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Areas of study in QCD

• Structure/properties of QCD matter

• Formation of states of QCD matter

• Interactions within QCD
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Structure/Properties of QCD matter
• Bound states: Mesons and 

baryons

• Bound states of bound states: 
Nuclei, neutron stars

• Deconfined states: Quark-
gluon plasma
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Formation of states of QCD matter

• Hadronization mechanisms
• Formation of bound states of bound states
• Jet structure
• Equilibration of QGP
• Time scales of hadronization/equilibration
• Modification of hadronization in different 

environments
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Interactions within QCD
• Parton energy loss in cold and hot QCD matter

• Flow of partons within QGP

• Quantum interference and phase shifts
– E.g. quantum interference effects in hadronization

• One parton multiple hadrons
• Multiple partons one hadron

• Color flow effects
– Process-dependent spin-momentum correlations in hadrons
– Quantum entanglement of partons across colliding hadrons
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Complexity and richness of QCD: 
Confinement

• QCD theory: Quarks and gluons
• QCD experiment: QCD bound states

• Always an interplay between partonic/hadronic 
descriptions, reductionist/emergent pictures
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High-energy collisions: 
Tools to study QCD

• Need high (enough) energies to
– Access subnuclear distance scales
– Form new states of QCD matter

• High energies can also 
– Allow use of perturbative theoretical tools 
– Provide access to new probes, e.g. heavy flavor, 

Z/W bosons
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High-energy collisions: 
Tools to study QCD

Can study QCD via 
• Hadron-hadron collisions: p+p, p+A, A+A, 

pbar+p/A, π+A

• Lepton-hadron collisions: e/µ+p, e/µ+A, ν+A

• Lepton-lepton collisions: e+e- (hadronization)
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High-energy collisions:
Control

The more aspects of the collisions we can control/manipulate, the more 
powerful our tools
• Collision species  state of matter to be studied, geometry, path 

length, flavor/isospin, electroweak vs. strong interactions
• Energy  distance/time scales, probes accessible, states of matter
• Polarization  spin-spin and spin-momentum correlations in QCD 

systems or in hadronization, sensitivity to system properties (e.g. 
gluon saturation)

Some aspects we select rather than control
• Centrality, final-state produced particles and their kinematics

Multidifferential measurements even more powerful
• pT, rapidity, centrality, angular distribution/correlation, PID, . . .
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Why an Electron-Ion Collider?
• Electroweak probe

– “Clean” processes to interpret 
(QED)

– Measurement of scattered electron 
 full kinematic information on 
partonic scattering

• Collider mode  Higher energies
– Quarks and gluons relevant d.o.f.
– Perturbative QCD applicable
– Heavier probes accessible (e.g. 

charm, bottom, W boson exchange)
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EIC facility concepts
• Beams of light  heavy ions 

– Previously only fixed-target e+A experiments
• Polarized beams of p, d/He3

– Previously only fixed-target polarized experiments
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EIC
EIC (20x100) GeV
EIC (10x100) GeV
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EIC facility concepts
• Beams of light  heavy ions 

– Previously only fixed-target e+A experiments
• Polarized beams of p, d/He3

– Previously only fixed-target polarized experiments
• Luminosity 100-1000x that of HERA e+p collider
• Two concepts: Add electron facility to RHIC at 

BNL or ion facility to CEBAF at JLab
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Partonic momentum structure of nuclei:
Not just superposed protons and neutrons

• Ratio of cross section 
for e+A compared to 
scaled e+p collisions, 
shown vs. parton
momentum fraction x

• Regions of both 
enhancement and 
depletion—only 
Fermi motion 
reasonably 
understood
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Partonic momentum structure of nuclei: 
Nuclear parton distribution functions

(Traditional collinear, unpolarized) Nuclear PDFs
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EPPS16 – arXiv:1612.05741



C. Aidala, QM Student Day, 2/5/17

Partonic momentum structure of nuclei:
EMC effect and local density

J.Seely, A. Daniel, et al., PRL103, 202301 (2009)

• Fit slope of ratios for 
0.3<x<0.7; compare across 
nuclei

• EMC slope doesn’t scale with A 
or with avg nuclear density…

15
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Partonic momentum structure of nuclei:
EMC effect and local density

But appears to 
scale with local 
density!

