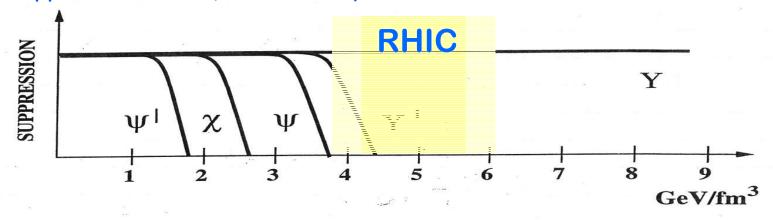

Heavy Flavor Physics in PHENIX



Kenneth N. Barish UC Riverside Nassau, Bahamas Jan. 24, 2002

Quarkonium in deconfined media

In deconfined media

- » QCD potential modified
 - From screening of $Q\overline{Q}$ pairs in a deconfined plasma we may expect a suppression of J/ψ and other quarkonium states.

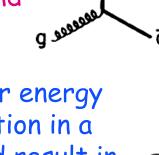
» Gluons are hardened

They are distributed
thermally:
$$P_g$$
_deconf = 3T
(T=200MeV, P_g _deconf = 0.6 GeV)

In confined media gluons are thermally distributed in π 's:

$$P_g = 1/5 P_{\pi} = 3/5 T$$

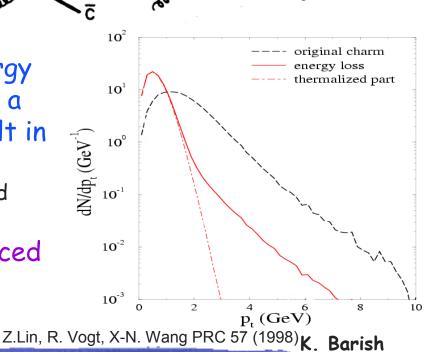
(For T=200MeV, $P_q = 0.1 GeV$)



Charm production in heavy ions

√ The measurement of charm production is necessary as a normalization for the quarkonium result.

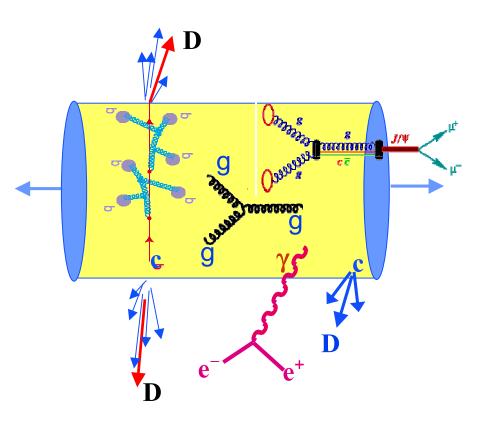
✓ A charm measurement is also intrinsically interesting

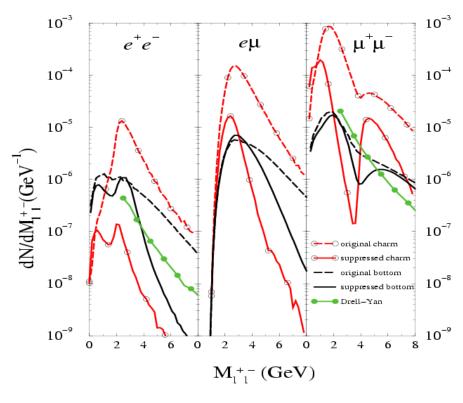

» Charm is produced in the earliest part of HI collisions via gg fusion and is sensitive to the initial gluon density

» Charm quarks may suffer energy loss through gluon radiation in a dense plasma. This would result in softening the D spectra.

- Although loss could be suppressed due to "dead cone" effect.

» Charm can be thermally produced at very high temperatures.

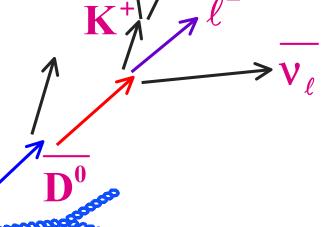



UC Riverside

Charm program at PHENIX

Need to measure heavy quarks in pp, pA, and AA to in ee, e μ , and $\mu\mu$ to help untangle channel rich in physics.

