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Typical view in the foundations of physics
• Start with the theory that describes 

“what really happens”
• With the most complicated and most 

complete description

• Gradually derive other theories as 
approximations
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Theory of Everything

General Relativity Grand Unified Theory

Electro-weakQCD – Strong Interactions

QED -ElectromagnetismWeak interactions

…

approximation

The Assumptions of Physics project 
does not proceed in this manner



Understanding fundamental structures
Hamiltonian mechanics

Phase space (symplectic manifold) Hamiltonian evolution

Differentiable manifold Symplectic structure

Manifold Differentiable structure

Topological space Locally ℝ𝑛𝑛
We cannot truly understand this
if we don’t first understand this

Probability space

Measure𝜎𝜎-algebraSet of points
Even probability spaces
are not fundamental structures

I.e. Before saying “there is a 50% 
chance to get tails” we need to define 
what tails, chance and 50% mean

• What are the “correct” axioms and definitions on which to build scientific 
theories? How can they be justified?
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Experimental verifiability

General theory

Physical theories

Informational granularity
States and processes

Classical
phase-space

Assumptions Determinism/
reversibility IrreducibilityInfinitesimal 

reducibility

Basic requirements and 
definitions valid in all theories

Quantum
state-space

Hamiltonian
mechanics

Unitary
evolution

Specializations of the general 
theory under the different 
assumptions

Space of the well-posed scientific theories
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Assumptions of Physics
• Objectives:

• Develop a mathematical framework that can serve as the foundation for all scientific 
theories (i.e. a mathematical theory about scientific theories)

• Start from physical principles and assumptions and derive the math (not start from the 
math and add the physics later through an “interpretation”)

• Each mathematical object must have a clear physical meaning (no object is unphysical, 
can read math proofs as logical arguments on the physics)

• Construct concepts and tools that span different disciplines (nature does not care about 
divisions in fields of knowledge)

• Explore what happens when the assumptions fail, possibly leading to new physics ideas
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The logic of experimental 
verifiability
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Science deals with well-posed sets of assertions (non-contradictory) that have a single truth 
value (universal) that can be defined/ascertained experimentally (evidence based)
⇒ Verifiable statements: assertions that can be experimentally verified in a finite time

Examples:
The mass of the photon is less than 10−13 eV
If the height of the mercury column is between 24 and 25 
millimeters then its temperature is between 24 and 25 
Celsius
If I take 2 ± 0.01 Kg of Sodium-24 and wait 15 ± 0.01
hours there will be only 1 ± 0.01 Kg left

Counterexamples:
Chocolate tastes good (not universal)
It is immoral to kill one person to save ten (not universal 
and/or evidence-based)
The number 4 is prime (not evidence-based)
This statement is false (not non-contradictory)
The mass of the photon is exactly 0 eV (not verifiable due 
to infinite precision)

We have to keep in mind that the meaning of the statements, their relationships and what 
truth values are allowed depends on context (e.g. premise, theory, etc…)

The mass of the electron is 511 ± 0.5 KeV

When measuring the mass, it is a verifiable hypothesis When performing particle identification, it is assumed to be true
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𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 …
T T F …

T F T …

T F F …

𝒮𝒮

𝒜𝒜𝒮𝒮

𝑎𝑎

𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 …
T T F …

T F T …

T F F …

𝑓𝑓𝔹𝔹

𝒇𝒇 𝒔𝒔𝟏𝟏, 𝒔𝒔𝟐𝟐, 𝒔𝒔𝟑𝟑
T

T

F

Axioms of logic
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Axioms of verifiability
𝒮𝒮

𝒮𝒮v

𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 …�
𝑖𝑖=1

∞

𝑠𝑠𝑖𝑖

𝑠𝑠1
experimental test

𝑠𝑠1 Test Result

T SUCCESS (in finite time)

F
FAILURE (in finite time)

UNDEFINED

𝑠𝑠1 𝑠𝑠2 𝑠𝑠3�
𝑖𝑖=𝑖𝑖

𝑛𝑛

𝑠𝑠𝑖𝑖

All tests must succeed

One successful test is sufficient
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𝒮𝒮
𝒮𝒮𝑣𝑣

