5 YEARS OF TRACKING HEAVY ION COLLISIONS @RHIC

ACHIM FRANZ, BROOKHAVEN NATIONAL LABORATORY ACHIM@BNL.GOV

RHIC & ITS EXPERIMENTS

INTRODUCTION TO RHIC

U.S. DEPARTMENT OF ENERGY

RHIC SUMMARY, RUNS 01 - 05

Year			
2001	Au-Au at 130 GeV/A	20 μb⁻¹ (6 wks)	First look at RHIC collisions
2001 – 2002	Au-Au at 200 GeV/A	260 μb ⁻¹ (16wks)	Global properties; particle spectra; first look at hard scattering.
	Comm./run pp at 200 GeV Au-Au at inj. E: 19 GeV/A	1.4 pb ⁻¹ (5 wks) 0.4 μb ⁻¹ (1 day)	Comparison data and first spin run Global connection to SPS energy range
 0000		74	O arrent a rie da ta fan Ave Ave an alveite Jave e
2003	d-Au at 200 GeV/A	74 ND (10WKS)	physics in cold nuclear matter
	pp at 200 GeV	5 pb⁻¹ (6 wks)	Spin Development & Comparison data
 0004		0740 1-1/40 1	
2004	Au-Au at 200 GeV/A Au-Au at 62 GeV/A	3740 μb ⁻¹ (12wks) 67 μb ⁻¹ (3wks)	"Long Run" for high statistics, rare events Energy Scan
	pp at 200 GeV	100 pb⁻' (7wks)	First measurements with longitudinal spin pol.
2005	Cu-Cu at 200 GeV/A Cu-Cu at 62 GeV/A Cu-Cu at 22 GeV/A	42 nb ⁻¹ 8wks 1.5 nb ⁻¹ 12 days 18 μb ⁻¹ 39 hrs	Comparison studies: surface/volume & impact parameter effects; Energy Scan
	pp at 200 GeV	30 pb ⁻¹ 10 wks	Spin Development: Lum., Polarization
	pp at 410 GeV	0.1 pb⁻¹ 1 day	First long data run for spin

5 YEAR SUMMARY

The nucleon-pair luminosity is defined as $\mathcal{L}_{NN} = A_1A_2L$, where \mathcal{L} is the luminosity, and A_1 and A_2 are the number of nucleons of the ions in the two beam respectively.

LOOKING BACK

PHENIX CDR

U.S. DEPARTMENT OF ENERG

Central Au + Au collisions at RHIC will produce up to 500 charged tracks $(dN_c/dy = 1500)$ in the PHENIX fiducial volume with momenta ranging from 80 MeV/c to over 5 GeV/c. Approximately 3% of the 500 charged tracks are expected to be electrons.

BUT WE GOT ...

COUNTING

DAILY LIFE @ RHIC

A (TYPICAL) AU DAY AT RHIC

AROUND THE RING

ESTIMATED TOTAL DOSE AT PHOBOS 2000-2005 3KRAD

SHIELDING THE DETECTORS

EARLY RUNS HAD LARGE INTRA-BEAM-SCATTERING AND SHORT STORES WITH HIGH BACKGROUND RATES

BETTER BAKE-OUT AND NEG COATING OF THE BEAM PIPES IMPROVED VACUUM

HIGH BACKGROUND PARTICLE FLUX MADE IT NECESSARY TO SHIELD THE IRS

MOST DETECTORS ARE ON STANDBY DURING INJECTION, TUNING AND EXTRACTION OF THE BEAM, I.E. WE MISS THE FIRST HIGH INTENSITY PART OF THE STORE

VIEW OF THE TUNNEL CLOSE TO PHENIX

ENVIRONMENTAL-RUN05

WHAT'S THE

CHALLENGE

CLUSTER FINDING

CAN YOU FIND THE JET(S)

