Comparison of Simulation Data for Different Center-of-Mass Energies (and calculating "t" in RAPGAP)

> William Foreman Stony Brook University

EIC Collaboration Meeting, Stony Brook University, January 10-12, 2010

Designing a detector – the basics

- What we need to know:
 - The types of particles produced in electron-ion collisions
 - Multiplicity of particles
 - Where these particles go after a collision (angle and direction)
 - The momentum/energy these particles have

Event Generators

 We get this information from computer simulations or "event generators"

Monte-Carlo Simulator

 Random sampling used to create output data distributions that mimic what is seen in real experiments

RAPGAP

- Main author Hannes Jung
- ~12,000 lines of code
- simulates e+p collisions

Event listing (summary)								
I particle/	/jet KS	KF	orig	p_x	p_y	p_z	Е	m
1 !e-!	21	11	ō	0.000	0.000	-4.000	4.000	0.001
2 !p+!	21	2212	Θ	0.000	0.000	250.000	250.002	0.938
3 !Z0!	21	23	1	-0.196	0.302	-0.294	0.277	-0.373
4 e-	1	11	1	0.196	-0.302	-3.706	3.723	0.001
5 !u!	21	2	2	-0.440	-0.072	0.456	-0.108	0.000
6 !u!	21	2	5	0.399	-0.232	0.226	0.514	0.000
7 !u!	21	2	3	0.301	-0.082	-0.105	0.466	0.330
8 (u)	A 12	2	7	0.301	-0.082	-0.105	0.466	0.330
9 (ud 0)	V 11	2101	2	-0.498	0.384	249.811	249.812	0.579
0 (string)	11	92	8	-0.196	0.302	249.706	250.279	16.917
l (pi0)	11	111	10	-0.202	-0.084	0.012	0.257	0.135
2 (a 1+)	11	20213	10	0.289	-0.246	3.382	3.654	1.330
3 (K0)	11	311	10	0.349	0.279	5.476	5.517	0.498
4 (K*-)	11	-323	10	-0.517	0.338	58.343	58.353	0.865
5 (pi0)	11	111	10	-0.309	0.134	26.043	26.046	0.135
6 p+	1	2212	10	0.194	-0.119	156.575	156.578	0.938
7 (rho0)	11	113	12	0.421	-0.281	3.316	3.448	0.798
8 pi+	1	211	12	-0.106	0.028	0.045	0.183	0.140
9 K_L0	1	130	13	0.351	0.279	5.457	5.498	0.498
0 (Kbar0)	11	-311	14	-0.136	0.281	23.748	23.755	0.498
l pi-	1	-211	14	-0.379	0.056	34.423	34.425	0.140
2 pi-	1	-211	17	0.107	-0.191	2.892	2.904	0.140
3 pi+	1	211	17	0.286	-0.082	0.386	0.507	0.140
4 K_L0	1	130	20	-0.138	0.281	23.874	23.881	0.498
5 gamma	1	22	11	-0.169	-0.096	-0.036	0.198	0.000
6 gamma	1	22	11	-0.033	0.012	0.048	0.059	0.000
7 gamma	1	22	15	-0.064	-0.019	3.170	3.171	0.000
8 gamma	1	22	15	-0.245	0.153	22.873	22.875	0.000
1987/1	sum:	0.00		0.000	0.000	246.000	254.002	63.253

Dealing with data

- RAPGAP output read/organized into data trees using codes or "macros" in C++/ROOT
 - Variables organized into a tree structure, allowing for simplified inspection of data

ImageMagick: xQ2_ep4x250.pn

(CeV²)

10

10 10-5

10-4

Trees are read by other custom macros to produce plots

Deep Inelastic Scattering vs. Diffractive Scattering (in a nutshell)

Deep Inelastic Scattering (DIS):

Electron interacts with a parton inside proton, is scattered at angle θ_e with energy E_e' , proton fragments

Diffractive Scattering:
Proton remains intact during the
collision, "rapidity gap" in which no particles are ejected

RAPGAP simulates both processesImportant to understand differences in data

Kinematic Variables of DIS

$$E_{e}, E_{p}$$

$$e = (0,0, -E_{e}, E_{e})$$

$$p = (0,0, E_{p}, E_{p})$$

$$e' = (E'_{e} \sin\theta'_{e}, 0, E'_{e} \cos\theta'_{e}, E_{e}')$$

$$s = (e + p)^{2} = 4E_{e}E_{p}$$

$$q^{2} = (e - e')^{2}$$

$$= -2E_{e}E'_{e}(1 + \cos\theta'_{e})$$

$$= -Q^{2}$$

$$y = (q \cdot p)/(e \cdot p)$$

$$x = Q^{2}/(2 q \cdot p) = Q^{2}/(y s)$$

initial electron/proton beam energies four momentum of incoming electron four momentum of incoming proton four momentum of recoil electron square of total center-of-mass energy square of total momentum transfer

fraction of energy transfer Bjorken scaling variable

Center-of-Mass Energy (CME) is square root of "s"

