoral to kill one person to save ten (not universal and/or evidence-

based)
• The number 4 is prime (not evidence-based)
• This statement is false (not non-contradictory)
• The mass of the photon is exactly 0 eV (not verifiable due to infinite precision)
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Logic of verifiable statements (negation)

• Due to finite time verification, verifiable statements do not allow the same 
operations (i.e. the same algebra) as logical statements

• For example, we may consider “there exists extra-terrestrial life” a 
verifiable statement with the following test

• 1. Point a radio-telescope in a particular direction
• 2. If signs of life are found, terminate successfully
• 3. Go back to 1 with a new direction or with greater sensitivity

• But this test does not verify “there doesn’t exist extra-terrestrial life”, since 
it would never terminate in this case

• The negation of a verifiable statement is not necessarily verifiable
• We call decidable statements those for which the negation is also 

verifiable (i.e. the test always terminates either successfully or not)
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Logic of verifiable statements (conjunction)

• We can take a set of verifiable statements and create the conjunction 
(i.e. the logical AND)

• “The horizontal velocity of the ball is between 0 and 1 m/s” AND “the vertical 
velocity of the ball is between 3 and 4 m/s”

• Since we can verify each statement, we simply verify all of them one 
at a time. But we can only combine finitely many statements, or we 
would never finish checking all of them.

• The finite conjunction of verifiable statements is a verifiable 
statement
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Logic of verifiable statements (disjunction)

• We can take a set of verifiable statements and create the disjunction 
(i.e. the logical OR)

• “The horizontal velocity of the ball is between 0 and 1 m/s” OR “the 
horizontal of the ball is between 3 and 4 m/s”

• Since we can verify each statement, we can verify them one at a time 
and, as long as one is verified, the disjunction is verified. Since we 
don’t need to verify all of them, we can combine infinitely many. But 
they have to be countably many or we wouldn’t find the test that 
terminates in finite time.

• The countable disjunction of verifiable statements is a verifiable 
statement
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Logic of verifiable statements

• We can summarize the different algebras
for the different types of statements

• In a physical theory we will need to
keep track of which statements are
decidable, which are verifiable and
which are neither 𝒮𝒮

𝒮𝒮𝑣𝑣
𝒮𝒮𝑑𝑑
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Scientific models and domains

• A scientific model or theory, then, is fully specified by a set of verifiable 
statements, which, together with their algebra, forms the most 
fundamental mathematical structure in our general theory: an 
experimental domain

• The set has to be countable because, even with infinite time, we can’t verify more 
than those

• The possible cases identified in the theory are those experimentally distinguishable

• The finiteness required by experimental verification is a major constraint on 
what mathematical structures are possible in experimental science

• For example, a set of physically distinguishable cases will never have cardinality 
greater than that of the continuum
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Link to topology and 𝜎𝜎-algebras

• An experimental domain maps extremely well to two fundamental 
mathematical structures that are at the foundations of most of the 
mathematics already used in physics

• If X is a set of physically distinguishable cases (e.g. the possible states a 
system can be in), it will have a natural topology that keeps track of the 
statements that are verifiable (e.g. which correspond to finite precision 
measurement)

• topology is the foundation for manifolds, differential geometry (i.e. geometrical 
vectors, integration over curves), symplectic geometry (i.e. classical Hamiltonian 
mechanics), Riemmanian geometry (i.e. special and general relativity)

• It will also have a natural 𝝈𝝈-algebra that keeps track of the logical 
statements we can use for predictions

• 𝜎𝜎-algebras are the foundation for measure theory and probability theory
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Takeaway

• Specifying a scientific theory means specifying a (countable) set of verifiable 
statements and their logical relationships. The role of mathematical structures in 
physics is to formalize the logical relationships between verifiable statements.