STAR PP EVENT

STAR AU AU EVENT

RHIC GLOBAL DETECTORS

LUMINOSITY/CROSS-SECTIONS **EVENT CHARACTERIZATION**

CENTRALITY (AU+AU, D+AU) **EVENT VERTEX AND START-TIME**

CLEAN TRIGGERING ULTRA-PERIPHERAL COHERENT INTERACTIONS TRANSVERSE SPIN ASYMMETRY RELATIVE LUMINOSITY

COMMON TO ALL FOUR EXPERIMENTS

BBC <100PS RESOLUTION, FAST VERTEX TRIGGER, TIMING, CENTRALITY OF COLLISION

PHOBOS PADDLE COUNTER

PHENIX BBC - CERENKOV

BRAHMS - COLLABORATION

I.G. BEARDEN⁷, D. BEAVIS¹, C. BESLIU¹⁰, Y. BLYAKHMAN⁶, J.BRZYCHCZYK⁴, B. BUDICK⁶,
H. BØGGILD⁷, C. CHASMAN¹, C. H. CHRISTENSEN⁷, P. CHRISTIANSEN⁷, J.CIBOR⁴, R.DEBBE¹,
E. ENGER¹², J. J. GAARDHØJE⁷, M. GERMINARIO⁷, K. GROTOWSKI⁴, K. HAGEL⁸, O. HANSEN⁷,
A.K. HOLME¹², H. ITO¹¹, E. JACOBSEN⁷, A. JIPA¹⁰, J. I. JORDRE¹⁰, F. JUNDT², C.E.JØRGENSEN⁷,
R. KARABOWICZ⁴, T. KEUTGEN⁹, E. J. KIM⁵, T. KOZIK³, T.M.LARSEN¹², J. H. LEE¹, Y. K.LEE⁵,
G. LØVHØJDEN², Z. MAJKA³, A. MAKEEV⁸, B. MCBREEN¹, M. MIKKELSEN¹², M. MURRAY⁸,
J. NATOWITZ⁸, B.S.NIELSEN⁷, K. OLCHANSKI¹, D. OUERDANE⁷, R.PLANETA⁴, F. RAMI²,
D. ROEHRICH⁹, B. H. SAMSET¹², D. SANDBERG⁷, S. J. SANDERS¹¹, R.A.SHEETZ¹, Z.SOSIN³,
P. STASZEL⁷, T.S. TVETER¹², F.VIDEBÆK¹, R. WADA⁸, A.WIELOCH³ AND I. S. ZGURA¹⁰

¹BROOKHAVEN NATIONAL LABORATORY, USA, ²IRES AND UNIVERSITÉ LOUIS PASTEUR, STRASBOURG, FRANCE ³JAGIELLONIAN UNIVERSITY, CRACOW, POLAND, ⁴INSTITUTE OF NUCLEAR PHYSICS, CRACOW, POLAND ⁵JOHNS HOPKINS UNIVERSITY, BALTIMORE, USA, ⁶NEW YORK UNIVERSITY, USA ⁷NIELS BOHR INSTITUTE, UNIVERSITY OF COPENHAGEN, DENMARK ⁸TEXAS A&M UNIVERSITY, COLLEGE STATION. USA, ⁹UNIVERSITY OF BERGEN, NORWAY ¹⁰UNIVERSITY OF BUCHAREST, ROMANIA, ¹¹UNIVERSITY OF KANSAS, LAWRENCE, USA ¹² UNIVERSITY OF OSLO NORWAY

56 PHYSICISTS, 12 INSTITUTIONS, 5 COUNTRIES...

http://www.sciencedirect.com/science?_ob=HelpURL&_file=doi.htm&_acct=C000057228&_version=1&_urlVersion=0&_userid=2422869&md5=47c08f4c0830bc7a6702186224fbe1b3

BRAHMS - GENERAL

BRAHMS - SPECTROMETERS

SMALL ACCEPTANCE = SMALL DETECTORS, NO MAJOR PROBLEMS OVER THE YEARS, ONE LOOSE ANODE WIRE

simple 'follow your nose' algorithm, small track density, 0.01-0.1 part/cm², Hough transforms showed no advantage TPC: Ar/CO2 (90:10) 21.8cm drift, 229V/cm 1152 pads, 158 time bins each, STAR FEE

DC: 8(10) - Hor, Ver, ±18° WIRE PLANES AR/C4H10 (67:33), ETHANOL BUBBLER (9°C)

BRAHMS - DETAILS

Fig. 1. BRAHMS acceptance for pions, kaons and protons. Region I and II show the acceptance of the FS with two different configurations, see below. Region III shows the acceptance for the MRS. The dotted curves marked 4, 5, 10, 25 and 35 GeV/*e* are curves of constant momentum, while the set marked 95°, 30°, 15°, 5°, 2° indicate curves at a constant polar angle. The fully drawn curves mark the acceptance borders.

