

Putting a New Spin on an Existing Machine: Prospects for Polarizing the Fermilab Main Injector

Main Injector 120 GeV

Christine A. Aidala University of Michigan (On behalf of the Fermilab P-1027 Collaboration)

> DNP Meeting Newport Beach, CA October 26, 2012

Why polarize the Main Injector?

- Opportunity to continue the several-decadelong, powerful Drell-Yan program at Fermilab with control over an additional d.o.f: spin!
 - Drell-Yan a "clean" process in hadronic interactions (electromagnetic final state) excellent probe for testing QCD predictions

In particular: Opportunity to test predicted color interactions in QCD via spin-momentum correlation measurements!

QCD spin-momentum correlations: Transverse-momentum-dependent parton distributions

Mulders & Tangerman, NPB 461, 197 (1996)	Transverse-Momentum-Dependent Distribution Functions			
	$f_{1} = \bigcirc Collinear g_{1} = \bigcirc + - \bigcirc + g_{1T} = \bigcirc$			
	$f_{1T}^{\perp} = \bigcirc - \bigcirc Sivers$ $h_{1}^{\perp} = \bigcirc - \bigcirc Boer-Mulders$ $Pretzelosity$ $h_{1L}^{\perp} = \bigcirc - \bigcirc h_{1T}^{\perp} = \oslash - \oslash$			

QCD spin-momentum correlations: Transverse-momentum-dependent parton distributions

Mulders & Tangerman, NPB 461, 197 (1996)

Evidence so far that several of these non-zero!

Transverse-momentum-dependent pdfs provide theoretical framework to describe spin-momentum correlations in nucleon, but difficult to disentangle contributions to inclusive hadron asymmetries

→ Turn to simpler processes: semiinclusive deep-inelastic scattering and Drell-Yan!

Transverse-Momentum-Dependent Distribution Functions

<u>Modified universality</u> of T-odd transverse-momentum-dependent distributions: Color in action!

As a result: $Sivers|_{DIS} = -Sivers|_{DY}$

<u>Modified universality</u> of T-odd transverse-momentum-dependent distributions: Color in action!

Crucial test of our understanding of QCD! (NSAC Milestone HP13)

As

Sivers measurements in SIDIS

COMPASS: arXiv:1205.5122

Sivers measurements in SIDIS

Fit to SIDIS data: quark densities in transverse momentum plane for a proton polarized in the +y direction. Up and down quarks orbiting in opposite directions??

Future measurements at JLab 12 GeV planned

Sivers measurements in SIDIS

Comparable Drell-Yan measurements needed!

Future measurements at JLab 12 GeV planned

• Use SeaQuest dimuon spectrometer and target

- Approved for 2-3 years of running: 3.4×10^{18} protons on target
- By 2015: fully understood, optimized for Drell-Yan, and ready to take pol. beam

Facts and figures

- 120 GeV polarized proton beam on liquid hydrogen and deuterium targets
- $x_{\text{beam}} 0.3-0.9$, $x_{\text{target}} 0.1-0.45$
- $L \sim 2.0 \text{ x } 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
 - 10% available beam time—minimal impact on neutrino program
 - Existing targets could handle 1.0 x 10³⁶ cm⁻² s⁻¹
- 70% polarization
- Run for ~2 years, starting after SeaQuest completed (2015)
- Could install all equipment in the two (already) scheduled 8-week shutdowns in 2014 and 2015
- Future polarized target could open up additional opportunities!
 - Studying antiquarks 0.1<x<0.45 in a polarized nucleon
 - Investigating double-spin asymmetries
 - See talk by Kwangbok Lee

Sivers asymmetry predictions

- Predictions from Anselmino et al. based on fit to SIDIS data
 - Gray error bands correspond to $\Delta \chi^2 = 20$
- Asymmetries expected to be several %
 - Similar for H and D (measuring Sivers function in polarized proton beam, not in target)

Anselmino et al. priv. comm. 2010

Experimental sensitivity to Sivers asymmetry

- Luminosity: $L_{av} = 2 \times 10^{35} (10\% \text{ of available beam time: } I_{av} = 15 \text{ nA})$
- 3.2 x 10¹⁸ total protons (= 2 yrs at 50% efficiency) with $P_b = 70\%$

Note:

$$A_N = \frac{2}{\rho} A_{TU}^{\sin f_b}$$

Experimental sensitivity to Sivers asymmetry

- Luminosity: $L_{av} = 2 \times 10^{35} (10\% \text{ of available beam time: } I_{av} = 15 \text{ nA})^{10}$
- 3.2 x 10^{18} total protons (= 2 yrs at 50% efficiency) with $P_b = 70\%$

Note:

Measure not only sign, but also size and maybe shape of Sivers function!