𝒮𝒮𝑑𝑑

Different algebras for the different types of statements

“This animal is a bird” = “Questo animale e’ un uccello”
“This animal is a bird” ≡ “This animal has feathers”
truth(“This animal is a bird”) = truth(“That animal is a mammal”)

Are the same statement

Always have the same truth

Happen to have the same truth

(Different) notions of equivalences

Properties of the logic system
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Basis 𝓑𝓑 Experimental domain 𝓓𝓓𝑿𝑿 Theoretical domain     a

𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 𝒆𝒆𝟑𝟑 … 𝒔𝒔𝟏𝟏 = 𝒆𝒆𝟏𝟏 ∨ 𝒆𝒆𝟐𝟐 𝒔𝒔𝟐𝟐 = 𝒆𝒆𝟏𝟏 ∧ 𝒆𝒆𝟑𝟑 … 𝒔𝒔𝟏𝟏 = 𝒆𝒆𝟏𝟏 ∨ ¬𝒆𝒆𝟐𝟐 𝒔𝒔𝟐𝟐 = ¬𝒆𝒆𝟏𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … … Po
ss

ib
ili

tie
s

Start with a countable set
of verifiable statements

From them generate all verifiable statements
(close under finite AND countable OR)

Generate all meaningful predictions
(close under negation as well)

Fill in all possible
assignments

𝒙𝒙 = ¬𝒆𝒆𝟏𝟏 ∧ 𝒆𝒆𝟐𝟐 ∧ ¬𝒆𝒆𝟑𝟑 ∧ ⋯ For each possible assignment we have a theoretical 
statement that is true only in that case. We call these 
statements possibilities of the domain. 

�𝓓𝓓𝑿𝑿

The points of the 
space (the 
possibilities, the 
distinguishable cases) 
are not given a priori 
but are constructed 
from the chosen 
verifiable statements

Experimental domains (scientific models)
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Basis 𝓑𝓑 Experimental domain 𝓓𝓓𝑿𝑿 Theoretical domain  𝓓𝓓𝑿𝑿

𝒆𝒆𝟏𝟏 𝒆𝒆𝟐𝟐 𝒆𝒆𝟑𝟑 … 𝒔𝒔𝟏𝟏 = 𝒆𝒆𝟏𝟏 ∨ 𝒆𝒆𝟐𝟐 𝒔𝒔𝟐𝟐 = 𝒆𝒆𝟏𝟏 ∧ 𝒆𝒆𝟑𝟑 … 𝒔𝒔𝟏𝟏 = 𝒆𝒆𝟏𝟏 ∨ ¬𝒆𝒆𝟐𝟐 𝒔𝒔𝟐𝟐 = ¬𝒆𝒆𝟏𝟏 …

F F F … F F … T T …

… … … … … … … … … …

F T F … T F … F T …

T T F … T F … T F …

… … … … … … … … … …

Po
ss

ib
ili

tie
s

Each column (statement)
is also a set of possibilities

𝑠𝑠 = �
𝑥𝑥∈𝑈𝑈

𝑥𝑥

Finite AND and countable OR become
finite intersection and countable union

Negation and countable AND become
complement and countable union

The theoretical domain 𝒟𝒟𝑋𝑋 induces 
a (Borel) 𝜎𝜎-algebra

Topologies 
(needed for 
manifold/geometr
ic spaces) and 𝝈𝝈-
algebras (needed 
for integration and 
probability spaces) 
naturally arise 
from requiring 
experimental 
verifiability

Topologies and 𝜎𝜎-algebras
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The experimental domain 𝒟𝒟𝑋𝑋 induces a 
topology on the possibilities 𝑋𝑋. 