Electron drift lines of TP1 or TP2 Gas: Ar 90%, CO2 10%, T=300 K, p=1 atm pad plane -0.2 -0.4 s F s F s F s s s -0.6 -0.8 С C с C С -1 -1.2 -1.4 -1.6 G-G+ G- G+ G- G+ G-G+ G-G+ G-G+ G-G+ G -1.8 Drift length [cm] -2 -2.2 -2.4 -2.6 -2.8 -3 -3.2 -3.4 -3.6 -3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7.2 7.4 7.6 7.8 7 Wire coordinate [cm]

Fig. 10. Electric field lines near the TPC read-out chamber. All

TPCs	main	charac	teristics

TPC	Dist. to vertex (cm)	Overall (x, y, z) cm ³	Active (x, y, z) cm ³	Pad rows	Pads per row	Pad size (mm ²)
T1	500	$45\times 30\times 70$	$33 \times 22 \times 56$	14	96	27.5 × 3
T2	810	50 imes 30 imes 88	$2 \times (39 \times 22 \times 31.5)$	2×8	112	27.5×3
TPM1	95	$67 \times 34 \times 67$	$37.5 \times 21 \times 36$	12	96	29.5×3.4
TPM2	285	$82\times 30\times 61$	50 imes 22 imes 67.5	20	144	24.5×4.2

TIME 05, OCT 04th 2005, ACHIM FRANZ, BNL

at 13,40,01 on 31/07/01

2

randon 7.04

PHOBOS - COLLABORATION

BURAK ALVER, BIRGER BACK, MARK BAKER, MAARTEN BALLINTIJN, DONALD BARTON, RUSSELL BETTS, RICHARD BINDEL, WIT BUSZA (SPOKESPERSON), ZHENGWEI CHAI,
VASUNDHARA CHETLURU, EDMUNDO GARCIA, TOMASZ GBUREK, KRISTJAN GULBRANDSEN, CLIVE HALLIWELL, JOSHUA HAMBLEN, IAN HARNARINE, CONOR HENDERSON, DAVID HOFMAN, RICHARD HOLLIS, ROMAN HOLYŃSKI, BURT HOLZMAN, ANETA IORDANOVA,
JAY KANE, PIOTR KULINICH, CHIA MING KUO, WEI LI, WILLIS LIN, CONSTANTIN LOIZIDES, STEVEN MANLY, ALICE MIGNEREY, GERRIT VAN NIEUWENHUIZEN, RACHID NOUICER,
ANDRZEJ OLSZEWSKI, ROBERT PAK, COREY REED, ERIC RICHARDSON, CHRISTOF ROLAND, GUNTHER ROLAND, JOE SAGERER, IOURI SEDYKH, CHADD SMITH, MACIEJ STANKIEWICZ, PETER STEINBERG, GEORGE STEPHANS, ANDREI SUKHANOV, ARTUR SZOSTAK, MARGUERITE BELT TONJES, ADAM TRZUPEK, SERGEI VAURYNOVICH, ROBIN VERDIER,
G‡BOR VERES, PETER WALTERS, EDWARD WENGER, DONALD WILLHELM, FRANK WOLFS, BARBARA WOSIEK, KRZYSZTOF WOŹNIAK, SHAUN WYNGAARDT, BOLEK WYSLOUCH

> ARGONNE NATIONAL LABORATORY BROOKHAVEN NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS PAN, KRAKOW MASSACHUSETTS INSTITUTE OF TECHNOLOGY NATIONAL CENTRAL UNIVERSITY, TAIWAN UNIVERSITY OF ILLINOIS AT CHICAGO UNIVERSITY OF MARYLAND UNIVERSITY OF ROCHESTER

63 PHYSICISTS, **8** INSTITUTIONS, **3** COUNTRIES...

http://www.sciencedirect.com/science?_ob=HelpURL&_file=doi.htm&_acct=C000057228&_version=1&_urlVersion=0&_userid=2422869&md5=47c08f4c0830bc7a6702186224fbe1b3

PHOBOS - GENERAL

PHOBOS Experiment - Run 5

25

PHOBOS - SILICON

B.B. Back et al. / Nuclear Instruments and Methods in Physics Research A 499 (2003) 603-623

9 DIFFERENT SI-PAD WAFER DESIGNS 300-340µM THICKNESS

Fig. 6. Photographs of different detector modules.

WATER COOLED FRAMES O-2T FIELD REGION 135K CHANNELS

Fig. 8. Isometric drawing of the Octagon frame with detector modules and a complete Ring detector.