Additional physics opportunities with transverse polarization

$\sigma_{UU} \propto f_1 f_1 + \cos 2\phi h_1^{\perp} h_1$	1^{\perp} ,
--	---------------

 $\sigma_{LU} \propto \sin 2\phi h_{1L}^{\perp} h_1^{\perp}$, Arnold, Metz, Schlegel, PRD79, 034005 (2009)

- $\sigma_{TU} \propto (f_{1T}^{\perp} f_1) + \sin 2\phi h_1 h_1^{\perp} + \sin 2\phi h_{1T}^{\perp} h_1^{\perp},$
- $\sigma_{LL} \propto g_{1L}g_{1L} + \cos 2\phi h_{1L}^{\perp}h_{1L}^{\perp},$

 $\sigma_{TL} \propto g_{1T}g_{1L} + \cos 2\phi h_1 h_{1L}^{\perp} + \cos 2\phi h_{1T}^{\perp} h_{1L}^{\perp},$

 $\sigma_{TT} \propto f_{1T} f_{1T} + g_{1T} g_{1T} + \cos 2\phi h_1 h_1 + \cos 2\phi h_1 h_{1T}^{\perp} + \cos 2\phi h_{1T}^{\perp} h_{1T}^{\perp}.$

Azimuthal dependence of Drell-Yan cross section in terms of transverse-momentum-dependent distributions

Opportunities with **longitudinal** polarization – See talk by Kwangbok Lee

Additional physics opportunities with transverse polarization

- Polarized beam \rightarrow Valence quarks
- Polarized target \rightarrow Sea quarks
 - Sivers function for sea quarks
 ~unknown, but hints that it's non-zero
- Single spin: Transversity x Boer-Mulders function
 - Will learn more about Boer-Mulders for sea quarks already from SeaQuest
- Polarized beam and target
 - Transversity (valence) x Transversity (sea)
 - Sea quark transversity might be small

Status

- Presented to Fermilab PAC June 2012, with follow-up October 2012
- Cost estimate performed in close coordination with Fermilab management earlier this year – ~\$10.5M, including 50% contingency
- Currently in discussion with funding agencies

P-1027 Collaboration (October 2012)

Abilene Christian University Donald Isenhower, Tyler Hague, Rusty Towell, Shon Watson

Academia Sinica Wen-Chen Chang, Yen-Chu Chen, Shiu Shiuan-Hal, Da-Shung Su

Argonne National Laboratory John Arrington, Don Geesaman Kawtar Hafidi, Roy Holt, Harold Jackson, Paul E. Reimer^{*}, Josh Rubin

University of Colorado Ed Kinney

Fermilab Chuck Brown, David Christian

University of Illinois Bryan Dannowitz, Markus Diefenthaler, Bryan Kerns, Naomi C.R Makins, R. Evan McClellan

KEK Shinya Sawada

Los Alamos National Laboratory Ming Liu, Xiang Jiang, Pat McGaughey, J. Huang

University of Maryland Betsy Beise, Kaz Nakahara

University of Michigan Christine Aidala, Wolfgang Lorenzon^{*}, Richard Raymond, Qu Zhongming National Kaohsiung Normal University Rurngsheng Guo, Su-Yin Wang

RIKEN Yuji Goto

Rutgers University Lamiaa El Fassi, Ron Gilman, Ron Ransome, A. Tadepalli

Tokyo Institute of Technology Shou Miyasaka, Ken-ichi Nakano, Florian Saftl, Toshi-Aki Shibata

Yamagata University Yoshiyuki Miyachi

University of Basque Country[†] Gunar Schnell

*Co-Spokespersons *new group (Aug'12)

Collaboration includes most of the SeaQuest groups and one new group (total 16 groups as of October 2012)

P-1027 Collaboration (October 2012)

Abilene Christian University Donald Isenhower, Tyler Hague, Rusty Towell, Shon Watson

Academia Sinica Wen-Chen Chang, Yen-Chu Chen, Shiu Shiuan-Hal, Da-Shung Su

Argonne National Laboratory John Arrington, Don Geesaman Kawtar Hafidi, Roy Holt, Harold Jackson, Paul E. Reimer^{*}, Josh Rubin

University of Colorado Ed Kinney

Fermilab Chuck Brown, David Christian

University of Illinois Bryan Dannowitz, Markus Diefenthaler, Bryan Kerns, Naomi C.R Makins, R. Evan McClellan

