

Cross Section and Double-Helicity Asymmetry in Charged Hadron Production at \s=62.4 GeV at

PH ENIX Christine A. Aidala Los Alamos National Lab

SPIN 2010, Juelich, Germany September 28, 2010

RHIC as a Polarized p+p Collider

RHIC a

Absolute Polarimeter (H jet)

RHIC pC Pole

Collider

rian Snakes

Overarching goal of RHIC spin program is to study nucleon structure in terms of (polarized) parton distribution functions (pdfs)
• High energies: √s = 50-500 GeV

Polarized

• Perturbative QCD framework

Polarized Source Polari

measure beam polar accel stora

Predictive Power of pdf's: Factorization and Universality in Perturbative QCD

"Hard" probes have predictable rates given:

- Parton distribution functions (need experimental input)
- Partonic hard scattering rates (calculable in pQCD)
- Fragmentation functions (need experimental input)

niversa

Proces

endence

Midrapidity pion production at 200 and 500 GeV compared to NLO pQCD

C. Aidala, SPIN 2010, September 28, 2010

Los Alamos

Midrapidity pion production at 200 and 500 GeV compared to NLO pQCD

Lower energies: $\sqrt{s}=62.4 \text{ GeV}$ PRD79, 021002 (2009) Midrapidity π^0 's

Comparisons to NLO and NLL pQCD calculations using $\mu=p_T$ shown. Unlike at 200 GeV, scale choice of $\mu=p_T$ underpredicts the data. → Threshold logarithm effects still relevant at this intermediate energy?

But—overall, pretty good agreement!

$\sqrt{s}=62.4 \ GeV$ Forward pions

Comparison of NLO pQCD calculations with BRAHMS π data at high rapidity. The calculations are for a scale factor of $\mu=p_T$, KKP (solid) and DSS (dashed) with CTEQ5 and CTEQ6.5.

Surprisingly good description of data, in apparent disagreement with earlier analysis of ISR π^0 data at 53 GeV.

No comparison to NLL yet.

C. Aidala, SPIN 2010, September 28, 2010

Still not so bad!

$\sqrt{s}=62.4 \ GeV$ Forward kaons

K⁻ *data* suppressed ~order of magnitude (valence quark effect).

NLO pQCD using recent DSS fragmentation functions (FFs) gives ~same yield for both charges(??).

Related to FFs? pdfs??

No comparison to NLL yet.

C. Aidala, SPIN 2010, September 28, 2010

Progress in pQCD calculational techniques 23.7 GeV!

One recent example: Almeida, Sterman, Vogelsang, PRD80, 074016 (2009) Cross section for di-hadron production vs. invariant mass using threshold resummation (rigorous method for implementing p_T and rapidity cuts on hadrons to match experiment)

38.8 GeV!

Progress in pQCD calculational techniques 23.7 GeV!

One recent example: Almeida, Sterman, Vogelsang, PRD80, 074016 (2009) Cross section for di-hadron production vs. invariant mass using threshold resummation (rigorous method for implementing p_T and rapidity cuts on hadrons to match experiment)

38.8 GeV!

Progress in pQCD calculational techniques 23.7 GeV!

 10^{4} pQCD an ever-more-powerful tool. 38.8 GeV 103 Interpretation of p+p results—over a wider 10^{2} range of energies—getting easier! 10^{1} Ъ 101 resummed 10^{0} "Modern-day 'testing' of (perturbative) QCD is as lo 10^{-1} 14 much about pushing the boundaries of its (GeV) applicability as about the verification that QCD is the One 1 Alme correct theory of hadronic physics." Cross G. Salam, hep-ph/0207147 (DIS2002 proceedings) a mpromenung p hadrons to match experiment)

do/dMdY (pb/GeV)