PHOBOS - TRACKING

SPECTROMETER TRACKS:

OUTSIDE FIELD:

ROAD-FOLLOWING ALGORITHM IN FIRST 6 FIELD FREE LAYERS

INSIDE FIELD:

 Θ MAP TWO-HIT COMBINATIONS IN (1/P, Θ) SPACE

APPLY CLUSTER ALGORITHM

match two track information by $\Theta,$ a fit in the YZ plane and dE/dx consistency

FOR MORE DETAILS ASK C.ROLAND, WHO SPEAKS LATER IN THIS SESSION

TALK BY K. WOZNIAK

"VERTEX RECONSTRUCTION ALGORITHMS IN THE PHOBOS EXPERIMENT AT RHIC", AT 17:25

PHOBOS - DETAILS

Fig. 4. (a) B_y component of the magnetic field in the mid-plane as a function of the x and z coordinates. In the PHOBOS coordinate system the beam line is located along z, at x = y = 0. The outlines of the Spectrometer silicon detectors are also indicated. The maximum magnetic field is 2.18 T. (b) The maximum B_y component is shown as a function of excitation current. The nominal excitation current is 3600 A.

Physical characteristics for the PHOBOS silicon pad sensors				
Detector system	Sensor type	Active area (mm ²)	Number of pads	Pad size (mm ²)
Spectrometer	1	70.000×22	70×22	1.000 imes 1.0
	2	42.700×30	100×5	0.427 imes 6.0
	3	42.688×60	64 imes 8	0.667×7.5
	4	42.688×60	64 imes 4	0.667×15.0
	5	42.688×76	64 imes 4	0.667×19.0
Multiplicity	Octagon	34.880×81.280	30 imes 4	2.708 imes 8.710
	Ring	≈3200	64	$\approx 20-105$
Vertex	Inner	60.584×48.180	4×256	0.473 × 12.035
	Outer	60.584×48.180	2×256	0.473×24.070

Р

Table 1

STAR

52 INSTITUTIONS, 12 COUNTRIES, 616 COLLABORATORS

http://www.sciencedirect.com/science?_ob=HelpURL&_file=doi.htm&_acct=C000057228&_version=1&_urlVersion=0&_userid=2422869&md5=47c08f4c0830bc7a6702186224fbe1b3

STAR - GENERAL

STAR - TPC

MAGNETIC FIELD 0.0 G ± 2.5 KG ± 5.0 KG

Gas: P10 (Ar-CH₄ 90%-10%) @ 1 atm Voltage : - 28 kV at the central membrane 135 V/cm over 210 cm drift path

STAR - TPC

TYPICALLY 1000 TO 2000 TRACKS PER CENTRAL EVENT KALMAN FILTER & HOUGH TRANSFORM, POINT BACK TO SVT

TALK BY GENE VAN BUREN,

"CORRECTING FOR DISTORTIONS DUE TO IONIZATION IN THE STAR TPC", THURSDAY 14:35H

STAR - FTPC

Volume	
inner radius	7.73 cm
outer radius	30.05 cm
chamber length	120 cm ([z] = 150 - 270 cm)
acceptance	η =2.5 -4.0 (θ =2° - 9°)
Field properties	
drift cathode voltage	10-15 kV
drift electrical field	240-1400 V/cm (radial, [⊥] beam)
Solenoid magnetic field	0.5 T (beam)
Gas properties	
gas mixture	Ar(50%)-CO2(50%)
drift velocity	$0.3 - 2.0 \text{ cm}/^{\mu}\text{s}$
trans. Diffusion DT	100-130 ^µ m/Vem
long. Diffusion DL	100-130 ^{j#} m/ ^v em
Lorentz angle	4 deg.

HIGH TRACK DENSITY ~ 500 CHARGED PARTICLES IN EACH FTPC.

OCCUPANCY OF ~30-35% AT THE INNER RADIUS.

SOME FEE TROUBLE OVER THE YEARS

COMPARE TPC AND FTPC VERTEX FOR CALIBRATION

33

STAR - SVT

3 BARRELS, **8**, **12**, AND **16** LADDERS TOTAL OF **216** WAFERS

R = 5.97cm, 10.16cm and 14.91cm Zmax = 44.1cm |η| = 1

280µm THICK, 6CM X 6CM SILICON TOTAL AVERAGE RADIATION LENGTH 4.5% INCLUDING FEE

READ OUT AT BOTH ENDS. 480 ANODES PER WAFER. EACH ANODE IS SAMPLED AND STORED WITH A SWITCHED CAPACITOR ARRAY (SCA) WITH A DEPTH OF 128 CAPACITORS.

