Hot and dense QCD on the lattice

Introduction:

the QCD phase diagram, screening, strong coupling and perturbation theory

Bulk thermodynamics

 T_c and the equation of state

Hadronic fluctuations

quark number and charge fluctuations

The chiral critical point

..where is it?

Conclusions

Phase diagram of strongly interacting matter

Phase diagram of strongly interacting matter

RHIC at low energy \Leftrightarrow LGT at non zero chemical potential

Phase diagram of strongly interacting matter

RHIC at low energy \Leftrightarrow LGT at non zero chemical potential

Screening of heavy quark free energies - remnant of confinement above T_c -

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

Non-perturbative Debye screening

Ieading order perturbation theory: $m_D = g(T)T\sqrt{1 + \frac{n_f}{6}}$

• $T_c < T \lesssim 10T_c$: non-perturbative effects are well represented by an "A-factor": $m_D \equiv Ag(T)T, \ A \simeq 1.5$

Non-perturbative Debye screening

- Ieading order perturbation theory: $m_D = g(T)T\sqrt{1 + \frac{n_f}{6}}$
- $T_c < T \leq 10T_c$: non-perturbative effects are well represented by an "A-factor": $m_D \equiv Ag(T)T, \ A \simeq 1.5$

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

The spatial string tension

Non-perturbative, vanishes in high-T perturbation theory:

$$\sqrt{\sigma_s} = -\lim_{R_x, R_y o \infty} \ln rac{W(R_x, R_y)}{R_x R_y}$$

The spatial string tension

Non-perturbative, vanishes in high-T perturbation theory:

$$\sqrt{\sigma_s} = -\lim_{R_x, R_y o \infty} \ln rac{W(R_x, R_y)}{R_x R_y}$$

QCD equation of state

- two features of EoS are central in the ongoing discussion of the non-perturbative structure of QCD at high temperature
 - strong deviations from ideal gas behavior ($\epsilon = 3p$) for $T_c \leq T \sim 3T_c$
 - \checkmark deviations from Stefan-Boltzmann limit persist even at high T

SU(3) Thermodynamics - revisited: EoS

- SU(3) EoS deviates from ideal gas by about 15% at $4T_c$
- slow approach to the high temperature limit
- consistent with logarithmic running of the coupling (cf. 4d vs. 3d)

~ 15% deviations from ideal gas NOTE: p, ϵ, s normalized to be zero at T = 0;

non-pertubative vacuum properties show up at high-T

SU(3) Thermodynamics - revisited: $\langle G^2 \rangle_T$

- SU(3) EoS deviates from ideal gas by about 15% at $4T_c$
- slow approach to the high temperature limit
- consistent with logarithmic running of the coupling (cf. 4d vs. 3d)

Isentropic Equation of State: p/ϵ

- p/ϵ vs. ϵ shows almost no dependence on S/N_B , *i.e.* μ_q/T
- p/ϵ has only weak dependence on n_f (cut-off effects??)
- phenomenological EoS for $T_0 \lesssim T \lesssim 2T_0$

$$\frac{p}{\epsilon} = \frac{1}{3} \left(1 - \frac{1.2}{1 + 0.5\epsilon} \right) \ , \ \left(\frac{p}{\epsilon} \right)_{min} \simeq 0.075$$

Velocity of sound

steep EoS:

rapid change of energy density; slow change of pressure

 \Rightarrow reduced velocity of sound \Rightarrow more time for equilibration

Velocity of sound

steep EoS:

rapid change of energy density; slow change of pressure

 \Rightarrow reduced velocity of sound \Rightarrow more time for equilibration

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi} = 135$ MeV) and continuum limit ($a \rightarrow 0$)

EIC 2006 & Hot QCD, F. Karsch - p.12/24

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi}=135$ MeV) and continuum limit (a
 ightarrow 0)

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi}=135~{
 m MeV}$) and continuum limit (a
 ightarrow 0)

A new determination of the transition temperature in QCD

- calculation of transition temperature with almost physical quark masses and different lattice cut-off values
 - \Rightarrow extrapolation to physical limit ($m_{\pi}=135$ MeV) and continuum limit (a
 ightarrow 0)

MILC, PRD71 (2005) 034504 (figure unpublished) EIC 2006

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

ways to circumvent this problem.

- reweighting: works well on small lattices; requires exact evaluation of detM
 Z. Fodor, S.D. Katz, JHEP 0203 (2002) 014
- Taylor expansion around $\mu = 0$: works well for small μ ;
 C. R. Allton et al. (Bielefeld-Swansea), Phys. Rev. D66 (2002) 074507
 R.V. Gavai, S. Gupta, Phys. Rev. D68 (2003) 034506
- imaginary chemical potential: works well for small μ; requires analytic continuation Ph. deForcrand, O. Philipsen, Nucl. Phys. B642 (2002) 290
 M. D'Elia and M.P. Lombardo, Phys. Rev. D64 (2003) 014505

recent progress;

- reweighting: larger lattices; smaller quark mass;
 Z. Fodor, S.D. Katz, JHEP 0404 (2004) 050
- Taylor expansion: higher orders; larger volumes;
 C. R. Allton et al., Phys. Rev. D71 (2005) 054508
 R.V. Gavai, S. Gupta, Phys. Rev. D71 (2005) 114014
- imaginary chemical potential: improved algorithms
 O. Philipsen, hep-lat/0510077 (Lattice 2005)

recent progress;

