Single-Spin Transverse Asymmetry in Neutral Pion and Charged Hadron Production at

PHXENIX

Christine Aidala Columbia University

> DIS 2004, Slovakia April 16, 2004

RHIC at Brookhaven National Laboratory

The Relativistic Heavy Ion Collider

1971 (Second States and States and a States of States

SHIC Experimenter Status BRAHMS (200): 0.00 STAR (200): 0.20 Beam Lifelime 1358,25 MB PHENIX (200): 3.2 PHOBO3: 2013: 5.4

Tuesday December 11, 2001

2230: Significant polarization has been measured in RHIC, at 100 GeV

MACHINE

RHIC Specifications

- 3.83 km circumference
- Two independent rings
 - Up to 120 bunches/ring
 - 106 ns crossing time
- Energy:
 - → Up to 500 GeV for p-p
 - ➡ Up to 200 GeV for Au-Au (per N-N collision)
- Luminosity
 - Au-Au: 2 x 10²⁶ cm⁻² s⁻¹
 - p-p : 2 x 10³² cm⁻² s⁻¹ (*polarized*)

C. Aidala, DIS 2004, April 16, 2004

RHIC's Experiments

C. Aidala, DIS 2004, April 16, 2004

RHIC Physics Goals

- Broadest possible study of A-A, p-A, p-p collisions to
 - Investigate nuclear matter under extreme conditions
 - Examine systematic variations with species and energy
- Explore the spin of the proton
 - In particular, contributions from
 - Gluon polarization (ΔG)
 - Sea-quark polarization $(\Delta \overline{u}, \Delta \overline{d})$

Why study proton spin structure at RHIC?

- − High energy ⇒ factorization
- Polarized hadrons \Rightarrow gq, gg collisions
- High energy \Rightarrow new probes (W's)

Measurement of Proton Spin Structure at PHENIX

Gluon Polarization $\Delta \mathbf{G}$		
	W Production $A_L(u+\overline{d} \rightarrow W^+ \rightarrow \ell^+ + v_1)$ $A_L(\overline{u}+d \rightarrow W^- \rightarrow \ell^- + \overline{v}_1)$	Transversity δq : π^+,π^- Interference fragmentation: $A_T(p_1p \rightarrow (\pi^+,\pi^-)+X)$ Drell Yan A_{TT} Single Asymmetries A_N

C. Aidala, DIS 2004, April 16, 2004

The PHENIX Detector

Philosophy:

- ✓ High rate capability & granularity
- \checkmark Good mass resolution and particle ID
- Sacrifice acceptance

2 central
spectrometers
- Track charged
particles and detect
electromagnetic
processes

2 forwardspectrometers- Identify and trackmuons

3 global detectors - Determine when there's a collision

Spin Running at RHIC

• 2001-2

- *Transversely* polarized p+p collisions
- Average polarization of ~15%
- Integrated luminosity 0.15 pb⁻¹

• 2003

- *Longitudinally* polarized p+p collisions achieved
- Average polarization of ~27%
- Integrated luminosity 0.35 pb⁻¹
- 2004
 - 5 weeks polarized p+p commissioning
 - Started April 2nd!
 - Specifically to work on spin tune and AGS polarization
 - Commission hydrogen jet polarimeter
- 2005 C. Aidala, DIS 2004, April 16, 2004 PH * E Long spin run planned!

π^0 Cross Section from 2001-2 Run

- NLO pQCD consistent with data within theoretical uncertainties.
 - PDF: CTEQ5M
 - Fragmentation functions:
 - Kniehl-Kramer-Potter (KKP)
 - Kretzer
 - Spectrum constrains $D(gluon \rightarrow \pi)$ fragmentation function
- Important confirmation of theoretical foundation for spin program
- Data from 2003 run reproduce 2001-2 results and extend the $p_{\rm T}$ range
 - Will be released soon

2004, April 16, 2004

$Why Measure A_N at PHENIX?$ $A_N = \frac{1}{P} \cdot \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$

- π^0 cross section at $\sqrt{s} = 200$ GeV described by pQCD measuring $\pi^0 A_N$ at midrapidity will help to separate contributions from transversity and the Sivers effect to single transverse spin asymmetries in polarized hadron collisions
- Significant asymmetries observed at STAR for forward π^0 's produced at $\sqrt{s} = 200$ GeV, $x_{quark} \ge 0.6$
- PHENIX A_N measurements explore a different kinematical region: midrapidity, $x_{quark} \sim 0.1$

C. Aidala, DIS 2004, April 16, 2004

A_N of Neutral Pions and Non-Identified Charged Hadrons: Systematic Checks

- Independent results from two polarized beams
- Two methods of calculation
 - Square-root formula

$$A_{N}^{Beam} = \frac{1}{P^{Beam}} \frac{\sqrt{N_{Left}^{Beam+} N_{Right}^{Beam-}} - \sqrt{N_{Right}^{Beam+} N_{Left}^{Beam-}}}{\sqrt{N_{Left}^{Beam+} N_{Right}^{Beam-}} + \sqrt{N_{Right}^{Beam+} N_{Left}^{Beam-}}}$$

Luminosity formula

$$A_{N}^{Beam,Left} = \frac{1}{P^{Beam}} \frac{\left(N^{Beam+,Left} - RN^{Beam-,Left}\right)}{\left(N^{Beam+,Left} + RN^{Beam-,Left}\right)} \qquad R = \frac{L^{Beam+}}{L^{Beam-}}$$