• The mere requirement of experimental verification (i.e. the algebra of verifiable 
statements) already provides a link to two fundamental mathematical structures, 
which therefore we can always use in any physical theory

• The idea is that we can rebuild the other mathematical structures piece by piece 
so that we spell out the physical assumptions implicit in the most primitive 
objects, like quantities represented by integers and real numbers

• For example, measuring distance with a ruler can be broken down into more fundamental 
verifiable statements like “the object is after the 5 cm mark”, “the object is before the 5.3 cm 
mark”

• Nothing will need to be interpreted, there will be no unphysical mathematical artifacts, all 
mathematical proofs will correspond to physical arguments carried out formally
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Assumption of 
Determinism and Reversibility

The system undergoes deterministic and reversible time 
evolution: given the initial state, we can identify the 
final state; given the final state, we can reconstruct the 
initial state

time
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Determinism and reversibility

• Naively one may think determinism and reversibility is simply a one-
to-one map between states, but if we focus on the verifiable 
statements about the states we realize that it has to be much more 
constrained

• Every verifiable statement about the initial state has to map to a 
verifiable statement about the final state and vice-versa

• As verifiable statements are captured by a topology, the transformation has 
to be a homeomorphism (i.e. a continuous transformation with continuous 
inverse)

• On the real numbers, in fact, continuous transformations map finite precision 
measurements to finite precision measurements
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Determinism and reversibility

• If our state is described by a density distribution in some space, then 
finite densities have to map to finite densities

• This means the transformation has to be a diffeomorphism (i.e. differentiable 
transformation) as the Jacobian always needs to be well defined

• If our state is composed of parts, then the evolution of the 
composition has to be the composition of the evolution of the parts

• If we use vector spaces to capture state composition (i.e. addition) then the 
evolution must be a linear transformation

• If the state has a “magnitude” (e.g. amount of material, total 
probability) then the magnitude needs to be conserved

• If we use a norm to capture the magnitude then the evolution must be a 
unitary transformation
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Takeaway

• Determinism and reversibility is more than a one-to-one map: it has 
to preserve the nature of the system and the type of description

• Mathematically it will be an isomorphism in the category used to capture 
states, the associated verifiable statements, and their logical structure

• Determinism and reversibility is an assumption that can be taken to 
be valid in specific contexts with specific state definitions

• The state of a balloon is position and velocity or pressure and volume 
depending whether we study its motion or its expansion. If we puncture the 
balloon, neither of those state definitions is sufficient to predict the future 
states and the evolution is not deterministic and reversible.
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Assumption of
Infinitesimal Reducibility

The system is reducible to its parts: giving the state of 
the whole is equivalent to giving the state of the parts. 
The system can be subdivided indefinitely.

time
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State is a distribution over particle states

• We can imagine dividing the whole system into smaller and smaller 
parts. We call “particle” the limit of such subdivision.

• If we call 𝒮𝒮 the state space for the particle, then the whole state is a 
distribution 𝜌𝜌:𝒮𝒮 → ℝ where 𝜌𝜌(𝓈𝓈) is the density associated with the 
given state 𝓈𝓈 ∈ 𝒮𝒮

• Now let 𝜉𝜉𝑎𝑎, with 𝑎𝑎 = 1 …𝑛𝑛 , be a set of variables used to identify the 
state 𝓈𝓈 𝜉𝜉𝑎𝑎 , then we can write 𝜌𝜌 𝓈𝓈 𝜉𝜉𝑎𝑎 = 𝜌𝜌 𝜉𝜉𝑎𝑎 the density in 
terms of state variables
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Invariant distributions

• Suppose, though, we change coordinates/units from 𝜉𝜉𝑎𝑎 to 𝜂𝜂𝑏𝑏. Since 𝜌𝜌
is a density, it will change with the Jacobian of the transformation: 
𝜌𝜌 𝜉𝜉𝑎𝑎 = 𝐽𝐽 𝜌𝜌 𝜂𝜂𝑏𝑏 . But the particle state must remain the same 
particle state no matter what coordinate system we use, 𝓈𝓈 𝜉𝜉𝑎𝑎 =
𝓈𝓈 𝜂𝜂𝑏𝑏 and therefore 𝜌𝜌 𝓈𝓈 𝜉𝜉𝑎𝑎 = 𝜌𝜌 𝓈𝓈 𝜂𝜂𝑏𝑏 .