38.8 GeV!

PHENIX detector

PHENIX detector

Los Alamos

C. Aidala, SPIN 2010, September 28, 2010

Measuring midrapidity charged hadrons at PHENIX

- Two-week p+p run at sqrt(s)=62.4 GeV in 2006
- Analyzed 11.1 nb⁻¹ (214M events)
- Reconstruct tracks using Drift Chamber and Pad Chambers
- RICH veto to eliminate electrons
- Coincidence in two Beam-Beam Counters required for minimum-bias event
 - Luminosity counters

$$E\frac{d^3\sigma}{dp^3} = \frac{\sigma_{BBC}}{N_{MB}}\frac{1}{2\pi p_T}\frac{N_{yield}(p_T)}{dydp_T}R_{smear}(p_T)C_{bias}^{trig}(p_T)C_{eff}^{acc}(p_T),$$

Particle-species dependent efficiency corrections

$F(x) = [0]^* exp([1]^*x) + [2]$

• Use Monte Carlo to generate single-particle events over 2π in azimuth and one unit of rapidity

• Run through full GEANT detector simulation, matching dead

channel maps and fiducial cuts to experiment

Particle species fractions

(Fits constrained to sum to1 across all p_T)

18

os Alamos

- For non-identified charged hadron analysis, need particle species fractions to weight efficiencies
- Obtain from fits to identified data fractions at same energy from PHENIX and ISR
 - Estimate systematicuncertainty usingfractions from onedata set only

Midrapidity charged hadron production at 62.4 GeV: Results

C. Aidala, SPIN 2010, September 28, 2010

p_ (GeV/c)

NLL

Systematic uncertainties on cross sections

- 1 5% from PID fraction
- 0.6 5% from background fraction
- 0.5 1.5% from correction factor for smearing
- 2.2% from MC/data scale factor
- 11 24% from 'acceptance + efficiency' correction values
- 11.2% overall normalization uncertainty

The quest for ΔG , the gluon spin contribution to the spin of the proton

Los Alamos

With experimental evidence already indicating that only about 30% of the proton's spin is due to the spin of the quarks, in the mid-1990s, predictions for ΔG at x=0.1 ranged from 2 to 10(!)

The quest for ΔG , the gluon spin contribution to the spin of the proton

- With experimental evidence already indicating that only about 30% of the proton's spin is due to the spin of the quarks, in the mid-1990s, predictions for ΔG at x=0.1 ranged from 2 to 10(!)
- Global NLO pQCD fit by DSSV in 2008 including RHIC data at 200 and 62.4 GeV results in best fit with ΔG<0.5 at x=0.1

(Gradually) Mapping out $\Delta g(x)$

- In p+p collisions, parton momentum fraction x correlated with p_T of produced particle in a hard-scattering event
- RHIC a very flexible machine—sqrt(s) for p+p collisions 50-500 GeV
- Running at different energies samples from different x ranges

C. Aidala, SPIN 2010, September 28, 2010

Probing the Helicity Structure of the Nucleon with p+p Collisions

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{1}{|P_1P_2|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

Study difference in particle production rates for same-helicity vs. oppositehelicity proton collisions

$$\Delta \sigma(pp \to \pi^0 X) \propto \Delta q(x_1) \otimes \Delta g(x_2) \otimes \Delta \hat{\sigma}^{qg \to qg}(\hat{s}) \otimes D_q^{\pi^0}(z)$$
(mainly) DIS ? pQCD (mainly) e+e-
Leading-order access to gluons $\to \Delta G$

C. Aidala, SPIN 2010, September 28, 2010

Δ

Neutral Pion A_{LL} *at* 62.4 *GeV*

PRD79, 012003 (2009)

Neutral Pion A_{LL} *at* 62.4 *GeV*

 $x_T = \frac{2p_T}{\sqrt{s}}$

Converting to x_T , can see significance of 62.4 GeV measurement (0.08 pb⁻¹) compared to published data from 2005 at 200 GeV (3.4 pb⁻¹).

$$0.02 < x_{gluon} < 0.3 \quad (\sqrt{s} = 200 \,\text{GeV})$$

 $0.06 < x_{gluon} < 0.4 \quad (\sqrt{s} = 62.4 \,\text{GeV})$

PRD79, 012003 (2009)

Double-helicity asymmetry: Results

Average polarization: 0.48

13.9% scale uncertainty on product of beam polarizations.
 Uncertainty on A_{LL} due to relative luminosity uncertainty: 1.4x10⁻³
 Theoretical curves for NLO and NLL obtained by summing species-dependent predictions weighted by detection efficiencies.