Z.Lin, R. Vogt, X-N. Wang PRC 57 (1998)

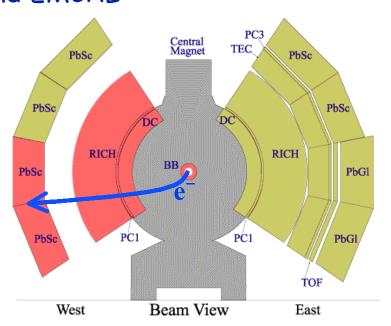


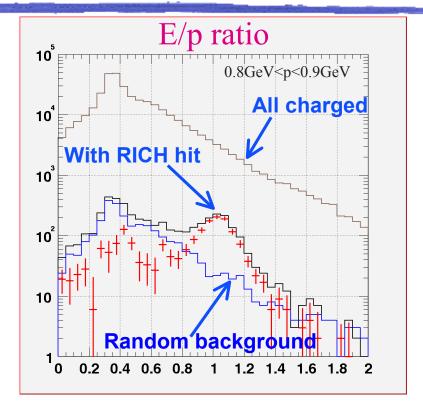
K. Barish UC Riverside

Charm decays

- ✓ Direct reconstruction of open charm is ideal, but difficult. (E.g. $D^0 \to K^-\pi^+$)
 - > Reconstruction at RHIC II via displaced verticies may be possible with upgrades

✓ We can also measure open charm and bottom contributions through single leptons and lepton pairs.

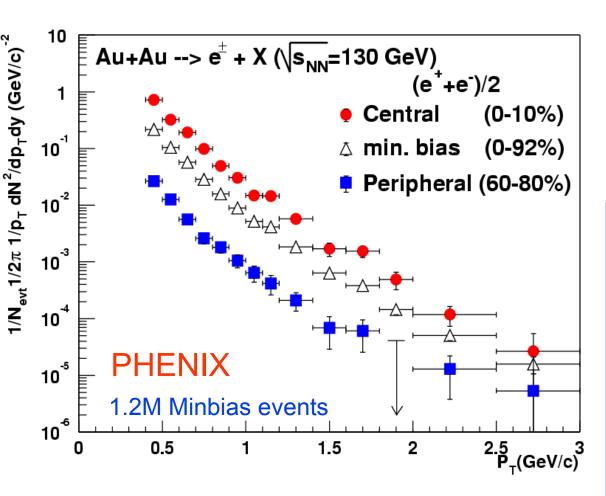

For example:


$$\frac{D^0 \to K^- \ell^+ \nu_\ell}{\overline{D^0} \to K^+ \ell^- \overline{\nu_\ell}} \quad \left\{ \begin{array}{l} D^0 \overline{\overline{D^0}} \to e^+ e^- K^+ K^- \nu_e \overline{\nu_e} \\ \overline{D^0} \overline{\overline{D^0}} \to e^- \mu^+ K^+ K^- \overline{\nu_e} \nu_\mu \\ \overline{D^0} \overline{\overline{D^0}} \to \mu^+ \mu^- K^+ K^- \nu_\mu \overline{\nu_\mu} \end{array} \right.$$

K. Barish
UC Riverside

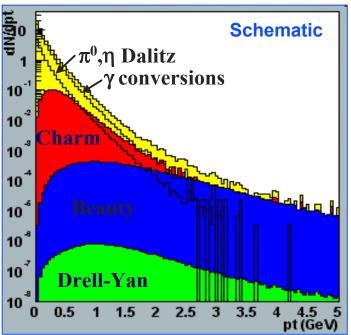
Electron ID in year-1

Electrons are identified by RICH and EMCAL



- A clear peak in the energy/momentum (E/p) ratio is seen at 1.0 after RICH hit is required
- o EMCAL E/p cut cleans up the background.
- o Random background is also subtracted by an event mixing method

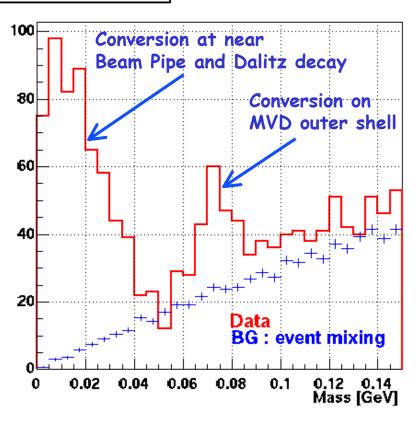
Single electron spectra



Spectra includes:

