

Electrical Integration WBS 1.8.2

Eric J. Mannel
Columbia University
Electronics Project Engineer
VTX and FVTX

Electronics Integration

Personnel

- Eric J. Mannel: Electronics Project Engineer for both VTX and FVTX
- Martin Purschke: PHENIX DAQ Coordinator
- Steve Boose: DAQ Deputy Coordinator, Hardware
- Ed Desmond: DAQ Deputy Coordinator, Software
- FVTX Subsystem Managers and Electrical Engineers

Project Engineer

- Project Engineer's Responsibilities
 - Coordinate electronics production and electrical safety reviews.
 - Coordinate DAQ/Online integration.
 - Integrated Power/Grounding plan with VTX.
 - Approve with subsystem managers Q/A procedures and benchmarks.
 - Identify and ensure timely resolution of critical issues.
 - Work with subsystem managers to keep project on schedule and at cost.

- Design Review Process:
 - Use Electronics Review Procedures similar to VTX project starting at the preproduction stage.
 - These procedures require:
 - Coordinate review with subsystem manager as design approaches completion.
 - Require all appropriate documentation to be posted for future reference (VTX/FVTX twiki):
 - Design files
 - Data sheets
 - Safety sheets
 - Q/A procedure documents

- Convene PHENIX internal review panel
- Review the module
 - Compatibility with PHENIX DAQ
 - Safety
 - -Q/A
 - Performance
- Generate an "Action" list of issues that need to be followed up on prior to releasing the module for fabrication.
- Verify that all technical questions are properly addressed.
- Convene follow up session of review panel if necessary.
- Release module for fabrication.

- Electrical Safety Reviews:
 - Held concurrent with the final production design review.
 - Contact PHENIX safety officer to request a safety review of production modules.
 - Work with subsystem manager to assemble all required safety documentation.
 - Meet with safety team and design team to address and resolve all safety questions.

- Reviews held to date:
 - FPHX Design review.
 - Reviews held in February, March, and April 2008.
 - Included the chip designers, FVTX electronics designers and PHENIX DAQ experts.
 - Conclusion of the review process was to submit the chip in June 2008.
 - Early tests results show that the chip is functional and meets design specifications.

- FVTX Overall Electronics Design Review
 - Held in August 2008 to review the overall design of the FVTX electronics chain.
 - Cheng-Yi Chi, John Haggerty and Chuck Pancake were the reviewers.
 - Summary report with suggestions and concerns was submitted to the FVTX group in August 2008.

Design and Safety Review Schedule - Tentative

Preproduction Design Review	Production Design
Complete	Feb 2009
Mar 2009	Dec 2009
Feb 2009	July 2009
Feb 2009	July 2009
Feb 2009	July 2009
	Dec 2009
	Design Review Complete Mar 2009 Feb 2009 Feb 2009

Electronics DAQ Integration

- PHENIX DAQ/ONCS Integration
 - Coordinate meetings with PHENIX DAQ and ONCS groups.
 - Assist with providing interface specifications.
 - Work with design teams to make sure that all interfaces are compatible with PHENIX DAQ and online systems.
 - Had initial meeting in January 2008 to review the general concept.
 - Follow up discussion planned for January 2009.

- Power and Ground Plan
 - Common plan for VTX and FVTX
 - VTX and FVTX isolated from each other and other PHENIX systems.
 - Shield around beam pipe and enclosure.
 - Star ground plan.
 - Single point connection to PHENIX clean ground
 - Flexibility in location of ground connections
 - Optical connections to Rack Room/DAQ.
 - Floating power supplies.

- When possible use same vendor for components
 - Wiener/ISEG for Bias
 - Evaluation model tested
 - » Mar-May 2008 (Used for VTX Pixel bias test)
 - » July-Sept 2008 (Software integration testing)
 - DAQ/ONCS group concludes that it will be easy to integrate into PHENIX
 - PHENIX standard low voltage power systems.

FVTX Power and Grounds

Rack Allocation in IR

DCM-2 Status

• DCM-2

- Upgrade to PHENIX DAQ interface.
- Optical fiber connections.
- -8/10 bit encoding, 1.6 Gbps.
- Optical interface complete.
 - Implemented as daughter board using current DCB.
 - Operational for the HBD.
 - Available for system chain test
- Funding (PHENIX R&D) in place to complete development and design.
- Design complete 4Q FY09.

Summary

- Review Procedures in place and being implemented.
- Preliminary discussion have occurred with the PHENIX.
 DAQ/ONCS group to insure seamless integration into PHENIX.
- Grounding plan has been developed for the VTX/FVTX effort.
- Evaluation of power systems has started in conjunction with the VTX group.
- Working with the PHENIX integration group on location of racks, cable routing, patch panels, etc.
- DCM-2 development on track.
- Close communication with FVTX mechanical and integration engineers.

Backup

Weiner/ISEG System

- Low frequency noise, random spikes (2mV p-p)
- High frequency noise, ~70KHz (10mV p-p)
- Tested with prototype 1.5cm pixel
 ½ ladder
- Meets VTX performance requirements

Weiner/ISEG System

- Electrical Evaluation using VTX Pixel ladders
 - March-May 2008
 - Electrical performance looked acceptable
- Integration Evaluation in 1008 July-September 2008
 - SNMP protocol tested using both Linux and Windows operating systems
 - Basic Linux I/O interface routines written, ISU summer student
 - DAQ/ONCS group concludes that this system will be easy to integrate into PHENIX

DCM-2

- Collect FEM data
- Zero suppressed data
- Data Error/ Event Alignment checking
 - Alignment checking via L1 data or/and adjacent data link
- Generate PHENIX packet data
- Possibility for data processing
- First stage of event building

Summary WBS 1.8 - Cost and Schedule

• Cost WBS 1.8.2 \$188.1K

Cost Basis
 Labour Rates

Cost Contingency 14%

• Schedule 2Q FY08 – 1Q FY11

Schedule Contingency None

Risk

Summary WBS 1.8 Technical

Specification Document: TDR

Workforce (On project):

WBS 1.8.2, Electronics Eng. ½ FTE/Year

– Scope: Duration of project

Institutions Involved: Columbia/LANL/BNL

Infrastructure Defined: Draft