Highlights of the "QCD at High Temperature" Parallel Sessions

July 19-21, 2006

Saskia Mioduszewski, Rene Bellwied, Tony Frawley

July 22, 2006

14 talks over three afternoons of parallel sessions.

Very lively discussions!

We have time here only for a few "take home" messages.

Figure 2 Graphic illustration of the Mid-Term Plan

QGP plasma properties known, so far

Barbara Jacak

Extract from models, constrained by data

Energy loss <de dz=""> (GeV/fm)</de>	7-10	0.5 in cold matter	
Energy density (GeV/fm ³)	14-20	>5.5 from E_{T} data	
		above hadronic E density!	
dN(gluon)/dy	~1000	From energy loss, hydro huge!	
T (MeV)	380- 400	Experimentally unknown as yet	
Equilibration time τ_0 (fm/c)	0.6	From hydro initial condition; cascade agrees very fast! NB: plasma folks have same problem & use same technique	
Opacity (L/mean free path)	3.5	Based on energy loss theory	
viscosity	~0	hydro constrained by flow	

Plasma properties we will measure at RHIC II

property	measurement
Т	$\gamma, \gamma*$ as fn. of ε, μ
equation of state	particle flows as fn. of ϵ , μ
	critical point location
screening length	onium spectroscopy
ρ (x,v)	jet tomography
diffusion	open C, B spectra & flow
viscosity	strange & charmed hadron flows
	used to constrain 3d hydro
energy transport	>2 particle correlations vs. T, p_T

Barbara Jacak

Charm Measurements at RHIC disagree with FONNL (and, to a smaller extent, with each other!)

Alex Suiade

Most up to date pion and single electron predictions (collisional + radiative)

Inclusion of collisional energy loss leads to good agreement with pions and an improved agreement with single electron data at $dN_g/dy=1000$.

Magdalena Djordjevic

Need to separate charm and bottom. Is bottom thermalized? If so, how!

Quarkonium – Thermometer of Dense QCD

Satz, HP2006

 $\mathsf{T}_{\mathsf{melt}}(\Psi') < \mathsf{T}_{\mathsf{melt}}(\Upsilon(3S)) < \mathsf{T}_{\mathsf{melt}}(\mathsf{J}/\Psi) \approx \mathsf{T}_{\mathsf{melt}}(\Upsilon(2S)) < \mathsf{T}_{\mathsf{RHIC}} < \mathsf{T}_{\mathsf{melt}}(\Upsilon(1S))?$

Quarkonium and Open Heavy Flavor

Will be statistics limited at RHIC and LHC!

* large background

states maybe not resolved ** *** min. bias trigger

**** pt > 3 GeV

Compiled by T.Frawley

Signal	PHENIX	STAR	ALICE	CMS	ATLAS	
η or η	<0.35, 1.2-	<1	<0.9, 2.5-4	<2.4	<2.4	
$J/\Psi \rightarrow \mu\mu$ or ee	440,000	220,000	390,000	40,000	8K-100K	
$Ψ' \rightarrow μμ$ or ee	8000	4000	7,000	700	140-1800	
$\chi_c \rightarrow \mu \mu \gamma \text{ or } e e \gamma$	120,000 *	-	-	-	-	
$Y \rightarrow \mu\mu$ or ee	1400	11000**	6000	8000	15,000	
$B \rightarrow J/\Psi \rightarrow \mu\mu$ (8000	2500	12,900	-	-	
- ee) D → Kπ	8000****	30,000***	8,000	-	-	
Potential improv 4π acce	ements with o	eriment	LHC relative to RHIC Luminosity ~ 10%			

Y background rejection

10x 2-10x ???? Xc

Running time ~ 25% Cross section ~ 10-50x

~ similar yields! Note: for B, D increase by factor 10 extends p_T by ~3-4 GeV

Axel Drees

There is room for improvement if needed!

3.3.2 Observables II: Excitation Function + Rapidity

- nontrivial "flat" dependence
- similar interplay in rapidity!? (need accurate dN_c/dy)
- direct J/ψ essentially survive (even at RHIC)

Ralf Rapp

- 50% feeddown from Y', χ_{b}
- importance of color-screening!
- bottomonium suppression as unique QGP signature ?!

[Grandchamp etal '05]

Ralf Rapp

Quarkonia – Goals and Requirements

Physics Motivation	Probes	Studies	Requirements
Baseline	J/ ψ , ψ ', $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ through $\mu\mu$ and ee decay channels	Rapidity $y(x_F)$ and p_T spectra in AA, pA, pp as a function of A, \sqrt{s}	High luminosity and acceptance. High resolution to resolve Υ states
Deconfinement & Initial Temperature	J/ψ, ψ', Υ(1S), Υ(2S), Υ(3S)	Melting patterns of quarkonia states	Extract suppression mechanism taking into account: feed down, nuclear absorption, and recombination
Properties of the medium	High-p _⊤ J/ψ	R_{AA} : Dissociation \leftrightarrow Quenching	High luminosity
Thermalization &Transport properties of the Medium	ψ/L	J/ ψ flow (v_2) as a function of A, \sqrt{s} Recombination: y and $\langle p_T^2 \rangle$	High luminosity to obtain good statistics in short time (A, √s scans)