Maximum cardinality of distinguishable cases

• Sets with greater cardinality (e.g. the set of all discontinuous functions from ℝ to 
ℝ) cannot represent physical objects

• Issues about higher infinities (e.g. large cardinals) are not relevant, but those 
surrounding the continuum hypothesis may be

Set of distinguishable cases

FTFFFTTTFTFTT…
TFFTTFTTFFFTF…
FTFFFTTFTFFTF…
FTTFTFTTFTFFT…

Test results for countable basis

0100011101011…
1001101100010…
0100011010010…
0110101101001…

Correspondence to binary sequence

0.0100011101011…
0.1001101100010…
0.0100011010010…
0.0110101101001…

Correspond to binary expansion
ℝ

0

1

𝑋𝑋 𝑋𝑋 ≤ |ℝ|

C. A. Aidala - G. Carcassi - University of Michigan 13



All definitions and all proofs about these 
structures have precise physical meaning 
in this context

𝑠𝑠1 Test Result

T
SUCCESS (in finite time)

UNDEFINED

F
UNDEFINED

FAILURE (in finite time)

𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) corresponds to the verifiable
part of a statement

𝑒𝑒𝑥𝑥𝑖𝑖(𝐴𝐴) corresponds to the falsifiable
part of a statement

𝜕𝜕𝐴𝐴 corresponds to the undecidable
part of a statement

If 𝐴𝐴 ⊆ 𝑋𝑋 is a Borel set then “𝑥𝑥 is in A” is a theoretical statement: a 
test can be created, though we have no guarantee of termination
(e.g. “the mass of the electron in KeV is a rational number” is 
undecidable, the test will never terminate)

If 𝑈𝑈 ⊆ 𝑋𝑋 is an open set then “𝑥𝑥 is in 𝑈𝑈” is a verifiable statement
(e.g. “the mass of the electron is 511 ± 0.5 KeV”)

If V ⊆ 𝑋𝑋 is a closed set then “𝑥𝑥 is in 𝑉𝑉” is a falsifiable statement
(e.g. “the mass of the electron is exactly 511 KeV”)

Topologies and 𝝈𝝈-algebras 
each capture part of the 
formal structure

For us, they are part of a 
single unified structure

Topologies and 𝜎𝜎-algebras
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Physical meaning of separation axioms
• All topologies are Kolmogorov (i.e. 𝑇𝑇0)

• Possibilities are experimentally well-defined
i.e. possibilities constructible from a base by countable AND/OR 
and NOT (singletons in the 𝜎𝜎-algebra)

• The topology is 𝑇𝑇1 if all possibilities are approximately 
verifiable

• Possibilities are the limit of a sequence of verifiable statements
i.e. possibilities are the countable conjunction of verifiable 
statements

• The topology is Hausdorff (i.e. 𝑇𝑇2) if all possibilities are 
pairwise experimentally distinguishable

• Given two possibilities, we can find a test that confirms one and 
excludes the other

• i.e. for any 𝑥𝑥1, 𝑥𝑥2 ∈ 𝑋𝑋 there is a statement 𝑠𝑠 ∈ �𝒟𝒟𝑋𝑋 such that
𝑥𝑥1 ≼ 𝑣𝑣𝑒𝑒𝑣𝑣(𝑠𝑠) and 𝑥𝑥2 ≼ 𝑓𝑓𝑎𝑎𝑓𝑓(𝑠𝑠)
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𝑠𝑠 Test Result 𝑥𝑥1 𝑥𝑥2

T
SUCCESS (in finite time)

T

F

F

UNDEFINED

F

UNDEFINED

FAILURE (in finite time)
T



Examples

Standard topology on integers
Decidable domain (all statements are decidable)
Discrete topology (every set is clopen); topology and 𝜎𝜎-algebra both 
coincide with the power set

0 1 2 3 4 5 6 …

Standard topology on the reals
Finite precision measurements (open intervals are verifiable)
Topology generated by open intervals (coincides with order and metric 
topology); separable, complete, connected (no clopen sets except full and 
empty set); 𝜎𝜎-algebra is the Borel algebra (strict subset of power set)
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Examples

Does extra-terrestrial life exist? 
Semi-decidable question
Topology ∅, 𝑌𝑌 , 𝑌𝑌,𝑁𝑁 is strictly 𝑇𝑇0; 𝜎𝜎-algebra is the power set

How many leptons (electron-like particles) are there?
(through direct observation)
Can only measure lower bound (e.g.  “there are at least 𝑖𝑖”) 
Topology contains empty set and 𝑖𝑖, 𝑖𝑖 + 1, 𝑖𝑖 + 2, … for all 𝑖𝑖; strictly 
𝑇𝑇0; 𝜎𝜎-algebra is the power set