	PERCENT BAD CI	HANNELS
INITIAL 36 LADDERS BUIL	т < 1%	
RunII-pp	~3.7%	
RUNIII COMMISSIONING	~10.5%	
BEGINNING RUNIII-PP	~12.7%	
BEGINNIN OF RUNIV	~12.6%	Jan 2004
LAST DAY DATA TAKING RU	JNIV ~15.9%	May 2004

STAR - SSD

SUMMARY OF THE SSD CHARACTERISTICS AND PERFORMANCES

GENERAL LAYOUT	
RADIUS	230 мм
LADDER LENGTH	1060 мм
ACCEPTANCE	η < 1.2
NUMBER OF LADDERS	20
NUMBER OF WAFERS PER LADDER	16
TOTAL NUMBER OF WAFERS	320

SILICON WAFERS CHARACTERISTICS	
NUMBER OF SIDES PER WAFER	2
NUMBER OF STRIPS PER SIDE	768
TOTAL READOUT CHANNELS	491520
SILICON WAFER SENSITIVE AREA	73 х 40 мм
TOTAL SILICON SURFACE	0.98 м²
WAFER PITCH	95 µм
RF RESOLUTION	20 µм
Z RESOLUTION	740 µм
OPERATING VOLTAGE	20–50 V
LEAKAGE CURRENT FOR ONE WAFER	1–2 µA

READOUT FRONT-END ELECTRONICS

NUMBER OF INPUT CHANNELS PER CIRCUITS	128
TOTAL NUMBER OF CIRCUITS	3840
DYNAMICAL RANGE	±13 MIPs
SHAPING TIME	1.2–2 µs
SIGNAL/NOISE	30–50
SSD TOTAL READOUT TIME	<5 MS

EXPECTED PERFORMANCESDEAD CHANNELS LEVEL~2%HIT RECONSTRUCTION EFFICIENCY~95%HIT RECONSTRUCTION PURITY~98%

Time 05, Oct 04th 2005, Achim Franz, BNL

PHENIX

62 INSTITUTIONS FROM 13 COUNTRIES, WITH A TOTAL OF 498 SCIENTISTS

http://www.sciencedirect.com/science?_ob=HelpURL&_file=doi.htm&_acct=C000057228&_version=1&_urlVersion=0&_userid=2422869&md5=47c08f4c0830bc7a6702186224fbe1b3

PHENIX-GENERAL

Office of

Science

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN

NATIONAL LABORATORY

6 DIFFERENT CHAMBER TYPES

BEAM-BEAM COUNTER (BBC) AND ZDC FOR VERTEX/START-TIME TRIGGER AND OFFLINE CUTS

SI-MULTIPLICITY VERTEX DETECTOR (MVD)

PHENIX - MVD

Science

MULTIPLICITY-VERTEX DETECTOR MVD, SINGLE LAYER STRIP/PIXEL DETECTOR, **FEE/NOISE PROBLEMS** NOT ALWAYS IN DATA STREAM HAS BEEN REMOVED IN STAGES

38

PHENIX - BBC

BBC, QUARTZ CERENKOV 64 PMS EACH SIDE VERTEX TRIGGER AND START TIMING EVENT CENTRALITY REACTION PLANE

TIME 05, OCT 04th 2005, ACHIM FRANZ, BNL

PHENIX- DRIFT CHAMBER

Office of

Science

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN

NATIONAL LABORATORY

SEGMENTED DRIFT CHAMBER 13K CHANNELS, ~98% TRACKING EFF. AR/C2H6, 50:50, 0°C ETHENOL BUBBLER ADDED BUBBLER (1.5%) 2002 AFTER HV STABILITY PROBLEMS MAIN TRACKING DEVICE FOR CENTRAL ARM

Hough transform, α , ϕ

TIME 05, OCT 04^{TH} 2005, ACHIM FRANZ, BNL

PHENIX - PAD CHAMBERS

ZDC North

MuID

MvD

Side View

North

WIRE CHAMBER WITH THRESHOLD PAD READOUT AR/C2H6 50:50 3(2) PLANES PROVIDE 3D SPACE-POINT FOR TRACKING ~99% EFFICIENCY

Fig. 6. The pad and pixel geometry (left). A cell defined by three pixels is at the center of the right picture

South

MuTr

ZDC South

MuID

PHENIX - TEC/TRD

TRACKING AND ELECTRON IDENTIFICATION, SLOPE-INTERSECTION HOUGH TRANSFORM 6 PLANES TEC (2000-2002), AR/CH4 90:10 TRD (2003-), XE/HE/CH4 45:45:10 17 µm polypropylene fiber radiator

