

Spin in Hadron Reactions

Christine Aidala University of Massachusetts Amherst SPIN 2008, University of Virginia October 9, 2008

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

RHIC as a Polarized p+p Collider

Discovery! Hyperon polarization

- Λ° Hyperon Polarization
- in Inclusive Production
- by 300 GeV Protons on
 - Beryllium

G. Bunce et al., PRL36, 1113 (1976) FNAL

C. Aidala, SPIN2008, October 9, 2008

Discovery! Hyperon polarization

- ∧° Hyperon Polarization
- in Inclusive Production
- by 300 GeV Protons on

G. Bunce et al., PRL36, 1113 (1976) FNAL

Polarized beams: Hyperon spin transfer measurements

E704: Correlation found between transverse spin of initial-state proton and final-state lambda!

PRL78, 4003 (1997) - E704

Polarized beams: Hyperon spin transfer measurements

Polarized beams: Hyperon spin transfer measurements

Spin transfers consistent with zero observed at RHIC with longitudinal polarization in the initial state. Transverse measurements still to come . . .

Discovery! Large transverse single-spin asymmetries Argonne ZGS, $p_{beam} = 12 \text{ GeV/c}$ $pp^{\uparrow} \rightarrow \pi X$

W.H. Dragoset et al., PRL36, 929 (1976)

Transverse-momentum-dependent distributions and SSA's

1989: The "Sivers mechanism" is proposed in an attempt to understand the low-energy hadronic asymmetries.
D.W. Sivers, PRD41, 83 (1990)

SPIN2008, October 9, 2008

Transverse-momentum-dependent distributions and SSA's

Transverse SSA's fromlow to high energiesZGS 12 GeV beamAGS 22 GeV beamFNAL 200 GeV beam

Transverse SSA's at $\sqrt{s} = 62.4 \text{ GeV}$ at RHIC

Transverse SSA's at $\sqrt{s} = 62.4 \text{ GeV}$ at RHIC

Transverse SSA's at $\sqrt{s} = 200 \text{ GeV}$ at RHIC

Transverse SSA's at $\sqrt{s} = 200 \text{ GeV}$ at RHIC

Ø

Probing the Sivers Function via Dijets

- Sivers effect in $p+p \Rightarrow$ spin-dependent sideways boost to dijets, suggested by Boer & Vogelsang (PRD 69, 094025 (2004))
- 2005: Prediction by Vogelsang and Yuan for p+p, based on preliminary Sivers moments from HERMES

Probing the Sivers Function via Dijets

- Sivers effect in p+p ⇒ spin-dependent sideways boost to dijets, suggested by Boer & Vogelsang (PRD 69, 094025 (2004))
- 2005: Prediction by Vogelsang and Yuan for p+p, based on preliminary Sivers moments from HERMES

Measured Sivers A_N for Dijets

Measured A_N consistent with zero \Rightarrow both quark and gluon Sivers effects much smaller in p+p \rightarrow dijets than in HERMES SIDIS!!

Calculations for p+p revisited! Bomhof, Mulders, Vogelsang, Yuan: PRD75, 074019 (2007)

Prediction for dijet SSA if Sivers contributions were same as for SIDIS (FSI)

Initial- and final-state cancellations in $p+p \rightarrow$ jet+jet found to reduce expected dijet asymmetry at RHIC.

Prediction for dijet SSA if Sivers contributions were same as for Drell-Yan (ISI)

Calculations for p+p revisited! Bomhof, Mulders, Vogelsang, Yuan: PRD75, 074019 (2007)

Hadronic interactions and the helicity structure of the nucleon

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{1}{|P_1P_2|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

pOCD

DIS

?

C. Aidala, SPIN2008, October 9, 2008

e+e-

Inclusive jet production at 200 GeV

GRSV polarized pdf fit: PRD 63, 094005 (2001)

2005 jet data now published: PRL100, 232003 (2008)

C. Aidala, SPIN2008, October 9, 2008

Inclusive jet production at 200 GeV

Inclusive jet production at 200 GeV

Inclusive neutral pion production at 200 GeV PRD76, 051106 (2007)

arXiv:0810.0694, submitted to PRL

C. Aidala, SPIN2008, October 9, 2008

Inclusive neutral pion production at 200 GeV PRD76, 051106 (2007)