Density determined from ab initio few-
body calculation
S.C. Pieper and R.B. Wiringa,
Ann. Rev. Nucl. Part. Sci 51, 53 (2001) Hen, Piasetzky, Weinstein, 

Phys. Rev. C85, 047301 (2012) 



Local density in nuclei is important!
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Partonic spatial structure of nuclei:
Diffraction
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Diffraction pattern from 
monochromatic plane wave incident 
on a circular screen of fixed radius 

From E. Aschenauer

• X-ray diffraction used to 
probe spatial structure of 
atomic crystal lattices
– Measure in momentum 

space, Fourier 
transform to position 
space

• Nuclear distance scales 
 Need gamma ray 
diffraction!
– Again measure 

diffractive cross section 
in momentum space 
(Mandelstam t), Fourier 
transform to position 
space



Partonic spatial structure of nuclei:
Diffraction
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Expected diffraction pattern from gamma 
ray incident on ~spherical nucleus

Diffractive ρ production in 
Au+Au ultraperipheral collisions

STAR

e+A, p+A, or A+A. Probed nucleus in one beam.  
Gamma emitted by electron or Coulomb-excited  
proton/nucleus passing nearby in second beam.

√sNN = 200 GeV

ρ



Goal: Cover wide range in t.
Fourier transform  impact-
parameter-space profiles.
Obtain b profile from slope vs. t.

Partonic spatial structure of nuclei:
Diffraction

Note: Can use Bose-Einstein 
correlations (HBT) in e+A to probe 
spatial extent of particle production 
region, as in hadron-hadron collisions
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Diffraction to study universal state of 
gluonic matter: Gluon saturation

• In addition to probing 
spatial structure, 
diffraction is one way 
to probe gluon 
saturation within 
nuclei
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Bremsstrahlung
~ αsln(1/x)

x = Pparton/Pnucleon

small x

Recombination
~ αsρ

Gluon saturation

At small x linear evolution gives
strongly rising g(x) – but must be 

bounded!

BK/JIMWLK non-linear evolution includes 
recombination effects  saturation
 Dynamically generated scale

Saturation Scale: Q2
s(x)

 Increases with energy or decreasing x
 Scale with Q2/Q2

s(x) instead of x and 
Q2 separately
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Diffraction in e+A as a probe of gluon 
saturation

• Fewer potential competing 
effects in e+p/A than hadron-
hadron collisions

• Easier to reach predicted 
saturation regime with e+A
than e+p

• e+Au at higher c.m. energies 
for EIC will provide window 
of overlap where both Color-
Glass Condensate effective 
field theory calculations and 
perturbative QCD 
calculations can be done and 
compared
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Diffraction in e+A as a probe of gluon 
saturation

• Top panel: EIC projections for 
ratio of diffraction cross 
section to total, along with 
predictions based on saturation 
and shadowing models

• Bottom panel: Projections and 
predictions for double ratio: 
(diffractive/total)e+A/(diffractive/total)e+p

– Very strong handle to 
distinguish saturation from 
shadowing!

• Note: Saturation can also be 
probed via 2-particle 
correlations in e+A, as in 
p/d+A
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Parton dynamics in QCD systems
• Angular correlations in particle production: one way to 

probe parton dynamics
• Can look at Fourier amplitudes
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PHENIX: PRL 114, 192301 (2015)

Large cos 2φ modulation in d+Au at 
200 GeV, p+Pb at 5.02 TeV

Significant cos 2φ modulation also in p+p at 
13 TeV

arXiv:1609.06213



Parton dynamics in QCD systems: 
How many ways can a cos 2φ modulation be 

generated in hadronic collisions??
• Large modulation in direct 

photon production in 200 
GeV Au+Au collisions

• Huge modulation in pion-
induced Drell-Yan
– Understood as due to spin-

momentum correlations of 
partons inside unpolarized
hadrons

– These correlations will be 
studied in detail at EIC
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Formation of QCD bound states: 
Hadronization at EIC
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• Use nuclei as femtometer-scale 
detectors of the hadronization
process!

• Wide range of scattered parton
energy; small to large nuclei 
– Move hadronization inside/outside 

nucleus 
– Distinguish energy loss and 

attenuation
Comprehensive studies of hadronization as well as of 
propagation of color charges through nuclei possible 
at EIC



Formation of QCD bound states: 
Nuclear modification of fragmentation 

functions
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As in A+A and p+A, fragmentation functions are 
modified in e+A, e.g. suppression of pion production

EPJA47, 113 (2011)



Formation of QCD bound states: Hadronization
in higher-density partonic environments
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Baryon enhancement 
observed in central A+A but 
also peripheral A+A and in 
p/d+A.

p/π ratio for central d+Au
and peripheral Au+Au—
shape and magnitude 
identical!

Suggests common 
mechanism(s) for baryon 
production in the two 
systems

PRC88, 024906 (2013)

No scaling applied



Formation of QCD bound states: Hadronization
in higher-density partonic environments

• Evidence for baryon 
enhancement also in 
e+A!