0 1 2 3 4 5 6 …

Y N
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𝑋𝑋 𝑌𝑌

A causal relationship is a map 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 such that 𝑥𝑥 ≼ 𝑓𝑓 𝑥𝑥

𝒟𝒟𝑋𝑋 𝒟𝒟𝑌𝑌
An inference relationship is a map 𝓇𝓇:𝒟𝒟𝑌𝑌 → 𝒟𝒟𝑋𝑋 such that 𝓇𝓇 𝑠𝑠 ≡ 𝑠𝑠

Two general and important results:
1) Two domains admit an inference relationship if and only if they admit a causal relationship
2) The causal relationship must be a continuous map in the natural topology

Inference/causal relationships and continuity
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e.g. the water density is 
between 999.8 and 

999.9 kg/m3

e.g. the water temperature 
is between 0 and 0.52 
Celsius or between 
7.6 and 9.12 Celsius

e.g. the water temperature 
is exactly 4 Celsius

e.g. the water density is 
exactly 1 kg/m3



• A “science first” formal structure is possible
• Physically meaningful, mathematically precise, philosophically consistent
• Precise science/math dictionary
• “Well-behaved” mathematical objects are really “well-defined” physical objects

• Experimental verifiability is the basis for scientifically well-defined objects
• Topologies and 𝜎𝜎-algebras arise from scientific epistemological requirements, not from 

ontological features of the universe
• Most other structures used in science (differential geometry, measure theory, probability 

theory, Lie algebras, …) are based on topologies and 𝜎𝜎-algebras

• No progress in the foundations of physics is possible without proper 
understanding of these connections

Takeaway
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The assumptions of classical 
mechanics
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Assumption of infinitesimal reducibility

time

The system is reducible to its parts: giving the state of 
the whole is equivalent to giving the state of the parts. 
The system can be subdivided indefinitely.

𝒮𝒮 is the state of the infinitesimal parts (i.e. particles)

𝑈𝑈 is a set of possible states for the particles

ℝ

𝑉𝑉 is a set of possible
amounts of materials

We’ll have statements of the form 
“the amount of material found in 𝑈𝑈 is 
within the range 𝑉𝑉”

𝒮𝒮

𝑈𝑈
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Density over states

𝜌𝜌:𝒮𝒮 → ℝ
The state of the whole is given by a 
distribution over the state of the 
infinitesimal parts (i.e. particles)

𝜌𝜌 𝓈𝓈 𝜉𝜉𝑎𝑎 = 𝜌𝜌 𝜉𝜉𝑎𝑎
This presents a puzzle:

Under a change of variables 𝜉𝜉𝑏𝑏 = 𝜉𝜉𝑏𝑏 𝜉𝜉𝑎𝑎

𝜌𝜌 𝜉𝜉𝑎𝑎 =
𝜕𝜕𝜉𝜉𝑎𝑎

𝜕𝜕𝜉𝜉𝑏𝑏
𝜌𝜌 𝜉𝜉𝑏𝑏

𝓈𝓈 𝜉𝜉𝑎𝑎 = 𝓈𝓈 𝜉𝜉𝑏𝑏

we have 𝜌𝜌 𝓈𝓈 𝜉𝜉𝑎𝑎 = 𝜌𝜌 𝓈𝓈 𝜉𝜉𝑏𝑏

How can 𝜌𝜌 both change as a density and be an invariant?
22

�
𝑈𝑈
𝜌𝜌𝜌𝜌𝒮𝒮

Fraction of the system in a region 𝑈𝑈 Density depends on the state; 
unit is [amount]/[states]
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Units
• When we write ∫𝑈𝑈 𝜌𝜌(𝓈𝓈)𝜌𝜌𝒮𝒮, 𝜌𝜌 is expressed in units of [amount]/[states]
• When we write ∫𝑈𝑈 𝜌𝜌 𝜉𝜉𝑎𝑎 𝜌𝜌𝜉𝜉𝑛𝑛, 𝜌𝜌 is expressed in units of [amount]/[𝜉𝜉1]…[𝜉𝜉𝑛𝑛]
• It seems we need to characterize the role of units

