Exclusive measurements at eRHIC or How to access the quark/gluon orbital momenta ?

Antje Bruell Jlab

New frontiers at RHIC, Oct 30, 2005

Introduction

- Nucleons are the basic building blocks of atomic nuclei.
- Their internal structure, arising from the underlying quark and gluon constituents, determines their mass, spin, and interactions.
- These, in turn, determine the fundamental properties of the nuclei and atoms.
- Nucleon physics represents one of the most important frontiers in modern nuclear physics.

QCD and the Origin of Mass u + u + d = proton mass: 0.003 + 0.003 + 0.006 ≠ 0.938

The Angular Momentum Structure of the Nucleor

 Δq : well known from DIS & SIDIS ΔG : first indications from DIS L_q, L_q : unknown!

The Two Traditional Observables

Elastic Form Factors

- Low Q: charge and current distributions.
 High Q: light-cone parton distribution amplitudes, underlying pQCD reaction mechanism,
- Starting from Hofstadter's work in 1950's
- Well-measured for some, not so for others
 - Neutron form factors
 - Large Q²
 - ...

The Two Traditional Observables

- Feynman Parton Distributions
 - Distributions of quarks in momentum space.
 - Starting from Freedman, Kendall and Taylor's DIS experiments at SLAC
 - Well-measured in some kinematics. But some key aspects are missing
 - Parton distributions as $x \rightarrow 1$
 - Spin-flavor dependence

Beyond form factors and quark distributions – Generalized Parton Distributions (GPDs)

X. Ji, D. Mueller, A. Radyushkin, ...

M. Burkardt, ... Interpretation in impact parameter space

Physical Meaning of GPDs at $\xi = 0$

Form factors can be related to charge densities in the 2D transverse plane in the infinite-momentum frame $\int_{1}^{b} b_{y}$

- Feynman parton distribution is a quark density in the longitudinal momentum x,
- The Fourier transformation of a GPD H(x,t, ξ =0) give the density of quarks in the "combined" 2+1 space!

Mixed Coordinate and Momentum "3D" Picture

- Longitudinal Feynman momentum x
 - + Transverse-plane coordinates $\mathbf{b} = (b_x, b_y)$

A 3D nucleon

GPDs & Deeply Virtual Exclusive Processes

"handbag" mechanism

DVCS interpreted in pQCD at Q² > 1 GeV²

Deeply Virtual Exclusive Processes -Kinematics Coverage of the 12 GeV Upgrade

Exclusive ρ^0 production on transverse target

$$\begin{array}{|c|c|c|c|} \rho^{0} & A \sim & 2H^{u} + H^{d} \\ B \sim & 2E^{u} + E^{d} \end{array} \end{array}$$

Linear dependence on GPD E (entering Ji's sum rule)

Sensitivity to quark angular momentum

Kinematic coverage of eRHIC (EIC)

Complementary to Jlab@12 GeV

- low x
- high Q²

crucial for pQCD
 interpretation of hard exclusive
 meson production
 necessary for understanding
 of nucleon sea structure

> contribution to Sum Rules

Requires large luminosity !

Exclusive ρ^0 production on transverse target

 $A \sim H^u - H^d$ $B \sim E^u - E^d$

E^u, E^d needed for angular momentum

Higher Q² of EIC may be crucial

Transverse Momentum Dependent GPDs (TMDs)

Azimuthal Asymmetry – Sivers Effect

Originates in the quark distribution. It is measured in the azimuthal asymmetry with transverse polarized target.

$$A_{UT}^{\sin(\phi-\phi_s)} k f_{1T}^{\perp} D_1$$

Requires: non-trivial phase from the FSI + interference between different helicity states (S. Brodsky)

The program of Deeply Exclusive and Semi-Inclusive Experiments at the JLab 12 GeV Upgrade constitutes the next step in the breakthrough experiments to study the internal nucleon structure at a deeper level. It has the potential to revolutionize hadronic physics with electromagnetic probes.

