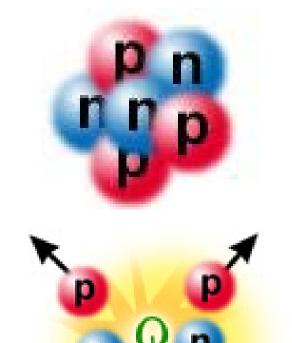


Peering Into the Proton: **Proton Substructure and Internal Dynamics**


Christine A. Aidala Department of Physics University of Michigan

The Strong Force

Four known forces in nature

- Gravity
- Electromagnetism
- Weak force
- Strong force

The Gluon: Mediator of the Strong Force


Strong force mediated by *gluon* exchange

- Analogous to role played by photon in electromagnetism
- Massless, like photon
- Carries color charge itself, unlike photon,

Confinement

Can never isolate a quark or gluon—*confined* to color-neutral bound states called hadrons

If you scatter a quark out of a hadron, the energy in the gluon field between the scattered quark and the hadron remnant

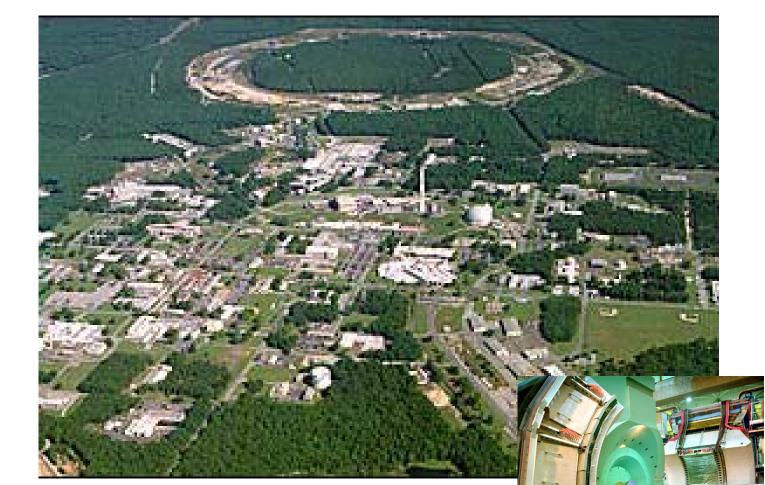
Atomic nucleus stays together because **strong force** overcomes electromagnetic repulsion of protons

- Strong force "charge": *color charge*
- *Three* charges make a neutral particle, analogous to red, green, and blue light producing "neutral" white light
- Attraction of protons and neutrons actually due to analog of van der Waals interactions between electrically neutral molecules or atoms – protons and neutrons are color neutral
- Color-charged constituents of protons and neutrons: *quarks*
- Quarks also interact via the weak and electromagnetic forces – carry *fractional* electric charge

which is electrically neutral \rightarrow Leads to qualitatively different phenomena

Quantum field theory describing strong force interactions: Quantum chromodynamics

produces quark-antiquark pairs (via $E=mc^2$), which will then bind with the scattered quark and the remnant to form new color-neutral bound states


- Can have bound states of Meson three "valence" quarks, Quark three valence antiquarks, or Antiguark of one valence quark plus one valence antiquark
- Bound states also contain "sea" quark-antiquark pairs, due to quantum mechanical fluctuations

Baryons Antiquar Quark

Hadrons

Molecular and atomic structure of matter: study using

- ultraviolet light (wavelengths 10-400 nanometers)
- x-rays (wavelengths 0.01-10 nanometers)

Large Facilities to Probe Tiny Distances

Nuclei and protons: 10,000× to 100,000× smaller than atoms • need high-energy particle accelerators to probe internal structure • de Broglie wavelength for "matter wave" of momentum $p: \lambda = h/p$

Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory

Capable of colliding light and heavy nuclei from deuterium up to uranium, at center-of-mass energies ranging from 5-200 GeV per nucleonnucleon collision Capable of colliding *polarized* protons up to center-of-mass energies of 0.51 TeV