PHENIX - MUTR

Science

U.S. DEPARTMENT OF ENERGY

NATIONAL LABORATORY

SOUTH MUON MAGNET AND TRACKING DETECTORS

3 PLANES OF STRIP CHAMBERS INSIDE MUON MAGNETS, AR/CO2/CF4, 50:30:20 OPTICAL ALIGNMENT

PHENIX - MUID

U.S. DEPARTMENT OF ENERGY

TIME 05, OCT 04TH 2005, ACHIM FRANZ, BNL

SUMMARY, THE LAST 5 YEARS

VERY SUCCESSFULL

\$\$ EVER INCREASING LUMINOSITY

 \Rightarrow P-P, D-AU, CU-CU AND AU -AU COLLISIONS @ VARIOUS \sqrt{s}

 ★ >100 PUBLICATIONS,
 WHITE PAPERS (NIM A499, ISSUES 2-3, PAGES 235-880 (1 MARCH 2003)
 > 60 SUBMITTED OR IN PREPARATION

☆ >100 PHD THESIS

X INITIALLY HIGH BACKGROUNDS, BEAM-BEAM INTERACTIONS, BAD VACUUM

☆ FORCED EXPERIMENTS TO WAIT OUT FIRST HIGH INTENSITY PART OF THE STORE UP TO 60MIN

X NEEDED EXTRA SHIELDING IN THE TUNNEL

♦ BETTER VACUUM, BAKE-OUT, NEG COATING

 \diamond FASTER TIMES BETWEEN STORES,

NEARLY AUTOMATIC TUNING AND COLLIMATION, MORE FEEDBACK FROM EXPERIMENTS VBBB N

NO SIGN OF AGING IN MOST TRACKING DETECTORS

INTEGRATED RADIATION LEVEL (@PHOBOS) A ~1 KRAD / YEAR

INTO THE FUTURE A Marex Creation

UPGRADES - RHIC - EBIS

ELECTRON BEAM IONIZATION SOURCE, FOLLOWED BY A LINAC.

IT WILL PROVIDE ALL STABLE ION SPECIES FROM DEUTERONS TO URANIUM.

EBIS WILL BE ABLE TO SWITCH DIFFERENT ION BEAMS TO THE BOOSTER, AGS, AND RHIC ON A TIMESCALE OF ONE SECOND.

EBIS IS EXPECTED TO BE OPERATIONAL IN 2009.

HTTP://WWW.BNL.GOV/BNLWEB/FACILITIES/EBIS.ASP

TIME 05, OCT 04th 2005, ACHIM FRANZ, BNL

UPGRADES - RHIC - E-COOLING

GOLD COLLISIONS (100 GEV/N X 100 GEV/N)	W/O E-COOLING	WITH E-COOLING
EMITTANCE (95%) PMM	15→40	15→3
BETA FUNCTION AT IR [M]	1.0	1.0→0.5
NUMBER OF BUNCHES	112	112
BUNCH POPULATION [109]	1	1→0.3
AVE. STORE LUMINOSITY [10 ²⁶ CM ⁻² S ⁻¹]	8	70

UPGRADES - RHIC - ERHIC

 $(10^{34} \text{ CM}^2 \text{S}^1 \text{ WITH LINAC} - \text{RING SCHEME})$

UPGRADES - RHIC - TIMELINE

Detector Upgrades Timeline

Strawman schedule: depends on funding (TBD)*

UPGRADES - PHENIX

Office of

Science

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN

NATIONAL LABORATORY

DISPLACED VERTEX: VTX: SILICON TRACKER

JET MEASUREMENT: NCC: NOSE CONE CALORIMETER

OTHER DETECTORS: HBD: HADRON BLIND DETECTOR MUON TRIGGER PID IN WEST ARM

TIME 05, OCT 04th 2005, ACHIM FRANZ, BNL

UPGRADES - PHENIX - HBD

A ADARA P

Hindridda

PROXIMITY FOCUSED CHERENKOV DETECTOR HADRON BLIND PROTOTYPE TO BE INSTALLED THIS FALL

USES DEEP UV TRANSMITTING GAS (CF₄) WITH NO GAS WINDOW TO DETECT CERENKOV LIGHT FROM LOW MOMENTUM ELECTRONS

50 CM OF CF₄ RADIATOR

GEM DETECTORS WITH CSI PHOTOCATHODES TO DETECT CHERENKOV LIGHT

52

1220 mm

UPGRADES - PHENIX - HBD

HBD concept:

- windowless Cherenkov detector (L=50 cm)
- CF₄ as radiator and detector gas
- Csl reflective photocathode
- Proximity focus: detect blob not ring
- Triple GEM with pad readout

Very attractive features:

- <u>Unprecedented N₀</u> bandwidth 6 - 11.5 eV \rightarrow N₀ \approx 800 cm⁻¹ \rightarrow \sim 35 p.e. in a 50 cm radiator
- <u>Reflective photocathode</u> no photon feedback
- Pad size comparable to blob size (~10 cm²) hadrons: single pad hit, electrons: more than one pad hit
- Low granularity
 - ~1000 pads to cover central arm acceptance
- Low gain

primary charge of at least 10 e/pad \rightarrow gain of ~10⁴ is enough

But many open questions!

