Hadron-in-jet Fragmentation Functions: Experimental review

Christine A. Aidala University of Michigan

INT Workshop on Fragmentation Functions November 1-5, 2021

Hadronization in jets

- Hadronization connected to jets
 - Anti-k_T jet reconstruction algorithm has opened up many new possibilities to make robust comparisons of jets between theory and experiment – Cacciari, Salam, Soyez, JHEP 04, 063 (2008)

Hadronization in jets

- Hadronization connected to jets
 - Anti-k_T jet reconstruction algorithm has opened up many new possibilities to make robust comparisons of jets between theory and experiment – Cacciari, Salam, Soyez, JHEP 04, 063 (2008)
 - Single hadron-in-jet FFs introduced in Procura and Stewart, PRD81, 074009 (2010)
 - Fragmenting jet functions introduced in Procura and Stewart, PRD81, 074009 (2010)

Hadrons in jets: Interest across communities

- Driven by multiple physics communities
 - Beyond the Standard Model
 - Heavy ions/hot QCD
 - Cold QCD/nucleon structure
- A number of measurements relevant to collinear and TMD fragmentation in jets have been coming out in recent years

Hadrons in jets: Interest across communities

- Driven by multiple physics communities
 - Beyond the Standard Model
 - Heavy ions/hot QCD
 - Cold QCD/nucleon structure
- A number of measurements relevant to collinear and TMD fragmentation in jets have been coming out in recent years
- Also broad interest in jet substructure more generally
 - See talk later today by Zhongbo Kang

Enriched quark-jet samples

- Z+jet or γ+jet is predominantly sensitive to quark jets
- At LHCb, forward kinematics increases fraction of light quark jets

Enriched gluon-jet samples

- Midrapidity inclusive jets at the LHC are instead dominated by gluons
- Opportunity to study light quark vs. gluon jets
 - Hadronization dynamics
 - Jet properties

Note modest jet p_T range

Charged hadrons in forward Z+jet at LHCb: Observables

- Longitudinal momentum fraction z
- Transverse momentum with respect to jet axis j_T
- Radial profile r

PRL 123, 232001 (2019)

$$egin{aligned} z &= rac{p_{jet} \cdot p_h}{|p_{jet}|^2} \ j_T &= rac{|p_h imes p_{jet}|}{|p_{jet}|} \end{aligned}$$

 $(\phi_h - \phi_{jet})^2 + (y_h - y_{jet})^2$

Christine Aidala, INT FF Workshop, 11/3/21

Radial profiles

- Observe that the greater energy available in higher transverse momentum jets leads to more hadrons produced (logical)
- ~All of the additional particles are produced close to the jet axis, and go from a depletion close to the axis to an excess

Differences between quark- and gluondominated jet samples: Radial profile

PRL 123, 232001 (2019) LHCb-PAPER-2019-012

- Quark-dominated jets more collimated than gluon-dominated jets measured by ATLAS
 - I.e. more charged hadrons at small radii, fewer at large radii
 - Qualitatively agrees with conventional expectations, but this shows clear and quantitative evidence from data

Differences between quark- and gluondominated jet samples: Longitudinal profile

Quark-dominated jets have relatively more hadrons produced at higher longitudinal momentum fractions than gluon-dominated jets

PRL 123, 232001 (2019) LHCb-PAPER-2019-012

Differences between quark- and gluondominated jet samples: Longitudinal profile

LHCb: PRL 123, 232001 (2019) LHCb-PAPER-2019-012

ATLAS: PRL 123, 042001 (2019)

- ATLAS midrapidity γ+jet and LHCb Z+jet longitudinal momentum distributions are more similar
 - $-\gamma$ +jet, like Z+jet, enhances quark jet fraction
 - Further evidence that differences observed between LHCb results and ATLAS gluon-dominated results are due to differences in quark and gluon hadronization

Differences between quark- and gluon-dominated jet samples: Transverse momentum distributions

 Transverse momentum distributions similar

LHCb: PRL 123, 232001 (2019)

Midrapidity inclusive jet transverse momentum fraction, 13 TeV

The two leading jets in each event are studied.

 $|\eta| < 2.1$ Four bins of jet p_T

 $\zeta = \frac{p_T^{particle}}{p_T^{jet}}$

PRD 100, 052011 (2019) arXiv:1906.09254

Christine Aidala, INT FF Workshop, 11/3/21

Midrapidity inclusive jet transverse momentum profile, 13 TeV

The two leading jets in each event are studied.

 $|\eta| < 2.1$ Four bins of jet p_T

 $p_T^{rel} = p_T^{particle} \sin \Delta \phi$

PRD 100, 052011 (2019) arXiv:1906.09254

<u>Christine A</u>idala, INT FF Workshop, 11/3/21

Midrapidity inclusive jet fragmentation, 13 TeV

Mean p_T^{rel} and r vs. jet p_T . Separated for the more central or forward of the two leading jets

Heavy flavor hadronization peaked at high z.