• Baryon enhancement in 
A+A, p+A, e+A suggests 
mechanism(s) other than 
“vacuum fragmentation”

• Binding of nearby 
partons in phase space?
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HERMES, NPB780, 1 (2007)



Links to collective behavior in high-
multiplicity p+p, and in p+A?
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Lots of interesting behavior when extra partons come 
into play, whether it’s “hot” or “cold” QCD

CMS JHEP 09 (2010), 091

Long-range correlations in 
high-multiplicity p+p at 7 TeV



Formation of bound states of bound states:
Creating nuclei
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STAR
Nature 473, 353 (2011) Will it be possible to create 

e.g. d, dbar in e+A??



Formation of QCD bound states: 
Hadronization at EIC

current 
fragmentation

target 
fragmentation

Fragmentation from
QCD vacuum

E
I
C

+η ∼ 4

-η ∼ −4
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Formation of QCD bound states:
“Target fragmentation” region

• Related to color neutralization of remnant—soft particle production

• Electron-Ion Collider will map out target fragmentation region well
– Collider geometry – easier than in fixed-target to separate “current” 

from “target” fragmentation

• Connections to 
– “Underlying event” in hadron-hadron collisions
– Forward hadron production in hadron-hadron collisions
– Cosmic ray physics

• “Fracture functions” – theoretical tools to describe target 
fragmentation
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Conclusions
• These are exciting times in QCD!
• Complementary facilities, as well as 

theoretical advances, are allowing us to probe 
QCD’s rich complexities in ever-greater detail, 
with ever-increasing sophistication 
– Part of new era of QCD as a more mature field
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Electron-Ion Collider  next major facility in the ongoing quest to address the 
fundamental questions of QCD

• How do we describe different QCD systems in terms of their quark and gluon 
degrees of freedom?

• In what ways can colored quarks and gluons form colorless QCD bound states?
• What are unique properties of QCD interactions? 



Extra
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Bose-Einstein correlations for nuclear 
semi-inclusive DIS

• Sensitive to 
spatial separation 
of production of 
the two particles

• No nuclear 
dependence found 
within 
uncertainties
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HERMES, EPJ C75, 361 (2015)
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Hadronization: Parton propagation in matter
• Interaction of fast color charges 
with matter? 
• Conversion of color charge to 
hadrons through fragmentation 
and breakup?

Existing data  hadron 
production modified on nuclei 
compared to the nucleon! 
EIC will provide ample statistics 
and much greater kinematic 
coverage!
-Study time scales for color 
neutralization and hadron 
formation
- e+A complementary to jets in 
A+A: cold vs. hot matter

38
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Accessing quarks and gluons through DIS
Measure of 
resolution 
power

Measure of 
inelasticity

Measure of 
momentum 
fraction of 
struck quark

Kinematics:

Quark splits
into gluon

splits
into quarks …

Gluon splits
into quarks

higher √s
increases resolution

10-19m

10-16m
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Access the gluons in DIS via scaling 
violations:
dF2/dlnQ2 and linear DGLAP evolution in 
Q2 G(x,Q2)
OR
Via FL structure function
OR
Via dihadron production
OR
Via diffractive scattering
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Accessing gluons with an electroweak probe
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Access the gluons in DIS via scaling 
violations:
dF2/dlnQ2 and linear DGLAP evolution in 
Q2 G(x,Q2)
OR
Via FL structure function
OR
Via dihadron production
OR
Via diffractive scattering
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Accessing gluons with an electroweak probe
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Gluons dominate 
low-x wave function
Gluons dominate 
low-x wave function
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Access the gluons in DIS via scaling 
violations:
dF2/dlnQ2 and linear DGLAP evolution in 
Q2 G(x,Q2)
OR
Via FL structure function
OR
Via dihadron production
OR
Via diffractive scattering
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Accessing gluons with an electroweak probe
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Gluons in fact dominate 
(not-so-)low-x wave 
function!



Hyperon polarization from 
unpolarized collisions

• 1976 lambda polarization discovery: p+Be, 300 GeV beam 
• Polarization transverse to production plane up to ~20% for forward-

angle lambda production;  Polarizing TMD FF?
• Confirmed 1977 at CERN, p+Pt, 24 GeV beam (and by various proton-

nucleus and proton-proton experiments afterwards . . .)
C. Aidala, QM Student Day, 2/5/17 43
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Σ+ polarized with opposite sign

• 1981: p+Be, 400 GeV beam
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PRL46, 803 (1981)



Ξ 0polarization similar to Λ0

• 1983: p+Be, 400 GeV beam
• Similar results for p+Cu and p+Pb
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PRL51, 2025 (1983)



xF dependence of lambda polarization 
in hadronic collisions
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Proton beams
PRD91, 032004 (2015)

• Same sign and general 
xF dependence for 
neutron beams 

• But for K- and Σ-
beams, positive 
polarization at positive 
xF

• And for π- beam, 
positive polarization 
but at negative xF!