Main Injector at Fermi National Accelerator Laboratory

• 120 GeV proton beam on stationary targets

- PHENIX experiment at the Relativistic Heavy Ion Collider
- Extremely versatile facility for study of the strong force
- ~1000 scientists on two large experiments

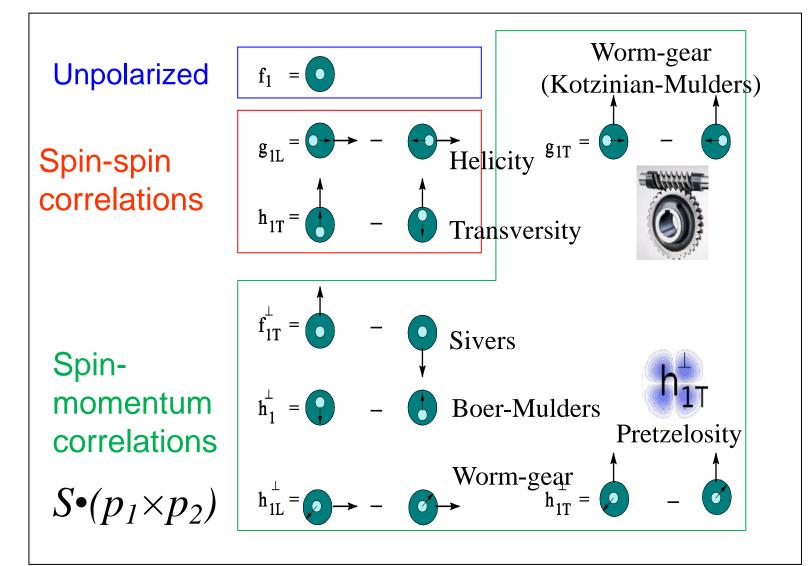
produced

positron

produced

electron

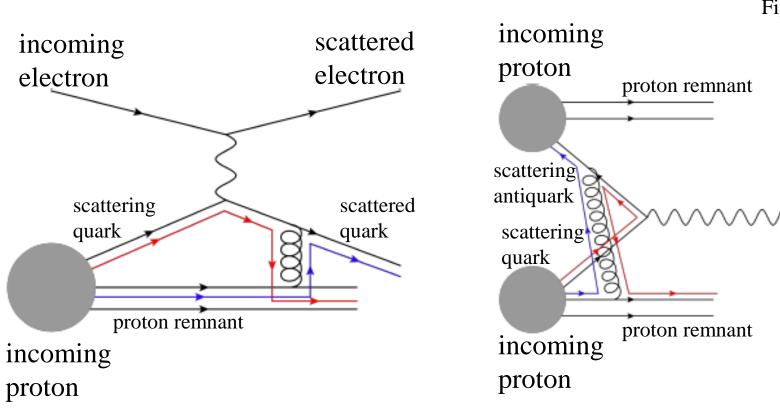
SeaQuest experiment at the Main Injector


(15.4 GeV center-of-mass energy)

- One beamline for SeaQuest experiment, which uses liquid hydrogen, liquid deuterium, and solid nuclear targets
- Focused on quark-antiquark annihilation process to study antimatter in the proton and nuclei
- ~65 scientists

Spin-Spin and Spin-Momentum Correlations

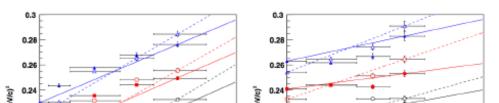
in the Proton


Analogous to spin-spin and spin-orbit coupling between the electron and proton in the hydrogen atom, various spin-spin and spin-orbit correlations can be defined between the proton and its constituent quarks