Alex Suiade

Handles of Jet tomography

Single particle spectra

- PID spectra out to high pT ($\pi^{0\pm}$, η , k, p, Λ) *
- Direct photon. *
- Heavy flavor to high pT (NP-electron, $D \rightarrow k\pi$) * *

Jets

- 2-particle correlation in $\Delta \phi$ and $\Delta \eta$ *
- γ h correlation. *
- Identified identified correlation *
- Heavy flavor hadron correlation (e-h, D-h). *
- Multi-particle correlation *
- Full jet reconstruction (γ -jet, HQ-jet) *

Variables to explore

- pT, centrality and η dependence.
- Reaction Plane dependence (or v2 in single particle case)
- Species dependence (Cu+Cu, Au+Au, U+U, A+B).
- − Energy dependence (sps energy \rightarrow 200 GeV)
- Reference p+p, p+A

* Precision measurement* Exploratory measurement

Jiangyong Jia

Hadron Composition of C (B) Triggered Jets

Possibility for new measurements of heavy flavor production at RHIC

- Can clarify the underlying hard scattering processes and open charm production mechanisms
- Can constrain the hardness of D and B meson fragmentation

Ivan Vitev

Photon tagged jets

- "Golden" channel: $q + g \rightarrow q + \gamma$.
- Photon tags p_{τ} (and flavor *u*/*d* quark!) of scattered parton.
- Can be used to perform *jet tomography* (R_{AA} does not work)
- Important baseline and calibration for (opposite side) di-hadron tomography.

T. Renk, hep-ph/0607166

Berndt Mueller

Summary

Jets are *rich and discriminative probes* of the medium:

- Strong energy loss agrees semi-quantitatively with theory;
- Probes of a well defined transport coefficient: q-hat;
- Quantitative determination of q-hat requires sophisticated and realistic description of medium evolution (transport);
- Rigorous, nonperturbative calculation of q-hat in QCD ?
- Relative weight of radiative and collisional energy loss ?
- Dependence on primary parton flavor ?
- Interaction of radiated energy with medium probes dissipation mechanisms and collective QGP modes.

Jet studies at the LHC will complement and greatly extend the RHIC measurements, but a lot remains to be explored at RHIC (heavy quarks, photon-jet correl's, di- and multi-hadron correl's with particle ID, etc.)

Berndt Mueller

If ϕ and Ω are produced mainly by the recombination of thermal s quarks, then no jets are involved.

Select events with ϕ or Ω in the 3< p_T <5 region, and treat them as trigger particles. Look for associated particles in the 1< p_T <3 region.

<u>Predict</u>: no associated particles giving rise to peaks in $\Delta \phi$, near-side or away-side.

Suggested future measurement

Verify or falsify that prediction

Rudy Hwa

Forward Physics and Gluon Saturation in the RHIC-II Era Mike Leitch - LANL (leitch@lanl.gov) Future Prospects in QCD at High Energy, 17-22 July 2006, BNL

Physics at large rapidity & small-x: cold nuclear matter (CNM) effects & gluon saturation

- quarkonia
- forward hadrons
- correlations & mono-jets
- open heavy quarks

■ UPC's

These are essential **control measurements** for hot dense QCD studies.

RIKEN Workshop Accelerator Summary (April 2006)

- No apparent show-stoppers for RHIC collisions at $E_{cm} = 5-50$ GeV/n
 - Only equal energies _
 - Unequal species possible only if minimum rigidity > 200 T-m
 - Without cooling \rightarrow long vertex distribution
- inbias event rate [Hz] Small set of specific energies (and species?) should be a workshop deliverable for planning
 - 2.5,3.2,3.8,4.4... GeV/n total beam energy
- Studies that should be done soon:
 - A \sim 1 day study period at low total beam energy to identify power supply, lifetime, tuning issues/limitations
 - Low-current superconducting magnet _ measurements
- Pre-cooling in AGS \rightarrow 10+x luminosity ?
- RHIC electron beam cooling would make this • a fantastic facility: ~100x luminosity, small vertex distribution, long stores.

Todd Satogata

T. Roser, T. Satogata

Summary

- There is substantial and growing interest in RHIC operations at low energies ($\sqrt{s_{NN}}$ = 5-50 AGeV)
 - Discovery of the QCD critical point would be another major discovery at RHIC
- There are no show-stoppers to a low-energy program
 - Low-energy (Bp=37.4 T-m) test run occurred June 5-6 2006
 - Addressable issues: sextupoles, instabilities, lumi monitoring
 - BUT RF challenges presently indicate <1Hz interaction rates
- Future planning
 - ~1 week at low energy in 2007 with Au is natural next step
 - Recommended energies: $\sqrt{s_{NN}}$ =7.6 GeV/u, test at $\sqrt{s_{NN}}$ =5 GeV/u
 - Low-energy electron cooling in both AGS and RHIC look very beneficial in multi-year timescale, but require program support