KEK Shinya Sawada

Los Alamos National Laboratory Ming Liu, Xiang Jiang, Pat McGaughey, J. Huang

University of Maryland Betsy Beise, Kaz Nakahara

University of Michigan Christine Aidala, Wolfgang Lorenzon^{*}, Richard Raymond, Qu Zhongming National Kaohsiung Normal University Rurngsheng Guo, Su-Yin Wang

RIKEN Yuji Goto

Rutgers University Lamiaa El Fassi, Ron Gilman, Ron Ransome, A. Tadepalli

Tokyo Institute of Technology Shou Miyasaka, Ken-ichi Nakano, Florian Saftl, Toshi-Aki Shibata

Yamagata University Yoshiyuki Miyachi

Working in close collaboration on accelerator issues with Spin@Fermi group, led by Alan Krisch

Collaboration includes most of the SeaQuest groups and one new group (total 16 groups as of October 2012)

Summary

- Polarizing Main Injector at Fermilab a unique opportunity to perform high-statistics polarized Drell-Yan measurements for 0.35<*x*<0.85 as early as ~2015
- Use existing SeaQuest spectrometer and targets
- Would enable mapping out Sivers function at high *x*, providing crucial data to compare *sign*, *magnitude*, *and perhaps shape* to semi-inclusive DIS measurements, testing predicted color interactions in QCD
- Addition of a polarized target would allow access to sea quarks and double-spin measurements \rightarrow See talk by K.

Summary

 Polarizing Main Injector at Fermilab a unique Parton dynamics within hadrons: a rich area of QCD that we're only just starting to explore!

providing crucial data to compare sign, magnitude, and

New collaborators welcome!

• Addition of a polarized target would allow access to sea quarks and double-spin measurements \rightarrow See talk by K.

Planned polarized Drell-Yan experiments

experiment	particles	energy	x _b or x _t	Luminosity	timeline
COMPASS (CERN)	π^{\pm} + p^{\uparrow}	160 GeV √s = 17.4 GeV	$x_t = 0.2 - 0.3$	2 x 10 ³³ cm ⁻² s ⁻¹	2014
PAX (GSI)	p [↑] + p _{bar}	collider √s = 14 GeV	x _b = 0.1 – 0.9	2 x 10 ³⁰ cm ⁻² s ⁻¹	>2017
PANDA (GSI)	p _{bar} + p [↑]	15 GeV √s = 5.5 GeV	$x_t = 0.2 - 0.4$	2 x 10 ³² cm ⁻² s ⁻¹	>2016
NICA (JINR)	p [↑] + p	collider √s = 20 GeV	x _b = 0.1 – 0.8	1 x 10 ³⁰ cm ⁻² s ⁻¹	>2014
PHENIX (RHIC)	p [↑] + p	collider √s = 500 GeV	x _b = 0.05 - 0.1	2 x 10 ³² cm ⁻² s ⁻¹	>2018
RHIC internal target phase-1	\mathbf{p}^{\uparrow} + \mathbf{p}	250 GeV √s = 22 GeV	$x_{b} = 0.25 - 0.4$	2 x 10 ³³ cm ⁻² s ⁻¹	>2018
RHIC internal target phase-2	p [↑] + p	250 GeV √s = 22 GeV	$x_{b} = 0.25 - 0.4$	6 x 10 ³⁴ cm ⁻² s ⁻¹	>2018
SeaQuest (unpol.) (FNAL)	p + p	120 GeV √s = 15 GeV	$x_b = 0.35 - 0.85$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵ cm ⁻² s ⁻	2012
pol. SeaQuest [§] (FNAL)	p [↑] + p	120 GeV √s = 15 GeV	x _b = 0.35 – 0.85	1 x 10 ³⁶ cm ⁻² s ⁻¹	>2015

 $L = 1 \times 10^{36} \text{ cm}^{-2} \text{ s}^{-1} (LH_2 \text{ tgt limited}) / L = 2 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1} (10\% \text{ of MI beam limited})$