- reweighting: larger lattices; smaller quark mass;
 Z. Fodor, S.D. Katz, JHEP 0404 (2004) 050
- Taylor expansion: higher orders; larger volumes;
 C. R. Allton et al., Phys. Rev. D71 (2005) 054508
 R.V. Gavai, S. Gupta, Phys. Rev. D71 (2005) 114014

```
    imaginary chemical potential: improved algorithms
    O. Philipsen, hep-lat/0510077 (Lattice 2005)
```

searches for the CCP: μ_B sensitive to V (and m_q)

 $\mu_B \sim 360 \ {
m MeV}$

no clear-cut evidence $\mu_B \sim 180~{
m MeV}$

no evidence

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^4\right)$

Quark number and charge fluctuations at $\mu_B = 0$; 2-flavor QCD ($m_\pi \simeq 770~MeV$)

C. Allton et al. (Bielefeld-Swansea), PRD71 (2005) 054508

Quark number and charge fluctuations at $\mu_B = 0$; 2-flavor QCD ($m_\pi \simeq 770~MeV$)

monotonic increase; close to ideal gas value for $T \ge 1.5T_c$

develops cusp at T_c

reaches ideal gas value for $T \gtrsim 1.5T_c$

Cumulant ratios

ratios of cumulants reflect carriers of baryon number and charge

Off-diagonal correlations

similar: correlations between eg. strangeness and baryon number sensitive to "carriers of quantum numbers"

 $\chi_{XS} \equiv \langle XS
angle - \langle X
angle \langle S
angle \,\,\,,\,\,\, X = B,\,\,Q$

R.V. Gavai, S. Gupta, PRD 73 (2006) 014004 inspired by: V. Koch, A. Majumder, J. Randrup, PRL 95 (2005) 182301

Lattice results on the QCD critical point

Where is the critical point?

Lattice results on the QCD critical point

attempts to determine the QCD critical point

- reweighting around $\mu_q = 0$ Z. Fodor, S. Katz, JHEP 0203 (2002) 014 and 0404 (2004) 050
- Taylor expansion around $\mu_q = 0$ C. R. Allton et al., Phys. Rev. D71 (2005) 054508
 R.V. Gavai, S. Gupta, Phys. Rev. D71 (2005) 114014
- results in a nutshell
 - m FK: $\mu_B \sim 360~{
 m MeV}$
 - \blacksquare GG: $\mu_B \sim 180~{
 m MeV}$
 - WE: so far, no clear-cut evidence for the chiral critical point

$$Z(V, T, \mu) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(V, T, \mu)}$$

= $\int \mathcal{D}\mathcal{A} \left[det \ M(\mu)\right]^f e^{-S_G(V, T)}$
from plex fermion determinant;
 $\frac{\mathcal{P}}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu)$
= $\sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n$
= $c_0 + c_2 \left(\frac{\mu}{T}\right)^2 + c_4 \left(\frac{\mu}{T}\right)^4 + \mathcal{O}((\mu/T)^6)$

$$\mu=0 \qquad \Rightarrow \qquad rac{p}{T^4}\equiv c_0(T)$$
EIC 2006 & Hot QCD, F. Karsch – p.21/24

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_q}{T}\right)^n \simeq c_0 + c_2 \left(\frac{\mu_q}{T}\right)^2 + c_4 \left(\frac{\mu_q}{T}\right)^4 + c_6 \left(\frac{\mu_q}{T}\right)^6$$

quark number density
$$\frac{n_q}{T^3} = 2c_2\frac{\mu_q}{T} + 4c_4\left(\frac{\mu_q}{T}\right)^3 + 6c_6\left(\frac{\mu_q}{T}\right)^5$$

quark number susceptibility
$$\frac{\chi_q}{T^2} = 2c_2 + 12c_4 \left(\frac{\mu_q}{T}\right)^2 + 30c_6 \left(\frac{\mu_q}{T}\right)^4$$

an estimator for the radius of convergence

$$\left(rac{\mu_q}{T}
ight)_{crit} = \lim_{n o \infty} \left|rac{c_{2n}}{c_{2n+2}}
ight|^{1/2}$$

 $c_n > 0$ for all n; singularity for real μ

Radius of convergence: lattice estimates vs. resonance gas

Taylor expansion \Rightarrow estimates for radius of convergence ρ

Radius of convergence: lattice estimates vs. resonance gas

Taylor expansion \Rightarrow estimates for radius of convergence ρ_{2n}

HOWEVER still consistent with resonance gas!!! HRG analytic, LGT consistent with HRG \Rightarrow infinite radius of convergence not yet ruled out

Radius of convergence: lattice estimates vs. resonance gas

HRG analytic, LGT consistent with HRG \Rightarrow infinite radius of convergence not yet ruled out

Conclusions

- Bulk thermodynamics is currently under intensive study: T_c has increased over earlier estimates: $T_c = 192(5)(4)$ MeV the EoS shows little quark mass and cut-off dependence for $T \ge T_c$: $\epsilon_c/T_c = 6 \pm 2$ still a valid estimate.
- The last word on the QCD phase diagram is not yet spoken: universal properties of the transition in 2-flavor QCD still have to be established;

the location of the chiral critical point still is uncertain.

• Fluctuations of baryon number, electric charge, strangeness confirm that quasi-particles with quantum numbers of quarks are the dominant degrees of freedom in the QGP for $T \gtrsim 1.5T_c$; bulk thermodynamics is consistent with a logarithmic running of the coupling for $T \gtrsim 2T_c$.