- Independent results for two detector arms (luminosity formula)
- Store-by-store stability of asymmetry C. Aidala, DIS 2004, April 16, 2004

Detecting π^0 's and charged hadrons

Photons from π⁰ (EMCal: Lead-glass and lead scintillator)

Charged tracks (Beam-Beam, Drift Chamber, Pad Chambers) + RICH rings + EM Calorimeter clusters

> $|\eta| < 0.35$ $\phi = 180$ degrees

π^0 asymmetry analyses at PHENIX

- Calculate asymmetry of (signal + background) in the π^0 mass window
- Calculate the asymmetry of two different background regions
- Subtract the asymmetries

Same technique for $\pi^0 A_N$ and A_{LL} .

- 50-MeV/c² windows around the π^0 peak (60-110 and 170-220 MeV/c²)
- 250-450 MeV/c² (between π^0 and η)

$$A_{N}^{\pi^{0}} = \frac{A_{N}^{\pi^{0}+bkg} - rA_{N}^{bkg}}{\frac{1-r}{1-r}}$$

A_N of Neutral Pions and Non-Identified Charged Hadrons: Results

Single-spin asymmetries seen at RHIC so far...

- RHIC has been successful as the world's first polarized proton collider, opening up new kinematic regions for investigating the spin of the proton
- The first spin results from PHENIX are out and stimulating discussion within the theoretical community
 - A_N of neutral pions and non-identified charged hadrons
 - A_{LL} of neutral pions (talk by F. Bauer)

Many more years of exciting data and results to look forward to!

- Spin physics at PHENIX planned for 2005 and beyond
 - Measure gluon polarization via direct photon double longitudinal asymmetry
 - Probe gluon polarization from heavy flavor production (gg fusion) via electrons
 - Probe polarization of sea quarks via W boson single longitudinal asymmetry

pQCD Scale Dependence at RHIC

10

Theoretical uncertainty of pQCD calculations in channels relevant for gluon polarization measurements: π^0 data vs pQCD with different factorization scales:

RHIC vs. DIS Kinematic Coverage

C. Aidala, DIS 2004, April 16, 2004

Single spin asymmetries: L-R Essential for proton spin orientation information at IPs

E704 at Fermilab

at $\sqrt{s}=20$ GeV, $p_T=0.5-2.0$ GeV/c:

Models:: Transversity, Higher Twist, Fragmentation, k_T, Orbital Ang. Mom., etc.

Neutron A_N *at IP12*

Y. Fukao

- A_N measurement at IP12
 - large neutron A_N was discovered

→ Local polarimeter at PHENIX

- ZDC + position sensitive counters to measure the neutron A_N

8-ch hodoscopes for both X- and Y-directions at the shower
 maximum position of the ZDC (between 1st and 2nd modules)
 H * ENIX

A_N at IP12

• A_N measurement at IP12

STAR Forward rapidity high $x_F \pi^0 A_N$

Theory predictions at $p_T = 1.5 \text{ GeV/c}$

Collins effect Anselmino, et al. PRD 60 (1999) 054027.

Sivers effect Anselmino, et al. Phys. Lett. B442 (1998) 470.

Twist 3 effect Qiu and Sterman, Phys. Rev. D59 (1998) 014004.

Y.Koike PaNic02

Charged Hadron Cross Section from 2001-2 Run

Hard Scattering Processes in p+p

"Hard" probes have predictable rates given:

- Parton distribution functions (need experimental **input**)
- pQCD hard scattering rates (calculable in pQCD)
- Fragmentation functions (need experimental input)

C. Aidala, DIS 2004, April 16, 2004

Jniversali

Leading hadrons as jet tags

Siberian Snakes

Effect of depolarizing resonances averaged out by rotating spin by 180 degrees on each turn

- 4 helical dipoles \rightarrow S. snake
- 2 snakes in each ring
 - axes orthogonal to each other

C. Aidala, DIS 2004, April 16, 2004

RHIC Polarimetry

Carbon filament target $(5\mu g/cm^2)$ in the RHIC beam

Measure recoil carbon ions at $\theta \sim 90^{\circ}$

 $100 \text{ keV} \le E_{\text{carbon}} \le 1 \text{ MeV}$

E950 Experiment at AGS (1999) $\rightarrow \rightarrow \rightarrow$ RHIC polarimetry now

EMCal-RICH 2x2 Trigger

overlapping sum

2x2 Trigger in 2001-2002 run.

• Threshold $\sim 0.8 \text{ GeV}$

• Also used in conjunction with RICH to form an electron trigger

C. Aıdala, DIS 2004, April 16, 2004

PHENIX Run History

Run	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot}	Ρ
01						
02						
03						

2002 p+p run

• **Polarization – transverse**

 $- < P_{yellow} >= 17 \%, < P_{blue} >= 14 \%$

• Luminosity

- integrated luminosity 0.15 pb⁻¹
- $L = 1.5 \times 10^{30} \text{ cm}^{-1} \text{sec}^{-1}$

Cross section measurement

- $p^0, J/\psi, \dots$
- *A_N* measurements
- Systematic studies
 - beam polarimeters
 - relative luminosity
 - local polarimeter development at IP12