Polarized Drell-Yan at Fermilab Main Injector

• Polarized Beam in Main Injector

- use SeaQuest spectrometer
- use SeaQuest target
 - liquid H₂ target can take $I_{av} = \sim 5 \times 10^{11} \text{ p/s}$ (=80 nA)
- 1 mA at polarized source can deliver about I_{av} = ~1 x 10¹² p/s (=150 nA) for 100% of available beam time (A. Krisch: Spin@Fermi report in (Aug 2011): arXiv:1110.3042 [physics.acc-ph])
 - 26 µs linac pulses, 15 Hz rep rate, 12 turn injection into booster, 6 booster pulses into Recycler Ring, followed by 6 more pulses using slip stacking in MI
 - 1 MI pulse = $1.9 \times 10^{12} \text{ p}$
 - using three 2-s cycles (1.33-s ramp time, 0.67-s slow extraction) /min (=10% of beam time): $\rightarrow 2.8 \times 10^{12} \text{ p/s}$ (=450 nA) instantaneous beam current , and $I_{av} = \sim 0.95 \times 10^{11} \text{ p/s}$ (=15 nA)
- Scenarios:
 - $L = 2.0 \times 10^{35} / \text{cm}^2/\text{s}$ (10% of available beam time: $I_{av} = 15 \text{ nA}$)
 - $L = 1 \times 10^{36} / \text{cm}^2/\text{s}$ (50% of available beam time: $I_{av} = 75 \text{ nA}$)
- *x-*range:
 - $x_b = 0.35 0.85$ (valence quarks) $x_t = 0.1 0.35$ (sea quarks)
- Systematic uncertainty in beam polarization measurement $\Delta P_{\rm b}/P_{\rm b} < 5\%$

Complementarity of Drell-Yan and DIS

Both Drell-Yan and deep-inelastic scattering are tools to probe the quark and antiquark structure of hadrons!

A (relatively) recent surprise from p+p, p+d collisions

 Fermilab Experiment 866 used proton-hydrogen and proton-deuterium collisions to probe nucleon structure via the Drell-Yan process

 $q + \overline{q} \to \mu^+ + \mu^-$

- Anti-up/anti-down difference in the quark sea, with an unexpected *x* behavior!
- Indicates "primordial" sea quarks, in addition to those dynamically generated by gluon splitting!

A (relatively) recent surprise from p+p, p+d collisions

 Fermilab Experiment 866 used proton-hydrogen and proton-deuterium collisions to probe nucleon structure via the Drell-Yan process

Anti in the rich linear momentum structure of the

Indiana proton, even after > 40 years!
 Indiana proton, even after > 40 years!
 quarks, in addition to those dynamically generated by gluon splitting!

Dilepton pair production

• Measured cross section is a convolution of beam and target parton distributions $\frac{d^2\sigma}{dx_{\rm b}dx_{\rm t}} = \frac{4\pi\alpha^2}{x_{\rm b}x_{\rm t}s} \sum_{q \in \{u,d,s,\dots\}} e_q^2 \left[\bar{q}_{\rm t}(x_{\rm t})q_{\rm b}(x_{\rm b}) + \bar{q}_{\rm b}(x_{\rm b})q_{\rm t}(x_{\rm t})\right]$

u-quark dominance
 - (2/3)² vs. (1/3)²

- Next-to-leading order diagrams complicate the picture and must be considered
- These diagrams are responsible for up to 50% of the measured cross section
- Intrinsic transverse momentum of quarks (although a small effect, λ > 0.8)
- Soft gluon resummation at all orders

Probing spin-momentum correlations in the nucleon: Measuring transverse-momentum-dependent distributions

Sivers

 $(f - f_S)$ angle of hadron relative to initial quark spin

Angular dependences in semi-inclusive DIS →isolation of the various TMD distribution and fragmentation functions

Fermilab E906/SeaQuest: A dedicated fixed-target Drell-Yan experiment

- Physics programs:
 - Nucleon structure
 - Cold nuclear matter
- 120 GeV/c proton beam from Fermilab Main Injector
- Liquid hydrogen and deuterium, nuclear (C, Ca, W) targets
- Commissioning to start in December, data-taking through ~2015

E906/SeaQuest: Probing high-x antiquarks

$$\frac{d^2\sigma}{dx_1dx_2} = \frac{4\pi\alpha^2}{9x_1x_2} \frac{1}{s} \sum e^2 \left[\overline{q}_1(x_1)q_2(x_2) + q_1(x_1)\overline{q}_2(x_2) \right]$$

Talk by Chiranjib Dutta, JC7 (Friday)

Transverse Momentum Distributions (Introduction)

 f_1 $\mathbf{S}_{\mathbf{L}} \cdot \mathbf{S}_{\mathbf{L}} \leftrightarrow g_{1L}$ survive k_T g_{1T} g_1 integration h₁ Sivers Function $\mathbf{S}_{\mathbf{T}} \cdot (\hat{\mathbf{p}} \times \mathbf{k}_{\mathbf{T}}) \leftrightarrow f_{\mathbf{1}T}^{\perp}$ k_{T} - dependent, T-even f_{1T}^{\perp} k_T - dependent, Naïve T-odd h_1^\perp $\mathbf{s}_{\mathrm{T}} \cdot (\hat{\mathbf{p}} \times \mathbf{k}_{\mathrm{T}}) \leftrightarrow h_{\mathrm{I}}^{\perp}$ **Boer-Mulders** Function $h_{1T}^{\perp} =$ h_{1L}^{\perp} =