 $\sqrt{s} = \sqrt{(e+p)^2} = \sqrt{4E_e E_p} = 2\sqrt{E_e E_p} = 2\sqrt{(4 \text{ GeV})(100 \text{ GeV})} = 40 \text{ GeV}.$

Energies Simulated in RAPGAP

Beam Energies E _e + E _p [GeV]	Center-of-mass Energy [GeV]	Events Produced
4+50	28.3	٨
4+100	40.0	
10+50	44.7	
4+250	63.3	
10+100	63.3	One million
20+50	63.3	
20+100	89.4	
10+250	100	
20+250	141	Ļ

Energies Simulated in RAPGAP

- Simulation data available for wide range of CM energies (approx 30-140 GeV)
- 3 different combinations of beam energies yield the same CM
 - observe how changing energy balance between proton/electron (while maintaining same CM) affects data

10+250	100		
20+250	141	Ŷ	

Proton beam kept constant (50 GeV)

High electron beam energy ↓ smaller angle for scat. electron

Proton beam kept constant (50 GeV)

High electron beam energy ↓ smaller angle for scat. electron

Proton beam kept constant (50 GeV)

High electron beam energy ↓ smaller angle for scat. electron

Electron beam kept constant (10 GeV)

- No significant dependence on proton beam energy
- Distributions virtually identical except more electrons scattered with larger momenta at larger angles as proton energy increases

Q² [GeV²]

No cuts on Q²
 for previous
 plots shown

 However: Theta vs. Q²
 plots shown
 here with cuts
 on momentum

Theta (degrees)

Electron beam kept constant (50 GeV)

High proton beam energy

- Pions more concentrated at small angles (< 2 degrees) in forward direction
- For diffractive events, same effect, except pions always at reasonably accessible angles

Same CM energy (63.3 GeV)

What we see:

- For DIS: distribution is more "smeared" as energy balance becomes more symmetric
- For diffractive: majority of pions at easily accessible angles, either forward or backward depending on proton/electron energy 18

What we see:

- Larger initial proton energy
 smaller scattered proton angle
- Protons always at VERY small angles, difficult to detect (but not impossible!)
- Increasing proton energy = exaggerated effect

Momentum of outgoing proton (GeV/c)

Calculating "t" in RAPGAP

What is t?

Diffractive kinematics Mandelstam variable "t": $t = (p_3 - p_1)^2 = (p_4 - p_2)^2$ **ALWAYS NEGATIVE**

 When Mx is exclusive vector meson (rho), (p₃ – p₁)² can be used

 Otherwise, we must use information from the the outgoing and initial proton, (p₄ - p₂)²

t calculated from rho-gamma*

$$t_{
ho} = m_{
ho}^2 - Q^2 - 2\left(E_{
ho}E_{\gamma^*} - p_{x_{
ho}}p_{x_{\gamma^*}} - p_{y_{
ho}}p_{y_{\gamma^*}} - p_{z_{
ho}}p_{z_{\gamma^*}}\right)$$

t calculated from P'-P $t_{proton} = 2m_p^2 - 2\left(E_P E_{P'} - p_{z_P} p_{z_{P'}}\right)$ What we get from RAPGAP:

- Using p-p vertex, many positive "t" values even though it is defined to be negative
- "t" from p-p and gamma-rho vertices <u>do not</u> <u>correlate</u>, even at high precision

Precision Studies

- t_rho on x-axis, t_proton on y-axis, 20+100 GeV
- Increasing precision has no real effect on correlation
- Strange "banding" effect is resolved for dp > 3

The problem:

- There appears to be an inherent bug in RAPGAP that affects exclusive vector meson events!!
- In the next talk, Peter Schnatz will show how this bug is not apparent in data from PYTHIA, another MC generator similar to RAPGAP

Other Ongoing Work and Future Plans

- Anders Kirleis (Stony Brook & BNL)
 - eRHIC detector simulation in Geant3
 - Spoke earlier

- Peter Schnatz (Stony Brook & BNL)
 - Radiative corrections in PYTHIA
 - Next speaker..

Thank you

Acknowledgements:

Matt Lamont & Elke-Caroline Aschenauer Abhay Deshpande Anders Kirleis Michael Savastio Peter Schnatz

Backup

t vs. P' angle

t calculated from rho-gamma*

t calculated from p-p'

t vs. P' angle

t calculated from rho-gamma*

t calculated from p-p'

t vs. P' angle

t calculated from p-p'