- > Light hadron decays
- $\triangleright \gamma$ conversions

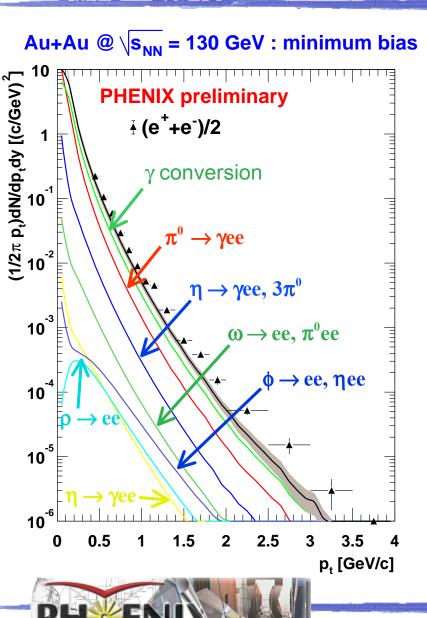
Remaining signal:


- >charm and bottom
- >thermal production
- >new physics

Dalitz and conversion contribution

Invariant Mass of e+e-

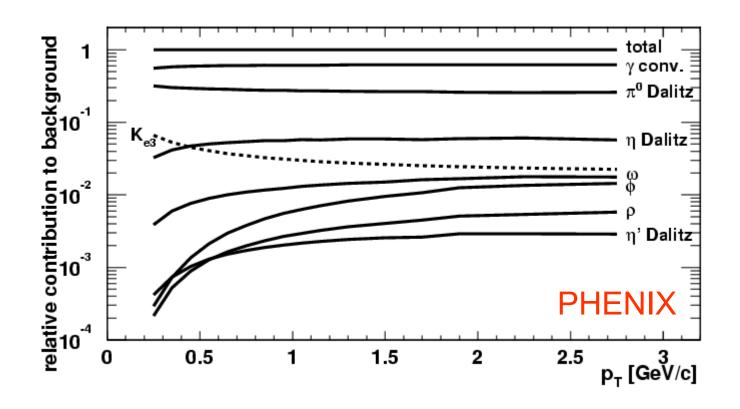
Dominant contributions


$$\begin{array}{cccc} \pi^{0} \xrightarrow{} e^{+}e^{-} & \eta \xrightarrow{} e^{+}e^{-} & \gamma \\ \pi^{0} \xrightarrow{} \gamma & \eta \xrightarrow{} \gamma & \\ & & \downarrow & e^{+}e^{-} & \downarrow & e^{+}e^{-} \end{array}$$

✓ The electrons from light hadron decays are estimated from a cocktail calculation that is constrained by PHENIX's pion measurement.

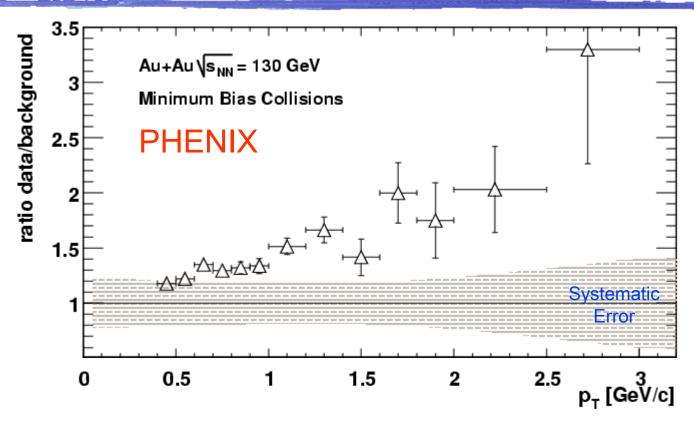
✓ The simulation is cross checked by comparing the relative yield
of Dalitz pairs and conversion pairs in the real data and in the
simulation.

Light hadron cocktail calculation



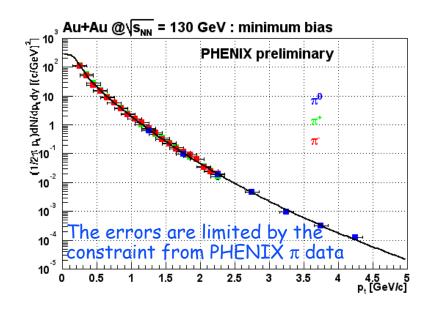
Coctail Input:

- » Pions (dominant source e⁻ at low p_t)
 - Take rapidity flat around y=0
 - Take π spectra from PHENIX data
 - Assume charge symmetry $(\pi^0 = \pi^+ = \pi^-)$
- » Use M_T scaling for other hadrons $p_t \rightarrow \sqrt{p_t^2 + m_h^2 m_\pi^2}$
 - Spectra shapes of PHENIX's p[±], K[±] data agree with this scaling within 20%
 - At high p+ take:
 - $\sqrt{\eta/\pi} = 0.55$, $\eta'/\pi = 0.25$, $\rho/\pi = \omega/\pi = 1.0$ [Based on p data from SPS, FNAL and SPS]
 - \checkmark $\phi/\pi=0.4$ [Agrees with STAR ϕ/h^{-1} inclusive measurement of .02]
 - Assign 50% systematic error to the ratios