π⁰ A_{LL}: Agreement with different parametrizations

π⁰ A_{LL}: Agreement with different parametrizations

Published best fit				
Group	$\Delta G^{[0,1]}$	$\Delta G^{[0.02,0.3]}$	χ^2	
GS-C	0.95	0.18	8.3	
DSSV	-0.05	-0.03	7.5	
LSS	0.60	0.37	22.4	
GRSV	0.67	0.38	14.8	
BB	0.93	0.67	69.0	

Small ΔG in our measured *x* region 0.02 to 0.3 gives small A_{LL} (DSSV and GS-C). Large ΔG gives comparatively larger A_{LL} .

arXiv:0810.0694, submitted to PRL

$\pi^0 A_{LL}$: Agreement with different parametrizations

Published best fit				
Group	$\Delta G^{[0,1]}$	$\Delta G^{[0.02,0.3]}$	χ^2	
GS-C	0.95	0.18	8.3	
DSSV	-0.05	-0.03	7.5	
LSS	0.60	0.37	22.4	
GRSV	0.67	0.38	14.8	
BB	0.93	0.67	69.0	

Small ΔG in our measured *x* region 0.02 to 0.3 gives small A_{LL} (DSSV and GS-C). Large ΔG gives comparatively larger A_{LL} .

Note small A_{LL} does not necessarily mean small ΔG in the full x range!

$\pi^0 A_{LL}$: Agreement with different parametrizations

For each parametrization, vary $\Delta G^{[0,1]}$ at the input scale while fixing $\Delta q(x)$ and the shape of $\Delta g(x)$, i.e. no refit to DIS data.

For range of shapes studied, current data relatively insensitive to shape in *x* region covered.

arXiv:0810.0694, submitted to PRL

π⁰ A_{LL}: Agreement with different parametrizations

For each parametrization, vary $\Delta G^{[0,1]}$ at the input scale while fixing $\Delta q(x)$ and the shape of $\Delta g(x)$, i.e. no refit to DIS data.

For range of shapes studied, current data relatively insensitive to shape in *x* region covered.

arXiv:(

Need to extend *x* range!

Extending x coverage

- Measure in different kinematic regions
 - e.g. forward vs. central
- Change center-of-mass energy
 - Most data so far at 200 GeV
 - Brief run in 2006 at 62.4
 GeV
 - First 500 GeV data-taking planned for 2009!

Extending x coverage

arXiv:0810.0701, submitted to PRD

Neutral pion A_{LL} at 62.4 GeV

arXiv:0810.0701, submitted to PRD

Neutral pion A_{LL} at 62.4 GeV

 $x_T =$

Converting to x_T , can see significance of 62.4 GeV measurement (0.08 pb⁻¹) compared to published data from 2005 at 200 GeV (3.4 pb⁻¹).

$$0.02 < x_{gluon} < 0.3 \ (\sqrt{s} = 200 \,\text{GeV})$$

 $0.06 < x_{gluon} < 0.4 \ (\sqrt{s} = 62.4 \,\text{GeV})$

arXiv:0810.0701, submitted to PRD

C. Aidala, SPIN2008, October 9, 2008

30

Going beyond inclusive measurements

- Inclusive channels suffer from integration over x → modeldependent ∆g extraction
- Improved accelerator and detector performance will allow jet-jet and γ-jet coincidence measurements, placing better constraints on partonic kinematics

$$x_{1} = \frac{x_{T}}{2} \left(e^{\eta_{1}} + e^{\eta_{2}} \right); \quad x_{2} = \frac{x_{T}}{2} \left(e^{-\eta_{1}} + e^{-\eta_{2}} \right)$$
$$x_{T} = \frac{2p_{T}}{\sqrt{s_{pp}}}$$

Going beyond inclusive measurements

Dijet A_{LL} projections for 2009 run

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC p+p data on an equal footing
- Finds node in gluon distribution near $x \sim 0.1$

C. Aidala, SPIN2008, October 9, 2008

 $\Delta \gamma$

Getting the full return on experimental efforts: Global analyses de Florian et al., PRL101, 072001 (2008) STAR 0.05 STAR (prel.) 0.3 ΄xΔe A^{jet}_{LL}0 0.2DSSV DSSV $\Delta \gamma^2 =$ -0.05 DSSV $\Delta \chi^2 / \chi$ 0.110 30 p_T[GeV] 0 Just the beginning—need to perform and include in 0.1 global analyses measurements with higher precision 0.2 and covering a greater x range! -0.2 -0.2 0.2 0.20 Δg^{1,[0.05-0.2]} Δg^{1,[0.05-0.2]}