• Consistent with zero for 
π+ and K+ beams



Lambda polarization observed in 
semi-inclusive DIS

• Nonzero in 
both forward 
and backward 
directions
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HERMES, PRD90, 072007 (2014)



Formation of QCD bound states:
Heavy flavor

• Open heavy flavor—vacuum fragmentation 
picture

• Heavy quarkonium states—different thinking
– Handles on production via pT dependence, 

polarization, in-medium modification
– For very high pT production in hadronic collisions, 

return to vacuum fragmentation picture?  How to 
handle multiple hard scales in calculations?
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Transverse-momentum-dependent (TMD) 
factorization breaking and color entanglement

• 2010: Rogers and Mulders predict color 
entanglement in processes involving p+p
production of hadrons if parton transverse 
momentum taken into account

• Due to gluon exchange between scattering parton
and proton remnant in both initial and final state

• Partons become correlated across the two 
colliding protons
• Can no longer factorize the nonperturbative functions 

into independent pdfs and fragmentation functions
• Will need new (unknown) nonperturbative functions 

describing quantum-correlated partons across bound 
states

• Consequence of QCD specifically as a non-
Abelian gauge theory!

C. Aidala, APS April Mtg., 1/29/17

Xhhpp ++→+ 21

Color flow can’t be described as 
flow in the two gluons separately.  
Requires simultaneous presence 
of both.

PRD 81, 094006 (2010)
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Searching for evidence of predicted 
TMD-factorization breaking at RHIC

• Need observable sensitive to a 
nonperturbative momentum scale
– Nearly back-to-back particle 

production
• Need 2 initial-state hadrons

– color exchange between a 
scattering parton and remnant of 
other proton 

• And at least 1 final-state hadron
– exchange between scattered 

parton and either remnant

 In p+p collisions, measure out-of-
plane momentum component in 
nearly back-to-back photon-hadron 
and hadron-hadron production

C. Aidala, APS April Mtg., 1/29/17 50

Large scale, ~Q
Small scale, ~ΛQCD



Out-of-plane momentum component 
distributions

• Clear two-component 
distribution
– Gaussian near zero—

nonperturbative
transverse momentum

– Power-law at large 
pout—kicks from hard 
(perturbative) gluon 
radiation

• Different colors 
different bins of trigger 
particle pT, proxy for 
hard interaction scale
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Curves are fits to Gaussian and Kaplan functions, 
not calculations!

PHENIX Collab., arXiv:1609.04769



Look at evolution of nonperturbative transverse 
momentum widths with hard scale (Q2)

• Theoretical proof of factorization within transverse-momentum-
dependent framework directly predicts that nonpertubative
transverse momentum widths increase as a function of the hard 
scattering energy scale (Collins-Soper-Sterman evolution)
– Increased phase space for gluon radiation

• Confirmed experimentally in semi-inclusive deep-inelastic lepton-
nucleon scattering (left) and quark-antiquark annihilation to leptons 
(right)

C. Aidala, APS April Mtg., 1/29/17 5
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Nonperturbative momentum widths observed to 
decrease in processes where factorization 

breaking predicted 
• Suggestive of TMD-factorization 

breaking effects?
• Have not yet completely ruled out 

a “trivial” nonperturbative
correlation between partonic
longitudinal momentum fraction 
x and partonic transverse 
momentum kT

• Steeper negative slope for 
photon-hadron than dihadron
correlations—counterintuitive?
– Photon can’t exchange gluon 

with remnant—might expect 
weaker effects than dihadron
case

C. Aidala, APS April Mtg., 1/29/17 6
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Data



Nonperturbative momentum widths observed to 
decrease in processes where factorization 

breaking predicted 
• Slope of decrease for both 

photon-hadron and dihadron
correlations reproduced 
~exactly in PYTHIA p+p
event generator—could this 
effect be in PYTHIA??
– Effectively yes!  Unlike 

analytic pQCD calculations, 
PYTHIA forces entire event 
including remnants to color 
neutralize, implemented via 
something they call “color 
reconnection”

C. Aidala, APS April Mtg., 1/29/17 7

PHENIX Collab., arXiv:1609.04769

PYTHIA

Data
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