Extensive R&D was needed!

Comprehensive R&D studies have been carried out over the past two years. The results are published in two NIM papers: 1. NIM A523, 345, 2004 2. NIM A546, 466, 2005 The short summary of these results will be given in the next slides

UPGRADES - PHENIX - VTX

UPGRADES - PHENIX - µ

 Image: Trigger

 Resistive Plate Chambers

 Use CMS R&D

 TIMING INFORMATION

 REJECT BEAM BACKGROUND

 ASSIGN TRACKS TO CORRECT BUNCH

SMALL PROTOTYPE TESTED IN 2005

NSF FUNDED

UPGRADES - PHENIX - NCC

EM CALORIMETER ~40 X/X_o HADRONIC SECTION (1.6 λ/λ_0)

WORK IN PROGRESS

UPGRADES - PHENIX - TOFW

UPGRADES - STAR

UPGRADES - STAR - MRPC TOF

MRPC TECHNOLOGY, 2007/08 3800 MODULES, 23,000 CHANNELS TO COVER TPC BARREL LARGE COVERAGE $-\pi < \phi < \pi$, $-1 < \eta < 1$, $R \approx 2.1$ m, $\Delta T < 100$ ps 95% OF CHARGED PARTICLES IN ACCEPTANCE IDENTIFIED **FAST DETECTOR WITH HIGH GRANULARITY PROTOTYPE RUNNING SINCE 3 YEARS**

Office of

Science

59

UPGRADES - STAR - FMS

ELECTROMAGNETIC CALORIMETER WITH FULL AZIMUTHAL COVERAGE, 2.5<η<4.0

Office of Science

TIME 05, OCT 04TH 2005, ACHIM FRANZ, BNL

UPGRADES - STAR - HFT

TWO LAYERS OF CMOS PIXEL DETECTOR AROUND A NEW THIN (0.5MM) SMALL RADIUS (14 MM) BEAM PIPE

 10^8 pixels, $(30 \ \mu \text{M})^2$

50 μM THICK 10 μM POINT RESOLUTION

UPGRADES - STAR - TUP

Replaces SVT – remove SVT infrastructure in $1 < \eta < 2$ region for $W^{+(-)} \rightarrow e^+(e^-)$ (sea anti-quark contribution to proton spin), and provides part of the $1 < \eta < 2$ tracking Forward Tracking Upgrade: High precision Tracking in $1 < \eta < 2$ to discriminate charge sign in $W^{+(-)} \rightarrow e^+(e^-) - 10$'s of GeV e^{\pm}

BARREL:

THREE DOUBLE LAYERS OF SINGLE SIDED SILICON STRIP DETECTORS

FORWARD:

4 SILICON STRIP DISCS PLUS GEM LAYER ON END CAP COMMON READOUT (AVP-25) USED FOR SILICON AND GEM

UPGRADES - STAR - DAQ/TPC RO

GOAL:

 (1) REPLACE TPC FEE WITH VERSION BASED ON ALICE ALTRO CHIP;
 (2) REPLACE TPC DAQ SYSTEM WITH ONE BASED ON STORAGE OF ONLY CLUSTER INFORMATION EXTRACTED IN FAST HARDWARE;
 (3) UPGRADE EMC LEVEL 2 RECEIVER BOARDS AND USE FOR OTHER NEW SUBSYSTEMS AS WELL.

INCREASE DATA RATE FOR MOST DETECTORS TO $\geq 1 \text{ kHz}$

Make use of CERN developments for ALICE/LHC PASA (preamp/shaper amp) ALTRO (digitizer, digital filter, zero suppression, buffer) SIU (Optical data sender) D-RORC (PCI optical receiver board)

SCHEDULE:Nov. 2005SMALL PROTOTYPE IN STARNov. 2006Two Sectors in STARNov. 2007FULL TPC READOUT IN STAR

R2D

HTTP://QM2005.KFKI.HU/TALKS/081/AUG6/1420//1420 R2D-QM-V4.PPT

Figure 14: Comparison of particle identification capabilities in the new detector and the upgraded RHIC-I detectors as a function of pseudorapidity coverage and ϕ . The boxes show STAR and PHENIX, the blue shaded area shows the new detector coverage. The maximum transverse momentum for which particle identification is possible is indicated by the values in the boxes.