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC p+p data on an equal footing
- Finds node in gluon distribution near $x \sim 0.1$

Access to flavor-separated quark and antiquark helicities via W production

V-A coupling Only L.H. u and R.H. d couple to W⁺ Likewise L.H. d and R.H. u to W⁻ Only L.H. W's produced

$$A_{L} = \frac{1}{P} \frac{N^{+} / L^{+} - N^{-} / L^{-}}{N^{+} / L^{+} + N^{-} / L^{-}}$$

$$A_L^{W^+} \approx -\frac{\Delta u(x_1)\overline{d}(x_2) - \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) - \overline{d}(x_1)u(x_2)}$$

$$A_L^{W^-} \approx -\frac{\Delta d(x_1)\overline{u}(x_2) - \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) - \overline{u}(x_1)d(x_2)}$$

Access to flavor-separated quark and antiquark helicities via W production

$$A_{L} = \frac{1}{P} \frac{N^{+} / L^{+} - N^{-} / L^{-}}{N^{+} / L^{+} + N^{-} / L^{-}}$$

$$A_{L}^{W^{+}} \approx -\frac{\Delta u(x_{1})\overline{d}(x_{2}) - \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) - \overline{d}(x_{1})u(x_{2})}$$

$$A_L^{W^-} \approx -\frac{\Delta d(x_1)\overline{u}(x_2) - \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) - \overline{u}(x_1)d(x_2)}$$

08, October 9, 2008

Sensitivity projections vs. p_T

Forward A, (W+) for positron GRSV-STD Forward A, (W-) for electron GRSV-VAL 0.4 -- DNS2005-MAX DNS2005-MIN 0.6 DSSV2008 STAR projections 0.2 0.4 0.2 -0.2 -0.4 -0.2 -0.6 -0.420 20 30 35 45 25 30 45 50 25 40 50 40 lepton ET (GeV) lepton ET (GeV) Backward A, (W+) for positron Backward A, (W-) for electron STAR 0.4 0.4 0.2 0.2 n -0.2 -0.2 -0.4 -0.4 -0.620 35 25 30 35 40 45 50 25 30 40 45 50 lepton ET (GeV) lepton ET (GeV)

STAR projections for LT=300 pb⁻¹, Pol=0.7, effi=70%, including QCD background, no vertex cut

• $1 < \eta < 2$ • 300 pb⁻¹ • Realistic BG subtraction • Recent PDFs ~representing current allowed $\Delta \overline{u} / \Delta \overline{d}$ range • Δd and $\Delta \overline{u}$ isolated

46

Sensitivity projections vs. p_T

C. Aidala, SPIN2008, October 9, 2008

47

Sensitivity projections vs. p_T

C. Aidala, SPIN2008, October 9, 2008

48

Conclusions

- Hadronic interactions have played and continue to play an integral role in the discovery and exploration of spindependent effects!
- RHIC, as a high-energy polarized proton collider, represents a landmark achievement in the field, having opened up a wealth of new opportunities
- Through global efforts, utilizing all the tools and techniques we have at our disposal, both theoretically and in different experimental systems, we can harness the full potential of hadronic reactions
 - The more we know from simpler systems, the more we can learn from increasingly complex ones!

"Polarization data has often been the graveyard of fashionable theories. If theorists had their way, they might just ban such measurements altogether out of self-protection."

J.D. Bjorken

NATO Advanced Research Workshop on QCD Hard Hadronic Processes St. Croix, 1987

Based on simulation using NLO pQCD as input

arXiv:0810.0694, submitted to PRL

C. Aidala, SPIN2008, October 9, 2008

52

Neutral pion A_{LL} at STAR

$-0.95 < \eta < 0.95$

$1.0 < \eta < 2.0$

ηA_{LL} at 200 GeV

•~1/2 as abundant as π^0 •40% photon branching ratio •Different wavefunction from π^0 •Stronger gluon/strange