Contributions to light hadron cocktail

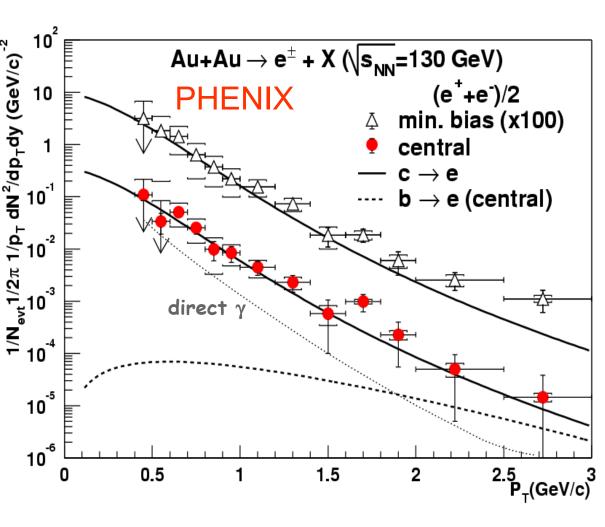
~80% of background from π^0 (either directly from Dalitz decays or indirectly through γ conversion)

Data / cocktail



- \checkmark A clear excess above light hadron cocktail seen for $p_T > 0.6$ GeV/c
- ✓ Central data also shows similar excess, while peripheral data does not have enough statistics
- \checkmark Excess increases as a function of p_T , as is expected from charm.

Systematic errors

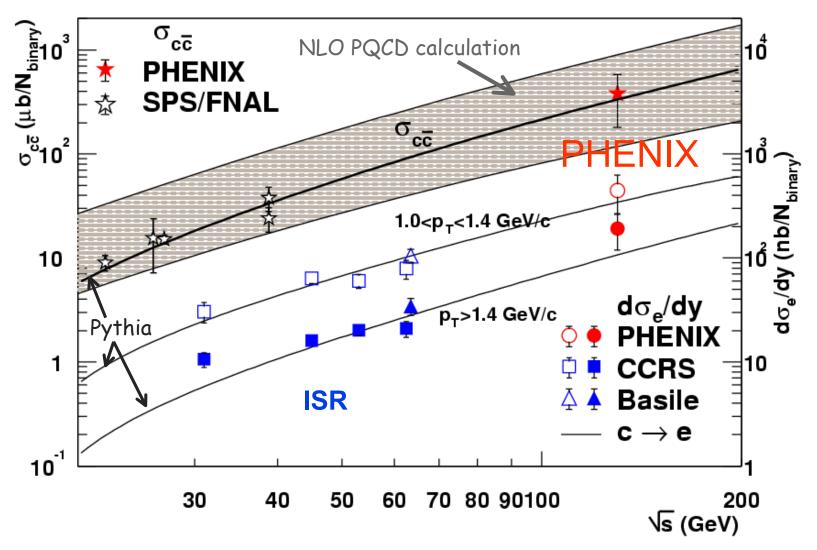

- o The systematic errors in the data and cocktail are roughly equal.
- o The dominant sources systematic error in the light hadron cocktail come from uncertainties in:
 - the normalization and shape of input π^0 spectrum
 - the h/π^0 ratios
 - the conversion/Dalitz ratio

- o The dominant sources systematic error in the data come from uncertainties in:
 - the detector efficiency
 - RICH ID and E/p cut efficiencies
 - the subtraction of hadron background
 - the EMCal/RICH association

Background subtracted electron spectra

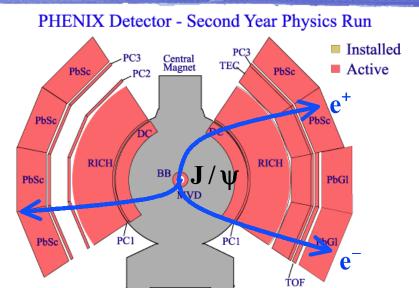
- ✓ Excess consistent with semi-leptonic decay from charm (c → eX)
- ✓ PYTHIA calculation:
 - Input that fits SPS, FNAL, and ISR single electron data
 - o Version: 6.152
 - o CTEQ5L PDFs
 - o $M_c = 1.25 Gev/c^2$
 - o K=3.5, $\langle k_{t} \rangle = 1.5$
 - > In pp gives $\sigma_{c\bar{c}} = 330 \mu b$
- ✓ Data is a bit higher than this PYTHIA parameterization.

