Single-Spin Transverse Asymmetry in Neutral Pion Production at PH ENIX

Christine Aidala for the PH ENIX Collaboration Columbia University

DNP Fall 2003, Tucson, AZ

Polarized Proton Collisions at RHIC

PHENIX Detector **EMCal PbSc**

- Central arm spectrometers
 - In the central arms, a finegrained EMCal equipped with photon triggers enhances π^0 measurement

EMCal PbGl

- Muon arm spectrometers
- Forward and backward luminosity detectors:
 - BBC (Beam-Beam Counters)
 - ZDC (Zero Degree Calorimeters)

EMCal-RICH 2x2 Trigger

- 2x2 towers nonoverlapping sum
- Threshold $\sim 0.8 \text{ GeV}$
- Also used in conjunction with RICH to form an electron trigger

π^0 Cross Section from 2001-2 Run

- Statistics cover eight orders of magnitude
- NLO pQCD applies above 2 GeV/c at RHIC
 - Will be able to use in interpretation of spin-dependent results

9.6% normalization error not shown

PH^{*}ENIX

- π^0 cross section at $\sqrt{s} = 200$ GeV described by pQCD measuring $\pi^0 A_N$ at midrapidity will help to separate contributions from transversity and the Sivers effect to single transverse spin asymmetries in polarized hadron collisions
- Significant asymmetries observed at STAR for forward π^0 's produced at $\sqrt{s} = 200$ GeV, $x_{quark} \ge 0.6$ (talk by Y. Wang)
- PHENIX $\pi^0 A_N$ measurement explores a different kinematical region: midrapidity, $x_{quark} \sim 0.1$

Leading Hadrons as Jet Tags

Kinematical Coverage for A_N Measurements

2001-2002 Run at RHIC

- Transversely polarized p+p collisions at $\sqrt{s}=200 \text{ GeV}$
- 150 nb⁻¹ written to tape
- Average polarization of ~15%
- Single-spin asymmetries *calculated for each beam separately*, averaging over the spin states of the other
 - effectively doubles statistics

Different spin combinations for different crossings aid in canceling systematic uncertainties.

Polarization Measurements

- X asymmetry (physics) and Y asymmetry (false) are plotted as a function of the beam lifetime
- Measurements are carried out at injection, right after ramp-up, two hours each at 100 GeV

Calculating
$$\pi^0 A_N$$

$$\frac{dN}{d\phi} \propto 1 + A_N P \sin \phi$$

Look for left-right asymmetry with respect to beam direction

$$A_N P = \frac{N_L - N_R R_{acc}}{N_L + N_R R_{acc}}$$

 R_{acc} = relative acceptance of left and right detectors

• OR look either on left or right side and compare π^0 production for + and - spin states

$$A_{N}^{L}P = \frac{N_{L}(+) - N_{L}(-)R_{lumi}}{N_{L}(+) + N_{L}(-)R_{lumi}}$$

 R_{lumi} = relative luminosity of + and - spin states

Important check of systematic errors (more later)PH*ENIXC. Aidala, DNP Fall 2003, Tucson, AZ

Statistical Sensitivity

- ~600M minimum bias triggers sampled
- We have statistical sensitivity to the magnitude of asymmetries seen at larger x_F; better sensitivity in lower p_T bins
- Measurement of single-spin transverse asymmetry for midrapidity neutral pion production at PHENIX may offer insight on transversity and the Sivers effect

Systematic Errors and Outlook Systematic errors are currently being evaluated in the following ways:

- Compare independent measurements for two polarized beams
- Compare results for left and right sides of detector
- Compare minimum bias and triggered data samples
- Measure asymmetry of background
 - Immediately outside the π^0 mass peak
 - In the mass region between the π^0 and the η
- Examine store-by-store consistency of asymmetry values
- Calculate asymmetries using more than one method

Results expected soon!

Extra Slides

2001-2002 p+p run

• Luminosity

- integrated luminosity 0.15 pb⁻¹
- $L = 1.5 \times 10^{30} \text{ cm}^{-1} \text{sec}^{-1}$ at max

• Polarization – transverse

 $- < P_{yellow} >= 17 \%, < P_{blue} >= 14 \%$

• Cross section measurement $- \pi^0, J/\psi, ...$

- *A_N* measurement (analysis ongoing ...)
 - central arm (mid-rapidity, $x_F \sim 0$)
 - π^0 , charged hadrons, J/ ψ , ...

• Systematic studies

JP12

PH^{*}ENIX

- relative luminosity study
- local polarimeter development at

Formulas being used for calculation

Luminosity formula: gives results for left and right sides of the detector separately

$$A_{N}^{BlueLeft} = \frac{1}{P^{Blue}} \frac{\left(\frac{N^{Blue+Left}}{L^{Blue+}} - \frac{N^{Blue-Left}}{L^{Blue-}}\right)}{\left(\frac{N^{Blue+Left}}{L^{Blue+}} + \frac{N^{Blue-Left}}{L^{Blue-}}\right)}$$

Square root formula: cancels effects of detector and luminosity asymmetries to first order

$$A_{N}^{Blue} = \frac{1}{P^{Blue}} \frac{\sqrt{N_{Left}^{Blue+} N_{Right}^{Blue-}} - \sqrt{N_{Right}^{Blue+} N_{Left}^{Blue-}}}{\sqrt{N_{Left}^{Blue+} N_{Right}^{Blue-}} + \sqrt{N_{Right}^{Blue+} N_{Left}^{Blue-}}}$$

Sample χ^2 Distribution

Fit to a constant asymmetry across all stores. 20 entries for 2 beams * 2 triggers * 5 p_T bins

Luminosity and Detector Asymmetries