ηA_{LL} at 200 GeV

The Pion Isospin Triplet, A_{LL} *and* ΔG

- At transverse momenta > ~5 GeV/c, midrapidity pions dominantly produced via qg scattering
- Tendency of π⁺ (ud̄) to fragment from an up quark and π⁻ (dū) from a down quark and fact that Δu and Δd have opposite signs make A_{LL} of π⁺ and π⁻ differ measurably
- Order of asymmetries of pion species can allow us to determine the sign of ΔG

 $\Delta G > 0 \Longrightarrow A_{LL}^{\pi^+} > A_{LL}^{\pi^0} > A_{LL}^{\pi^-}$

56

The Pion Isospin Triplet, A_{LL} *and* ΔG

 $\Delta G > 0 \Longrightarrow A_{LL}^{\pi^+} > A_{LL}^{\pi^0} > A_{LL}^{\pi^-}$

C. Aidala, SPIN2008, October 9, 2008

57

Charged pion A_{LL} at 200 GeV

A_{LL} of non-identified charged hadrons at 62.4 GeV

PH*ENIX Cross section measurement in progress!

14% polarization uncertainty not included

A_{LL} of direct photons at 200 GeV

C. Aidala, SPIN2008, October 9, 2008

60

$A_{LL} of J/\psi at \sqrt{s}=200 \ GeV$

• x_T scaling—can parametrize cross sections for particle production in hadronic collisions by:

$$E\frac{d^{3}\sigma}{dp^{3}} \sim \left(\sqrt{s}\right)^{-n} F(x_{T})$$

 $x_T = \frac{2p_T}{\sqrt{s}}, n = \text{constant}$

• Lower energy has higher yield at fixed x_T

$$L\int E \frac{d^{3}\sigma}{dp^{3}} dp_{T} = L\int E \frac{d^{3}\sigma}{dp^{3}} \frac{\sqrt{s}}{2} dx_{T}$$
$$\propto L\sqrt{s}^{-5.3}$$

We can probe higher x_T with better statistics even with a short run at 62.4 GeV!! (compared to 200 GeV)

pQCD in Action at $\sqrt{s}=200$ GeV

Prompt γ Production at $\sqrt{s}=200 \text{ GeV}$

- Gluon Compton
 scattering dominates
 - At LO no fragmentation function
 - Small contribution from annihilation

$$A_{LL} \propto \frac{\Delta g(x_1)}{g(x_1)} \otimes \frac{\Delta q(x_2)}{q(x_2)} \otimes \hat{a}_{LL}(gq \to \gamma q)$$

Prompt γ Production at $\sqrt{s}=200 \text{ GeV}$

<u>Forward</u> Hadron Production at $\sqrt{s}=200$ GeV

C. Aidala, SPIN2008, October 9, 2008

<u>Forward</u> Hadron Production at $\sqrt{s}=200 \text{ GeV}$

pQCD scale dependence at RHIC

Conclusion: Extraction of spin dependent parton distributions is possible at RHIC using perturbative QCD ab initio: First spin structure experiments at collider energies!

70

C. Aluala, SE 1112000, OCIUDEI 9, 2000

Sea Quark Helicities – Projections vs. η

STAR projections for LT=300 pb⁻¹, Pol=0.7, effl=70%, including QCD background, no vertex cut

Unifying 62.4 and 200 GeV, BRAHMS + E704

C. Aidala, SPIN2008, October 9, 2008

Forward $\pi^0 A_N$ at 200 GeV: p_T dependence

arXiv:0801.2990 Accepted by PRL

A_N at Forward Rapidity

Attempting to Probe k_T from Orbital Motion

- Spin-correlated transverse momentum (orbital angular momentum) may contribute to jet k_T. (Meng Ta-chung et al., Phys. Rev. D40, 1989)
- Possible helicity dependence
- Would depend on (unmeasured) impact parameter, but may observe net effect after averaging over impact parameter

Attempting to Probe k_T from Orbital Motion

- Spin-correlated transverse momentum (orbital angular momentum) may contribute to jet k_T. (Meng Ta-chung et al., Phys. Rev. D40, 1989)
- Possible helicity dependence
- Would depend on (unmeasured) impact parameter, but may observe net effect after averaging over impact parameter

C. Aidala, SPIN2008, October 9, 2008

Sivers dihadrons from PHENIX

q_{T[⊥]} should show an asymmetry due to Sivers function.
 q_{T||} should show no asymmetry, only for cross check.

• Measurement result: the asymmetry for $q_{T^{\perp}}$ due to Sivers effect is consistent with zero.