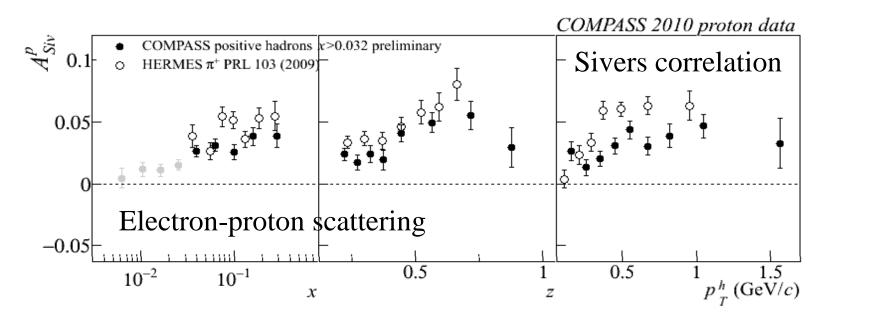
Quark Dynamics and Color Flow

In 2002 (Collins, Phys. Lett. B536, 43), importance of color flow paths in different scattering processes came to light as means of

- probing spin-momentum correlations in proton
- studying fundamental properties of quantum chromodynamics as a gauge-invariant quantum field theory Figures by J.D. Osborn



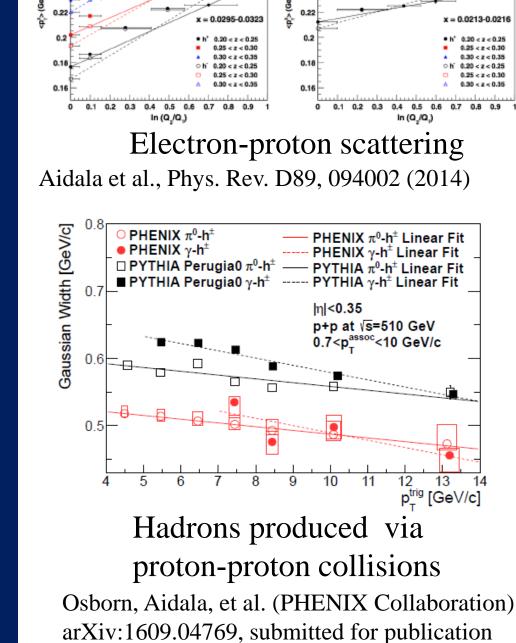
Searching for Quantum-Color-Entangled Quarks Across Colliding Protons

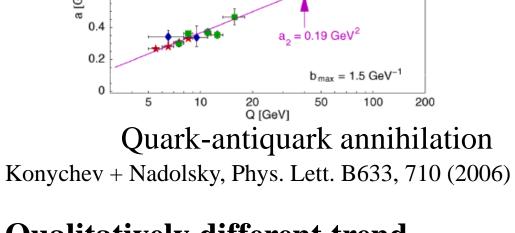

Processes involving two incoming protons and at least one scattered quark (no annihilation)

- Simultaneous gluon exchange in *both* initial and final state
- Qualitatively different color flow paths from those due to only initialstate or only final-state gluon exchange
- In 2010, was realized that these color flow paths could lead to colorentangled quarks *across* the colliding protons (Rogers + Mulders, Phys. Rev. D81, 094006)
- **Currently searching for experimental evidence**

Examine trends in average nonperturbative transverse momentum as momentum transfer in scattering increases

Spin-momentum correlation between spin of proton and orbital motion of quarks within proton—observed in electron-proton scattering experiments to be as large as ~5-10%.


Electron-proton scattering: • Gluon (color) exchange between scattered quark and remnant of its own parent proton


• Final-state gluon exchange • Nonzero correlation between proton spin and quark orbital angular momentum observed is only possible via this gluon exchange

Fundamental prediction within quantum chromodynamics: different color flows in these two processes \rightarrow relative sign difference in spin-momentum correlation observables. **Conclusive spin-dependent measurement of quark-antiquark** annihilation not yet performed.

Quark-antiquark annihilation:

- Gluon (color) exchange between scattering quark or antiquark and remnant of the other proton • Initial-state gluon exchange
- Nonzero correlation only possible via this gluon exchange
- *Different color flow than in electron-proton scattering*

Qualitatively different trend observed when gluon exchange in both initial and final state possible • *Decreasing* average

nonperturbative transverse

momentum

- Possible signature of colorentangled quarks
- Follow-up studies ongoing to rule out other possible causes