Todd Satogata

Conclusions

- There is much interest in a RHIC low energy scan program.
- PHENIX is capable of producing high quality measurements now and in the future on the wide variety of observables that could be needed to isolate the QCD critical point.
- PHENIX would benefit from a centrality detector designed specifically for low energy running.
- However, to cover all the bases, it would be nice to complete the program with:
 - Enough energy steps with sufficient statistics to map out any inflections about the critical point.
 - More than one species in order to investigate universal behavior and critical exponents near the critical point.
 - Companion p+p and/or d+Au data at each energy in order to reduce any systematic errors in measuring baseline distributions – very important for R_{AA} measurements.
- Estimated time for a 3σ correlation function critical exponent measurement (η): 18 days at 20 GeV

Jeff Mitchell

Some Key Measurements

- yields and particle ratios \rightarrow T and $\mu_{\scriptscriptstyle B}$
- elliptic flow v_2

 \rightarrow collapse of proton flow?

- k/π , p/π , $\langle p_T \rangle$ fluctuations \rightarrow the critical point signal
- scale dependence of fluctuations \rightarrow source of the signal
- v₂ fluctuations

 \rightarrow promising new frontier?

• Low mass dilepton measurements \rightarrow Chiral symmetry restoration (?)

Paul Sorensen

Heavy Ions in the QCD Lab – Fundamental QUESTIONS Requiring Real Answers

- Degrees of Freedom of the sQGP (when, how will we get this?)
- Properties of sQGP and characteristics of the phase transition

(when can we describe these to others?)

- Evolution of thermodynamic variables predicted from dynamical models
- Fundamental properties predicted by fundamental theories QCD, possibly AdS/CFT, others....
- Color Glass Condensate & evolution to QGP (requires all of above...)
- P and CP Violation near the QCD Phase Transition?
 - Large statistics data samples with reduced systematic errors
- Origin of Mass
 - Understanding hadronization from fragmentation into various flavors
- Chiral Symmetry Restoration
 - fragmentation into resonances in- and out-of-medium, chiral partners???

John Harris

Heavy lons in the QCD Lab

- Real answers will require next generation RHI Experiment(s) at QCD Lab
 - This is an absolute necessity for this field to accomplish its goals!!
- One such experiment should include:
 - Large (nearly hermetic) acceptance
 - Identification of all hadrons track-by-track to large momenta
 - Flavor tagging capabilities track-by-track
 - Excellent resolution track momenta and calorimetry (including γ 's)
- Other experiments (small and/or large)?

John Harris

Which Measurements are Unique at RHIC?

- General comparison to LHC
 - LHC and RHIC (and FAIR) are complementary
 - They address different regimes (CGC vs sQGP vs hadronic matter)
 - Experimental issues: "Signals" at RHIC overwhelmed by "backgrounds" at LHC
- Measurement specific (compared to LHC)
 - Charm measurements: favorable at RHIC

Charm is a "light quark" at LHC, no longer a penetrating probe

Abundant thermal production of charm

Large contribution from jet fragmentation and bottom decay

Bottom may assume role of charm at LHC

- Quarkonium spectroscopy: J/ψ , ψ ', χ_c easier to interpreter at RHIC

Large background from bottom decays and thermal production at LHC Upsilon spectroscopy can only be done at LHC

- Low mass dileptons: challenging at LHC
 Huge irreducible background from charm production at LHC
- Jet tomography: measurements and capabilities complementary RHIC: large calorimeter and tracking coverage with PID in few GeV range
 Extended p_T range at LHC
 Axel Drees

Beyond PHENIX and STAR upgrades?

- Do we need (a) new heavy ion experiment(s) at RHIC?
 - Likely, if it makes sense to continue program beyond 2020 Aged mostly 25 year old detectors Capabilities and room for upgrades most likely exhausted Delivered luminosity leaves room for improvement
 - Nature of new experiments unclear! Specialized experiments

 4π multipurpose detector "Die Eierlegendewollmilchsau"

• Key to future planning:

- First results from RHIC upgrades

Detailed jet tomography, jet-jet and γ -jet Heavy flavor (c- and b-production)

Quarkonium measurments $(J/\psi, \psi', \chi_c)$

Electromagnetic radiation (e⁺e pair continuum)

Status of low energy program

- Quantitative tests at LHC of models that describe RHIC data Validity of saturation picture

Does ideal hydrodynamics really work

Scaling of parton energy loss

Color screening and recombination

Axel Drees

New insights and short comings or failures of RHIC detectors will guide planning on time scale 2010-12

Heavy Ion Collisions Provide the Laboratory

Different accelerators probe different regions of the phase diagram!

Backup

STAR Upgrades

Future PHENIX Acceptance for Hard Probes

(i) π^0 and direct γ with combination of all electromagnetic calorimeters (ii) heavy flavor with precision vertex tracking with silicon detectors combine (i)&(ii) for jet tomography with γ -jet

(iii) low mass dilepton measurments with HBD + PHENIX central arms