 Fragmentation dilution factor is not included.

If an asymmetry is measured

 $A_N \propto \vec{S}_T \bullet (\vec{P}_p \times \vec{k}_T) \implies A_N(P_{+z}) = -A_N(P_{-z}) \text{ for } q_{T\perp}$

C. Aidala, SPIN2008, October 9, 2008

70

Heavy flavor single spin asymmetries

- Open charm single spin asymmetries sensitive to gluon Sivers function
 - Anselmino et al, PRD70, 074025 (2004)
- PHENIX data now available for A_N of prompt muons from heavy flavor decays

SSA of heavy flavor vs. x_F

What about charmonium?

- J/ψ complicated by unknown production mechanism!
- Recent calculations for charmonium from F.Yuan, arXiv:0801.4357 [hep-ph]

82

New "rough" calculation for J/ ΨA_N *at RHIC*

Assumed gluon Sivers function ~
 0.5 x(1-x) times unpolarized gluon distribution

 $xG_{1T}^{\perp(1/2)}(x) \approx 0.5x(1-x)xG(x)$

- Assumed 30% J/Ψ from χ_c decays
- No direct contributions!
 - Color-singlet is small in the cross section
 - Color-octet, FSI/ISI cancel out, SSA vanishes in the limit of $p_T << M_O$
 - Origin of potential non-zero asymmetry is through $\chi_c!$
- But beware: Production mechanism remains poorly understood!

PIN2008, October 9, 2008

Forward neutrons at $\sqrt{s}=200$ GeV at PHENIX

Large negative SSA observed for $x_F>0$, enhanced by requiring concidence with forward charged particles ("MinBias" trigger). No x_F dependence seen.

Forward neutrons at other energies

Significant forward neutron asymmetries observed down to 62.4 and up to 410 GeV!

$$A = \frac{N_+ - RN_-}{N_+ + RN_-}$$

Yesterday's discovery is today's calibration . . .

- Coulomb-nuclear interference and polarimetry at RHIC
 - Transverse SSA in elastic p+p and p+C scattering
- Transverse single-spin asymmetry in forward neutron production as local polarimetry at RHIC

Yet note that forward neutron asymmetry still not understood at all!

Single-Spin Asymmetries for Local Polarimetry: Confirmation of Longitudinal Polarization

Spin Rotators OFF Vertical polarization

Spin Rotators ON Current Reversed! Radial polarization

Spin Rotators ON Correct Current Longitudinal polarization! C. Aidal

RHIC Specifications

- 3.83 km circumference
- Two independent rings

 Up to 120 bunches/ring
 - 106 ns crossing time

• Energy:

→ Up to 500 GeV for p+p
→ Up to 200 GeV for Au+Au (per N+N collision)

• Luminosity

- Au+Au: $2 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$
- $p+p : 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ (70% polarized)

Polarized Collider Development

Parameter	Unit	2002	2003	2004	2005	2006
No. of bunches		55	55	56	106	111
bunch intensity	1011	0.7	0.7	0.7	0.9	1.4
store energy	GeV	100	100	100	100	100
β*	m	3	1	1	1	1
peak luminosity	$10^{30} \text{cm}^{-2} \text{s}^{-1}$	2	6	6	10	35
average luminosity	10 ³⁰ cm ⁻² s ⁻¹	1	4	4	6	20
Collision points		4	4	4	3	2
average polarization, store	%	15	27	46	50	57 89
C. Aidala, SPIN2008, October 9, 2008						

"Siberian Snakes" To Maintain Polarization Effect of depolarizing resonances

averaged out by rotating spin by <u>180 degrees on each turn</u>

 $\mathsf{RH}(\mathsf{C})$

4 helical dipoles in each snake
2 snakes in each ring

axes orthogonal to each other

C. Aidala, SPIN2008, October 9, 2008

Hydrogen-Jet Polarimeter for Beams at Full Energy

- Use transversely polarized hydrogen target and take advantage of transverse *single*-spin asymmetry in elastic proton-proton scattering
- Only consider single polarization at a time. Symmetric process!
 - Know polarization of your target
 - Measure analyzing power in scattering
 - Then use analyzing power to measure polarization of beam

The STAR Detector at RHIC

PHENIX detector

BRAHMS Detector

Forward Meson Spectrometer

STAR

20 times more acceptance than previous forward calorimeters