• The only way to make this work is that for each variable 𝑞𝑞 within 𝜉𝜉𝑎𝑎
that defines a coordinate/unit (e.g. meters), we also have an 
associated variable 𝑘𝑘 that uses the inverse unit (e.g. inverse meters). 
The product Δ𝑞𝑞Δ𝑘𝑘 is now a pure number and it is invariant under 
coordinate transformation, and so is a density defined on that area.

• E.g. Δ𝑞𝑞Δ𝑘𝑘 = 1𝑚𝑚 ⋅ 1𝑚𝑚−1 = 100𝑐𝑐𝑐𝑐 ⋅ 0.01𝑐𝑐𝑚𝑚−1 = Δ�𝑞𝑞Δ�𝑘𝑘
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Hamiltonian mechanics

• The state space of the particles, then, consists of pairs 𝑞𝑞𝑖𝑖 , 𝑘𝑘𝑖𝑖 , the 
structure of the phase space of Hamiltonian mechanics.

• We can rescale the conjugate quantities by a constant and have 𝑞𝑞𝑖𝑖 ,ℏ𝑘𝑘𝑖𝑖 =
𝑞𝑞𝑖𝑖 ,𝑝𝑝𝑖𝑖

• If one now requires that the evolution is deterministic and reversible, 
then the density for an initial particle state must be equal to the 
density at the corresponding final particle state. This gives us 
Hamiltonian mechanics.

• It’s Liouville’s theorem in the opposite direction
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Takeaways

• Hamiltonian mechanics is the deterministic and reversible evolution 
of infinitesimal parts of a reducible system

• Both the structure of the state space and the laws of evolution are 
derived

• That is, we know why the laws of motion are differentiable and why we have 
conjugate pairs of state variables

• If the future and past states are determined only by the present state, 
then the state of other systems does not matter: the system is 
isolated. Therefore we have shown that an isolated system conserves 
energy.

• Note that this was derived as a consequence of the mere definitions
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Assumption of
Kinematic Equivalence

Studying the motion (kinematics) is equivalent to 
studying the state evolution (dynamics). That is, giving 
the trajectory is equivalent to giving the state.
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States and trajectories

• The kinematic assumption means that we need to be able to relate state 
variables (i.e. variables that identify states) with kinematic variables (i.e. 
variables that identify trajectories)

• That is, we need a one-to-one map between (𝑞𝑞𝑖𝑖, 𝑝𝑝𝑖𝑖), position and 
momentum, and (𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑖𝑖), position and velocity. But this is not enough: we 
need to be able to express the density in terms of the kinematic variables. 
Therefore the relationships between the differentials have to be linear.

• For position we choose 𝑞𝑞𝑖𝑖 = 𝑥𝑥𝑖𝑖 and 𝑑𝑑𝑞𝑞𝑖𝑖 = 𝑑𝑑𝑥𝑥𝑖𝑖

• For momentum at constant 𝑞𝑞𝑖𝑖 we must have something of the form 
𝑑𝑑𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑔𝑔𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑗𝑗 where 𝑔𝑔𝑖𝑖𝑖𝑖 is a linear transformation and 𝑚𝑚 is a constant of 
proportionality
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Massive particles under conservative forces

• If we integrate 𝑑𝑑𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑔𝑔𝑖𝑖𝑖𝑖𝑑𝑑𝑣𝑣𝑗𝑗 we have 𝑝𝑝𝑖𝑖 = 𝑚𝑚𝑔𝑔𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 + 𝓆𝓆𝐴𝐴𝑖𝑖 where 
𝓆𝓆𝐴𝐴𝑖𝑖 is a set of arbitrary functions of position