From CLAS12 to EIC: Sivers effect projections

Sivers function extraction from A_{UT} (π^0) does not require information on fragmentation function. It is free of HT and diffractive contributions.

 A_{UT} (π^0) on proton and neutron will allow flavor decomposition w/o info on FF.

P_{T} -dependence of beam SSA $A_{LU} \propto g^{\perp(1)}(x)D_1(z)$ $\sigma^{\sin\phi}_{LU(UL)} \sim F_{LU(UL)} \sim 1/Q$ (Twist-3) HERMES $e p \rightarrow e' \pi^+ X$ AS 4.3 GeV CLAS 12 (predicted) 0.1 0.075 A^{sin∲}0/F(y) 0.05 0.025 In the perturbative limit $1/P_{T}$ behavior expected (F.Yuan SIR-2005) 0 EIC -0.025 2.0 0.25 0.5 0.75 1 1.25 1.5 0 P_T (GeV) Perturbative region **Nonperturbative TMD**

Study for SSA transition from non-perturbative to perturbative regime. EIC will significantly increase the P_T range.

Experimental Requirements

- High luminosity
- Beam and target polarisation
- Detection of the scattered proton (Roman pots)
- Hermetic detector ?
- Particle identification
- Neutron detection ?
- realistic simulations are just beginning

Summary

• Understanding the structure of the nucleon requires measurements of the Generalised Parton Distributions over the full x range and at high Q^2

• Measurements of both DVCS and exclusive meson production at EIC wi allow the determination of the quark and gluon orbital momenta

• Single spin asymmetries in semi-inclusive scattering provide an alternative approach to orbital momenta (connection ?)

- Jlab@12 GeV will address these questions in the valence region and at moderate Q^2

• **but** the definite answer will require the additional coverage of low x and the access to sufficiently high values of Q^2

• accessible only at a future polarised Electron Ion Collider with very high luminosity

Additional slides

Azimuthal Asymmetry - Collins Effect

Collins Effect and Kotzinian-Mulders Asymmetry π⁰ π^+ π \mathbf{U} L т <u>a</u> \mathbf{h}_1^{\perp} A^{sin2}∲ UL \mathbf{f}_1 \mathbf{U} 0.1 \mathbf{g}_1 L h_{II} f_{lT}^{\perp} $\mathbf{g}_{1\mathrm{T}}$ т \mathbf{h}_1 0.05 $h_{1L}^{\perp} =$ 0 -0.05 □ HERMES △ CLAS 5.7 GeV -0.1 CLAS12 0.5 0.5 0 0.5 0 0 ww х $\sigma_{UL}^{KM} \sim k h_{1L}^{L} H_{1}^{L}$ K. Bruhwel - TJNAF - 2005 Measures the Collins fragmentation with longitudinally polarized target. Access to the real part of s-p wave interference amplitudes.

From CLAS12 to EIC: Transversity projections

Simultaneous measurement of, exclusive ρ , ρ +, ω with a transversely polarized target

The background from vector mesons very different for CLAS12 and EIC.

From CLAS12 to EIC: Mulders TMD projections

Simultaneous measurement of, exclusive ρ , ρ +, ω with a longitudinally polarized target important to control the background.

Transversity in double pion production

The angular distribution of two hadrons is sensitive to the spin of the quark

h,

R_T

$$A_{UT} \propto sin(\varphi_R + \varphi_S)h_1 H_1^{\perp R} + \dots$$

"Collinear" dihadron fragmentation described by two functions at leading twist: $D_1(z, \cos\theta_R, M\pi\pi), H_1^R(z, \cos\theta_R, M\pi\pi)$

Collins et al, Ji, Jaffe et al, Radici et al. relative transverse momentum of the two hadrons replaces the $\mathsf{P}_{\mathsf{T}}\,$ in single-pion production (No transverse momentum of the pair center of mass involved)

quark

Dihadron production provides an alternative, "background free" access to transversity