64

SUMMARY II

BRIGHT FUTURE FOR RHIC, RHIC II, MIXED HI SPECIES AND \sqrt{s} , SPIN PROGRAM AND ERHIC UNIQUE

MANY EXPERIMENTAL AND COLLIDER UPDATES ON THE WAY FOR THE NEXT PHASE OF HI AND SPIN PHYSICS

STILL A CHALLENGING ENVIRONMENT

65

Tracking In High Multiplicity Environments 05-07 October 2005 Zurich, Switzerland

Bacournige dialogue between bacdware and software experts

Transfer in oveledge from ritoping to future experiments

二日日

1000

THE FUTURE STATE

<u>SOME ON:</u> <u>HTTP://WWW.PHENIX.BNL.GOV/WWW/PUBLISH/AFRANZ/TIME05/</u>

THURS

BACKUP SLIDES

67

COMPARISON TO OTHER COLLIDERS

Note 1: For ion collisions the nucleon-pair luminosity is shown. The nucleon-pair luminosity is defined as $L_{NN} = A_1A_2L$, where L is the luminosity, and A_1 and A_2 are the number of nucleons of the ions in the two beam respectively. Note 2: An upward arrow next to a particle symbol denotes polarized beam.

RHIC SUMMARY RUN 03-05

TABLE 1: ACHIEVED BEAM PARAMETERS AND LUMINOSITIES (\pounds) FOR AU-AU (RUN-4), CU-CU (RUN-5), D-AU (RUN-3), AND P-P (RUN-5). ALL NUMBERS ARE GIVEN FOR OPERATION AT A BEAM ENERGY OF 100 GeV/N.

Mode	# BUNCHES	Ions/bunch [10 ⁹]	β* [м]	Εμιττάνςε [μm]	£ _{реак} [СМ ⁻² S ⁻¹]	£ _{store ave} [CM ⁻² S ⁻¹]	\pounds week
AU-AU	45	1.1	1	15-40	15×10 ²⁶	5×10 ²⁶	160 μΒ ⁻¹
Ϲυ-Ϲυ	37	4.5	0.9	15-30	2×10 ²⁸	0.8×10 ²⁸	2.4 NB ⁻¹
D-AU	55	110d / 0.7Au	2	15	7×10 ²⁸	2×10 ²⁸	4.5 nв ⁻¹
PÎ-PÎ *	106	90	1	30-35	10×10 ³⁰	7×10 ³⁰	1.9 рв ⁻¹

* BLUE RING AVERAGE POLARIZATION OF 49%, YELLOW RING AVERAGE POLARIZATION OF 44% IN RHIC STORES AT 100GEV.

HTTP://WWW.AGSRHICHOME.BNL.GOV/RHIC/RUNS/

PHENIX - MRPC

Science

U.S. DEPARTMENT OF ENERGY

NATIONAL LABORATORY

PHENIX - GAS SUMMARY

	MIXTURE	%	IN LITERS	FLOW RATES (LPM)	
TEC	AR/CH4	90/10	6000	15.100	
TEC/TRD	XE/HE/CH4	45/45/10	6000	XX	
DC	AR/C2H6	50/50	6000	12.000	
PC	AR/C2H6	50/50	1075	4.700	
MUTR	AR/CO2/CF4	50/30/20	3000	8.000	
MuID	CO2/C4H10	10.111	50000	25.000	
RICH	CO2	100.000	80000	2.000	
HE BAG	HE	100.000	9060	1.000	
TOF WEST	ST R134A/ 95/5 225 C4H10		225	0.625	
TRD PURIFIER	AR/H2	95 / 5	7	0.050	
HBD	CF4	100.000	200	2.000	

GEMS

=Gas Electron Multiplier

A micropattern structure produced in 50µm thick copper clad kapton using lithographic techniques. 55µm holes on ~140µm centers Gain up to ~10³ for single foil

31/1 Foil (J. Collar) Photo - Bo Yu, BML

RHIC UPGRADES

RHIC Upgrades Overview

Upgrades	High T QCD				Spin		Low x
	e+e-	heavy flavor	jet tomography	quarkonia	w	∆G/G	
PHENIX							
hadron blind detector (HBD)	х						
Vertex tracker (VTX and FVTX)	x	x	0	0		x	ο
μ trigger				0	x		
forward calorimeter (NCC)			0	0	0		x
STAR							
time of flight (TOF)		ο	x	0			
Heavy flavor tracker (HFT)		x		x			
tracking upgrade		ο			x	ο	
Forward calorimeter (FMS)						0	x
DAQ		0	x	x	0	0	0
RHIC luminosity	0	0	x	x	0	0	0

73