Average polarization: 0.48

13.9% scale uncertainty on product of beam polarizations.
 Uncertainty on A_{LL} due to relative luminosity uncertainty: 1.4x10⁻³
 Theoretical curves for NLO and NLL obtained by summing species-dependent predictions weighted by detection efficiencies.

Summary

- Cross section and double-helicity asymmetry for midrapidity charged hadrons at sqrt(s)=62.4 GeV have been measured by PHENIX
- Comparison of cross section data to pQCD calculations can provide information on applicability of different calculational techniques

– NLL resummation relevant for midrapidity at 62.4 GeV?

• Measurement of double-helicity asymmetries at RHIC for processes calculable in pQCD over a range of energies and for a variety of observables can help constrain $\Delta g(x)$

Background estimation

Matching in z to PC3 for two high-p_T bins

Most significant background from decays in flight

- PHENIX did not have a vertex detector in 2006
- -Tracks assumed to originate at the event vertex
- Project track stubs measured in Drift Chamber and PC1 to outer detectors and look for matching hit in phi, z
- Drift Chamber outside of magnetic field
- \rightarrow Decays that happen right in front of the Drift Chamber bend very little and get (mis)reconstructed with high p_T --use matching distributions to estimate

Polarization-averaged cross sections at $\sqrt{s}=200 \text{ GeV}$

Good description at 200 GeV over all rapidities down to p_T of 1-2 GeV/c.

os Alamos

Forward neutrons at $\sqrt{s}=200$ GeV at PHENIX

Large negative SSA observed for $x_F>0$, enhanced by requiring concidence with forward charged particles ("MinBias" trigger). No x_F dependence seen.

Neutron SSA for local polarimetry

Spin Rotators OFF Vertical polarization

Spin Rotators ON Radial polarization

Spin Rotators ON Longitudinal polarization

C. Aidala, SPIN 2010, September 28, 2010

Neutron SSA for local polarimetry

Spin Rotators ON Longitudinal polarization

• Los Alamos

C. Aidala, SPIN 2010, September 28, 2010

...<mark>Blue</mark>

Forward neutrons at other energies

Significant forward neutron asymmetries observed down to 62.4 and up to 410 GeV!

$$A = \frac{N_+ - RN_-}{N_+ + RN_-}$$

Polarized Collider Development

Parameter	Unit	2002	2003	2004	2005	2006
No. of bunches		55	55	56	106	111
bunch intensity	1011	0.7	0.7	0.7	0.9	1.4
store energy	GeV	100	100	100	100	100
β*	m	3	1	1	1	1
peak luminosity	$10^{30} \text{cm}^{-2} \text{s}^{-1}$	2	6	6	10	35
average luminosity	10 ³⁰ cm ⁻² s ⁻¹	1	4	4	6	20
Collision points		4	4	4	3	2
average polarization, store	%	15	35	46	47	60-65

C. Aidaia, SPIN 2010, September 28, 2010

NATIONAL LABORATORY - EST. 1943 -

Machine performance: Transverse spin running at PHENIX

Year	√s [GeV]	Recorded L	Pol [%]	FOM (P ² L)
$2001 (Run_2)$	200	15 nh ⁻¹	15	3.4 nb^{-1}
2001 (Run-2)	200	.15 po		5.4 110
2005 (Run-5)	200	.16 pb ⁻¹	47	38 nb ⁻¹
2006 (Run-6)	200	2.7 pb ⁻¹	51	700 nb ⁻¹
2006 (Run-6)	62.4	.02 pb ⁻¹	48	4.6 nb ⁻¹
2008 (Run-8)	200	5.2 pb ⁻¹	46	1100 nb-1