Christine Aidala, INT FF Workshop, 11/3/21

Christine Aidala, INT FF Workshop, 11/3/21

arXiv:2108.11650

Christine Aidala, INT FF Workshop, 11/3/21

arXiv:2108.11650

Mean z and p_T^{rel} vs. jet p_T

Christine Aidala, INT FF Workshop, 11/3/21

arXiv:2108.11650

J/Ψ production in jets

- J/ψ from b decay well described by PYTHIA
- Prompt J/ψ-in-jet not! Can shed light on prompt J/ψ production mechanism(s). How is a prompt J/ψ produced within a jet?

Midrapidity inclusive jet fragmentationin p+p and p+PbarXiv:2011.05904

"Narrow" (open symbols): Gaussian part of distribution at low j_T

Christine Aidala, INT FF Workshop, 11/3/21

Ratio of hadrons in inclusive jets, Pb+Pb/p+p

- Depletion of charged hadrons seen in Pb+Pb around z ≈
 0.1, excess at both lower and higher z
- Scaling behavior at high z
- Differences for different jet p_T bins for $z < \sim 0.05$
- Also shown in paper
 - Separate D(z) distributions for p+p and Pb+Pb
 - Ratios in different rapidity ranges
 - Ratios for different jet p_T ranges

PRC 98, 024908 (2018) arXiv:1805.05424

Hadrons in γ -tagged and inclusive jets, p+p and Pb+Pb

- Ratio of Pb+Pb to p+p. Depletion of charged hadrons seen in Pb+Pb around $z \approx 0.1$, excess at both lower and higher z
- Indication of differences for gluon-dominated inclusive jets and quark-enhanced γ -tagged jets

PRL 123, 042001 (2019) arXiv:1902.10007

Baryon enhancement for strange hadrons within and outside of jets in p+Pb and p+p

 Strange baryon-tomeson enhancement seen for both p+Pb and p+p perpendicular to the jet, but not within the jet

Some forthcoming measurements from LHCb

- Nonidentified charged hadrons in Z+jet at 13 TeV, double-differential in (z, j_T)
- Identified π^{\pm} , K^{\pm} , p^{\pm} in Z+jet
- Nonidentified charged hadrons in b-tagged jets
- Reconstructed B^{\pm} in jets
- Y in jets
- Polarization of J/ψ , Υ in jets

Conclusions

- A number of hadron-in-jet results already available from the LHC, with plenty of data for further analysis and even more data about to arrive with the start of Run 3 in 2022
- (Unpolarized) Hadron-in-jet results also to come from RHIC STAR and sPHENIX
 - See following talk by Maria Zurek on current spindependent hadron-in-jet results from STAR
- See also jet substructure talk later today by Zhongbo Kang

Conclusions

- A number of hadron-in-jet results already available from the LHC, with plenty of data for further analysis and even more data about to arrive with the start of Run 3 in 2022
- (Unpolarized) Hadron-in-jet results also to come from RHIC STAR and sPHENIX
 - See following talk by Maria Zurek on current spindependent hadron-in-jet results from STAR
- See also jet substructure talk later today by Zhongbo Kang

Modern approaches to jets allow more robust comparison between theory and experiment and have opened up a wealth of new observables to study hadronization

Pseudorapidity coverage at LHC

Christine Aidala, INT FF Workshop, 11/3/21

 $x-Q^2$ coverage

LHCb: Opportunities for hadronization measurements in p+pLHCb is the experiment devoted to heavy flavor at the LHC Detector design:

- Forward geometry to optimize acceptance for $b\overline{b}$ pairs: $2 < \eta < 5$
- Tracking: Momentum resolution <1% for p < 200 GeV/c
- Particle ID: Excellent capabilities to select exclusive decays So

Some features specifically attractive for hadronization:

- Full jet reconstruction with tracking, ECAL, HCAL
 - Heavy flavor tagging of jets
- Charged hadron PID from 2 GeVCan study identified particle distributions within jets!

Jet fragmentation in p+Pb

arXiv:2011.05904

Hadrons in γ -tagged and inclusive jets, pp and PbPb

• Gluon-dominated inclusive (midrapidity) jets in pp show significantly different longitudinal momentum fraction profile than quarkenhanced γ -tagged jets

PRL 123, 042001 (2019) arXiv:1902.10007

Jet fragmentation transverse momentum measurements from dihadron correlations

- No explicit jet reconstruction.
- p_t = momentum of the "trigger" reference hadron
- p_a = momentum of the "associated" hadron

JHEP 03, 169 (2019) arXiv:1811.09742