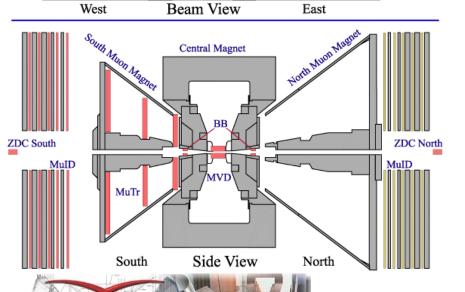
Charm yield


- o We can estimate the charm yield by assuming that all single electrons above the background are from charm
 - » Neglect other possible sources such as thermal $\boldsymbol{\gamma}$ and di-leptons
 - » This may be overestimating the charm yield
- o By fitting the PYTHIA calculation to the data for $p_t>0.8GeV/c$, we obtain charm cross sections per binary NN collision:

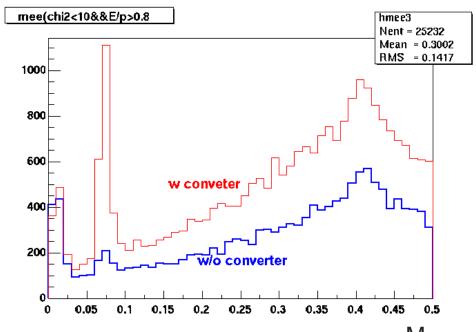
$$\sigma_{c\bar{c}}^{0-10\%} = 380 \pm 60 \pm 200 \mu b$$
 and $\sigma_{c\bar{c}}^{0-92\%} = 420 \pm 33 \pm 250 \mu b$

o The data is consistent with binary scaling (i.e. no nuclear or medium effects), but with large uncertainties.




Comparison with lower energies

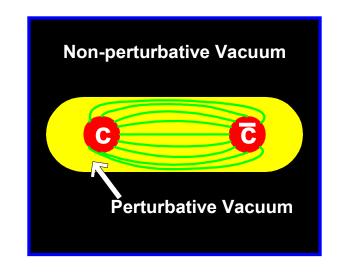
Year-2 detector

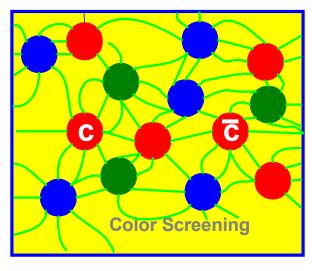


- ✓ Central arms fully instrumented
 - » Level-2 trigger uses BB, RICH, EMCal, & PC.
 - For single electrons: make
 p_T cut (E threshold)
 - For J/ψ and ee pairs: make rough invariant mass selection
- ✓ South muon arm installed
 - » Level-2 trigger uses roadfinder (next year Level-1)
 - For single muons: require 1
 deep road in muID
 - For μμ: require 1 deep & 1 shallow roads in muID

Year-2 improvements for charm

- ✓ Much higher statistics
 - o 170M events sampled (92M minbias)
- ✓ Special "converter" run with heavy-ions to directly measure background from photon conversion.
- \checkmark Charm and η/π measurement in pp run


J/ψ in year-2


- √ 170M events sampled (minbias + triggered)
- ✓ In the <u>absence</u> of anomalous suppression or additional thermal production at RHIC, and assuming $\sigma(pp \to J/\psi) = 3.3 \times 10^{-6}$ b we will reconstruct of order:

$$\gt$$
~100 J/ ψ \to ee

$$\succ$$
 ~500 J/ $\psi \rightarrow \mu \mu$

Note: there is a large uncertainty (both in production and reconstruction) in this estimate

Conclusion and outlook

The PHENIX heavy flavor program has begun!

- ✓ An excess of single electrons above the expected light hadron contribution is seen in Year-1 data.
- \checkmark Neglecting other possible contributions, the excess translates into $\sigma_{c\bar{c}}^{0-10\%}=380\pm60\pm200\mu b$

Year-2 data will yield:

- o First look at $J/\psi \rightarrow e^+e^-, \mu^+\mu^-$
- Improved single electron spectra with special converter run to directly measure Dalitz/Converter contribution
- o Charm and J/ψ pp data

