Parameterization of the η Fragmentation Functions From World e+e- and p+p Data

Christine Aidala, UMass Amherst Joseph Seele, U. of Colorado, Boulder Marco Stratmann, RIKEN Werner Vogelsang, BNL

> **DNP October 11, 2007**

Isn't This a pdf Session??

- In pQCD calculations, FF's, like pdf's, not directly calculable from theory—need to be measured and fitted experimentally
- As partonic scattering cross sections calculated at NLO or even NNLO now, extraction of polarized pdf's more limited by uncertainty on **FF's**
- The better we know the FF's for inclusive hadronic probes, the tighter constraints we can put on the polarized parton distribution functions!
- "Errors" in FF can propagate to pdf
 - E.g. gluon FF too small will result in gluon pdf's too large in analysis of p+p data!

Isn't This a pdf Session??

Main difference between Kretzer and KKP FF sets is D_g^{π} .

C. Aidala, DNP, October 11, 2007

Isn't This a pdf Session??

Using Hadronic As Well As e+e- Data

- FF's traditionally from e+e- data
 - Clean system!
 - Precise data from LEP
- But
 - Dominated by LEP measurements at $M_Z \rightarrow$ Weak scale dependence
 - Can't separate quarks from antiquarks
 - Not precise at large z, relevant for p+p collisions
- Framework now developed to extract FF's using all available data from deep-inelastic scattering and hadronic collisions as well as e+e-
 - de Florian, Sassot, Stratmann: PRD75:114010 (2007) and arXiv:0707.1506
- Hadronic collisions offer certain advantages over e+e-
 - Gluon fragmentation plays a larger role
 - Larger z
- But
 - Need high (collider) energies to avoid large scale dependences

Using Hadronic As Well As e+e- Data

- FF's traditionally from e+e- data
 - Clean system!
 - Precise data from LEP

Improved FF's mean improved input to factorized pQCD calculations constraining polarized pdf's probed by inclusive hadronic asymmetries.

e+e-

- de Florian, Sassot, Stratmann: PRD75:114010 (2007) and arXiv:0707.1506
- Hadronic collisions offer certain advantages over e+e-
 - Gluon fragmentation plays a larger role
 - Larger z
- But
 - Need high (collider) energies to avoid large scale dependences

ata

An Extreme Example: Cross Section and A_{LL} of η Meson

No η FF currently available in the literature!

PHENIX has made both cross section (PRC76: 034904 (2007)) and A_{LL} measurements, but no theoretical comparisons have thus far been possible ...

An Extreme Example: Cross Section and A_{LL} of η Meson

No η FF currently available in the literature!

PHENIX has made both cross section (PRC76: 034904 (2007)) and A_{LL} measurements, but no theoretical comparisons have thus far been possible ...

Data Just Waiting to Be Parameterized . . .

Data Just Waiting to Be Parameterized . . .

Experiment	System	Energy (GeV)	# Points
ALEPH '92	e+e-	91.2	8
ALEPH '00	e+e-	91.2	18
ALEPH '02	e+e-	91.2	5
L3 '92	e+e-	91.2	3
L3 '94	e+e-	91.2	8
OPAL	e+e-	91.2	9
ARGUS	e+e-	10	6
CELLO	e+e-	35	4
HRS	e+e-	29	13
JADE '85	e+e-	34.4	1
JADE ''90	e+e-	34.9	3
MARK II	e+e-	29	7
PHENIX 2γ	p+p	200	12
PHENIX 3π	p+p	200	6
PHENIX '05 prelim.	p+p	200	19

C. Aidala, DNP, October 11, 2007

Parameterization of η FF Followed method of de Florian, Sassot, Stratmann: PRD75:114010 (2007)

• FF's parameterized by

$$D(z,Q_0^2) = N z^{\alpha} (1-z)^{\beta} (1+\gamma z)$$

- Inverse Mellin technique used for calculation of higher-order (NLO) hadronic cross sections
- 12 e+e-, 3 p+p (PHENIX) data sets included
- Used data for z > 0.1

Consistent Description of e+e- and p+p Data

Consistent Description of e+e- and p+p Data

η vs. π^0 GRSV Predictions

C. Aidala, DNP, October 11, 2007

Conclusions and Prospects

- A consistent parameterization can be found to fit eta production in both e+e- and p+p data
- The availability of FF's for the eta makes both unpolarized and polarized pQCD calculations possible for the first time
 - PHENIX A_{LL} measurement can provide additional constraint on $\Delta G!$
- Further work will involve attempts to estimate uncertainties and parameterize the flavor separation
 - Semi-inclusive DIS data would be helpful, as would precision measurements from B factories . . .

Conclusions and Prospects

A consistent parameterization can be found to fit eta production in both e+e- and p+p data.
With improved theoretical tools, global analysis of FF's similar to pdf analysis now possible.

Parameterization of the η FF just one example of how improved knowledge of FF's will help to constrain polarized parton distribution functions!

uncertainties and parameterize the flavor separation

 Semi-inclusive DIS data would be helpful, as would precision measurements from B factories . . .

C. Aidala, DNP, October 11, 2007

- TOTAL CHI**2 FROM E+E- : 1.372E+02
- TOTAL CHI**2 FROM PP : 8.410E+00
- TOTAL CHI**2 (SUM) : 1.457E+02
- 122 data points total
 - 85 from e+e-
 - 37 from p+p
- Total $\chi^2/dof < 2$
 - Surprisingly small for an analysis of a wide variety of data sets!