• We also have 𝑑𝑑𝑡𝑡𝑞𝑞𝑖𝑖 = 𝑑𝑑𝑡𝑡𝑥𝑥𝑖𝑖 = 𝑣𝑣𝑖𝑖 = 𝜕𝜕𝑝𝑝𝑖𝑖𝐻𝐻 = 𝑔𝑔𝑖𝑖𝑖𝑖

𝑚𝑚
𝑝𝑝𝑗𝑗 − 𝓆𝓆𝐴𝐴𝑗𝑗 . If we 

integrate 𝐻𝐻 = 1
2𝑚𝑚

𝑝𝑝𝑖𝑖 − 𝓆𝓆𝐴𝐴𝑖𝑖 𝑔𝑔𝑖𝑖𝑖𝑖 𝑝𝑝𝑗𝑗 − 𝓆𝓆𝐴𝐴𝑗𝑗 + 𝓆𝓆𝑉𝑉 where 𝓆𝓆𝑉𝑉 is an 
arbitrary function of position

• We recognize the Hamiltonian for a massive particle under scalar 
and vector potential forces
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Inertial mass

• What is inertial mass? It’s the constant 𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚 that tells us how 
many possible states there are for a unit range of velocity.

• Why is a more massive body more difficult to accelerate? Because for 
the same change in velocity it has to go through more states.

𝑣𝑣0 𝑣𝑣1
More massive object

=
more states
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Massless particles

• Note that massless particles (e.g. photons) do not satisfy kinematic 
equivalence: the velocity is always the same so it is not enough to 
reconstruct the value of momentum. Multiple states will travel 
through the same trajectory

• The fact that the mass is zero does not mean that they are very easy to 
accelerate. It means there is no relation between momentum and speed.
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Takeaways

• Massive particles under conservative forces are infinitesimal parts of 
a system for which the trajectory is enough to reconstruct its 
deterministic and reversible state evolution

• Mass is the scaling factor between the number of trajectories 
identified by a range of velocity and the number of states identified 
by a range of momentum
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Assumption of
Irreducibility

The system is irreducible to its parts: giving the state of 
the whole tells us nothing about the states of the parts.

time

?
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Irreducibility and random processes

• With infinitesimal reducibility we could track the motion of each part 
of the system. With irreducibility, instead, we cannot: any part could 
have been mapped to any other part of the same size.

• We will have a stable overall distribution where the parts are 
constantly randomly shifting around

• The parts are identified by random variables and their evolution is a pure 
random process

• The strength of the random process within a fraction of the system 
will be proportional to the size of that fraction (more parts with which 
to switch)
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Combining parts and interference

• When combining parts, then, we are really combining random 
processes

• Recall 𝜎𝜎𝑋𝑋+𝑌𝑌2 = 𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2 + 2𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌𝜚𝜚𝑋𝑋𝑋𝑋, where −1 ≤ 𝜚𝜚𝑋𝑋𝑋𝑋 ≤ +1 is the Pearson 
correlation coefficient

• The process strength, then, will combine more than additively where 
there is positive correlation and less than additively where there is 
negative correlation

• Since process strength is proportional to the fraction size, the 
correlation or anti-correlation in some region will correspond to a 
higher or a lower fraction of the system in that region (i.e. 
interference patterns)
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Distribution spread

• Note that the knowledge of the whole tells us something about the 
parts: namely that they have to be within that whole

• If we shrink the spread of the whole system in both position and 
momentum, then we are restricting the random processes: we are 
reducing the states available to the parts

• In the limit, if the whole system were at one point in both position 
and momentum, we would know the position and momentum of all 
parts, these would not be able to randomly fluctuate within the 
distribution: the system is no longer irreducible

• An irreducible system, then, must have a minimum spread for the 
system in position and momentum 
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Non-locality

• Now suppose the system is spread over a long distance
• Suppose we interact, within a region, with part of the system.
• Given that the system is irreducible, we cannot tag one part and 

therefore we can’t interact only with part of the system: we will 
interact with the whole, even if parts are distant