• The units of some variables depend on the units of others
• E.g. the unit for velocity 𝑣𝑣 = 𝜌𝜌𝑥𝑥/𝜌𝜌𝑖𝑖 along a direction 𝑥𝑥 depends on the unit for distance 

along that direction and time; the unit for entropy 𝜌𝜌𝑑𝑑 = 𝜌𝜌𝑑𝑑/𝑇𝑇 depends on the unit for 
energy and temperature

• Within the state variables 𝜉𝜉𝑎𝑎, we identify the unit variables 𝑞𝑞𝑖𝑖 as those that 
define the unit system

• A change of units �𝑞𝑞𝑗𝑗 = �𝑞𝑞𝑗𝑗(𝑞𝑞𝑖𝑖) must induce a unique transformation 𝜉𝜉𝑏𝑏 = 𝜉𝜉𝑏𝑏 𝜉𝜉𝑎𝑎 on all 
variables
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Phase space (symplectic manifold)
• The structure of phase space is exactly what is needed to define invariant 

densities over particle states

• For a single degree of freedom (i.e. one independent unit variable)
𝜌𝜌𝑑𝑑 = ℏ𝜌𝜌𝑞𝑞𝜌𝜌𝑑𝑑 = ℏ𝜌𝜌�𝑞𝑞𝜌𝜌�𝑑𝑑

• For 𝑖𝑖 independent degrees of freedom
𝜌𝜌𝑑𝑑 = ℏ𝑛𝑛𝜌𝜌𝑞𝑞𝑛𝑛𝜌𝜌𝑑𝑑𝑛𝑛 = ℏ𝑛𝑛𝜌𝜌 �𝑞𝑞𝑛𝑛𝜌𝜌�𝑑𝑑𝑛𝑛

• Canonical variables are those that allow us to express density in the correct 
units over each independent degree of freedom

C. A. Aidala - G. Carcassi - University of Michigan 24

1Δ𝑑𝑑 = 1 𝑚𝑚−1

Δ𝑞𝑞 = 1 𝑚𝑚

1Δ�𝑑𝑑 = 0.01 𝑐𝑐𝑚𝑚−1

Δ�𝑞𝑞 = 100 𝑐𝑐𝑚𝑚
The product Δ𝑞𝑞Δ𝑑𝑑

is invariant 

�𝑞𝑞 = 100 𝑐𝑐𝑚𝑚/𝑚𝑚 𝑞𝑞



Assumption of deterministic and reversible evolution

time

Given the state of the system at one time, we are able 
to predict the state at future times (determinism) and 
reconstruct (reversibility) the state at past times.

All and only the particles from 𝓈𝓈𝑡𝑡 must be 
found in 𝓈𝓈𝑡𝑡+Δ𝑡𝑡: 𝜌𝜌 𝓈𝓈𝑡𝑡, 𝑖𝑖 = 𝜌𝜌 𝓈𝓈𝑡𝑡+Δ𝑡𝑡, 𝑖𝑖 + Δ𝑖𝑖

𝒮𝒮

25

time

Dynamical system 𝓈𝓈𝑡𝑡 ↦ 𝓈𝓈𝑡𝑡+Δt
Not enough!

Independent degrees of freedom must be 
mapped to independent degrees of freedom

⇒ Hamiltonian mechanics (symplectic structure must be preserved)
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Hamiltonian mechanics for one degree of freedom

𝑖𝑖
𝑝𝑝

𝑞𝑞
𝑑𝑑 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑡𝑡
, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

, 𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡

Displacement along the trajectory

𝑑𝑑 = −𝑐𝑐𝑐𝑐𝑣𝑣𝑓𝑓(�⃗�𝜃)

Deterministic and reversible:
flux over a closed surface is zero 𝜌𝜌𝑖𝑖𝑣𝑣 𝑑𝑑 = 0

�⃗�𝜃 = 𝑝𝑝, 0,−𝐻𝐻 𝑞𝑞,𝑝𝑝
Because 𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡
= 1 we can choose a gauge such that:

𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

, 𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

,−𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

, 1 = −𝑐𝑐𝑐𝑐𝑣𝑣𝑓𝑓(�⃗�𝜃)

This recovers Hamilton’s equations
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Understanding Hamiltonian mechanics
Hamiltonian mechanics

Phase space (symplectic manifold) Hamiltonian evolution

Differentiable manifold Symplectic structure

Manifold Differentiable structure

Topological space Locally ℝ𝑛𝑛

27

Particle states are experimentally
distinguishable …

… using continuous variables

The composite system is a density …

… that is invariant under change of units

The evolution is deterministic and reversible

Each mathematical structure is linked to a specific physical requirement
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Possible contributions
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Bare minima
• Project is very interdisciplinary and requires knowledge from different areas of 

math, physics and engineering
• We want to create a series of short (12-16 pages) articles that give the basic 

definitions and main results of each field: the bare minimum one needs to know
• E.g. Set theory: https://assumptionsofphysics.org/resources/bareminima/SetTheory.pdf

• Hourly work
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Other small tasks (hourly work)
• There are a number of smaller questions it would be nice to settle

• Is every Heyting algebra embeddable in a Boolean algebra?
• To make sure we are not ruling anything out

• Finalize last few details in our basic structures
• Find the “correct” morphism that gives us the right product, …

• Study a Gaussian peak under linear Hamiltonian flow
• To generalize the “classical uncertainty relationship”

• Special relativity from densities
• Look for hints of general relativity in the extended phase space

• See if the link between symplectic form, metric and vector potential leads to relationships to the curvature
• Characterize quantum projections as processes with constraints that maximize entropy
• Analyze the relationship between linearity of mixed (classical mixtures) and pure states (quantum 

superposition) in quantum mechanics
• Can superposition be fully characterized by “aliasing” of mixed states?

• Some of these questions may be already solved in the literature, some may be hard
• Helping to formalize/organize the questions is also useful
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A new foundation for measures and geometry
• We saw that topological and 𝜎𝜎-algebraic structures come from experimental 

verifiability: how do we recover the rest?
• Note that measures and metrics are used to give a “size” to sets
• In physics, conceptually, we start with the ability to compare sizes (this is bigger than 

this); we then construct measurement scales to give numerical values
• The idea is to provide a foundation for measure theory and geometry in the same 

way: we have the lattice of all possible descriptions (our 𝜎𝜎-algebra); we add a 
preorder that tells us whether one description is “finer” (i.e. more refined) than 
another; pick a unit and construct a “measure” that respects the order and that is 
linear under “disjoint addition”

• The goal is to find a set of sufficient physically justifiable conditions for which such 
measures can be constructed

• For preliminary work, see 
https://assumptionsofphysics.org/resources/blueprints/InformationGranularity.pdf
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Physical entropy as counting evolutions
• The idea is to define how to “count” (in a measure

theoretic sense) the possible evolutions of a system;
we define the process entropy as the logarithm
of that count

• State entropy becomes the process entropy associated
to all possible evolutions that “pass” through that state at that time

• Equilibrium states concentrate the evolutions and therefore they maximize the 
process entropy

• The goal is, with similar considerations, to rederive the basic laws of 
thermodynamics in the most possible general setting, and recover the standard 
formula for entropy (i.e. Gibbs, log of count of states, …) in specific cases

• For preliminary work, see 
https://assumptionsofphysics.org/resources/blueprints/ProcessEntropy.pdf
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Other bigger tasks
• Find a reformulation of quantum mechanics that fits better in the framework

• Projective spaces? Use mixed states as prime object? Algebraic? 

• Find a set of physical motivations to introduce differentiability and differential 
forms

• General idea is to describe linear quantities associated to k-dimensional submanifolds 
(rough ideas in Bachelor’s thesis https://assumptionsofphysics.org/Thesis-Johnson-
DifferentialGeometry.pdf )

• …
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Final thought
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Prima dovete capire le cose nel piccolo, e poi 
generalizzare

First you have to understand the simple case, and 
then generalize

Se non avete capito nel piccolo, capirete ancora meno
quando generalizzate

If you haven’t understood the simple case, you will 
understand even less when you generalize
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