• Yet, since the motion of the parts is purely random, we cannot use 
this non-local interaction to transfer messages, introduce cause-effect 
relationships, and so on
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Takeaway

• The irreducibility of the system leads to the state space of quantum 
particle mechanics

• A complex number is used to represent an element of the vector space 
formed by two random variables; the cosine of phase differences represents 
the Pearson correlation coefficient

• The deterministic and reversible evolution of an irreducible system 
leads to the Schroedinger equation

• The non-deterministic evolution, in certain cases, leads to the 
projection (i.e. collapse)
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Overall takeaway

• It takes few assumptions to recover the basics of classical and 
quantum Hamiltonian particle mechanics

• These assumptions seem simple but they pack a lot more 
consequences than one would think at first and they help clarify the 
realm of applicability of the theories

• The assumptions tell us how states are related in time (i.e. past and 
future), at different scales (i.e. whole and parts) and to trajectories. 
These relatively few concepts are of a general nature and allow us to 
focus on the essentials of the different theories and understand what 
is common and what is different

Christine Aidala, Applied Physics Seminar, Feb 13, 2018 36



Current activities and possible 
opportunities for contribution



Current activities and possible opportunities 
for contribution
• Extend – Bring different areas within the framework 

• Literature search on math/physics/philosophy of science for other areas, 
investigate other approaches, understand what parts can fit and be used

• Consolidate – Take the published ideas and make them more rigorous
• Review current material and provide feedback, work on the more precise 

mathematical formulation where missing

• Popularize – Prepare material to make the work more accessible
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Extend

• Currently working on thermodynamics and statistical mechanics
• The idea is to substitute deterministic and reversible evolution with non-reversibility 

at the macro level, which leads to equilibria (i.e. the same final state is reached with 
different initial states).

• At the micro level, instead, we would have non-determinism. This means knowledge 
of the initial micro-state is not enough to predict the final micro-state, i.e. more 
information is needed: an increase in information entropy.

• What parts of other approaches can we use? How much can be derived from these 
simple premises? What recombination of established concepts provides the most 
insight with the fewest starting points? What mathematical tools are the most 
appropriate?

• Other areas of future extensions: field theories (classical and quantum), 
gravitation, quantum hydrodynamics/stochastic mechanics, . . .
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Consolidate

• Review what (we think) is finished
• Extend the formal framework to distributions and densities

• The formal framework right now roughly stops at manifolds (i.e. physically 
distinguishable cases that can be identified by a set of numeric variables). The 
next step is to formalize the concept of a distribution from statements like 
“The mass within volume V is between 1 and 2 grams”.

• This should provide a bridge between statistics, measure theory and 
differential geometry

• Other extensions to the formal framework: probability theory, states 
and processes, …
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Popularize

• Find better ways to convey the information
• Figures, examples, …

• Prepare material for undergraduate audiences

• Prepare didactic material
• E.g. supplemental material aimed at different standard courses

• Prepare videos or other multimedia material
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For further information

• See our project website: http://assumptionsofphysics.org/
• Includes links to conference presentations, published papers, drafts of first 

three chapters of a book, series of videos, Gabriele Carcassi’s blog on the 
foundations of physics
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Experimental verifiability
leads to topological spaces, sigma-algebras, …

…

Infinitesimal reducibility
leads to classical phase space

Irreducibility
leads to quantum state space

Deterministic and reversible 
evolution

leads to isomorphism on state space

Non-reversible evolution

Kinematic equivalence
leads to massive particles

Hamilton’s equations

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑞𝑞,𝑝𝑝 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,−𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

Euler-Lagrange equations

𝛿𝛿∫ 𝐿𝐿 𝑞𝑞, 𝑞̇𝑞, 𝑡𝑡 = 0

Schroedinger equation

𝚤𝚤𝚤
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓 = 𝐻𝐻𝐻𝐻

Thermodynamics

General mathematical theory
of experimental science

State-level assumptions

Process-level assumptions
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